JP4036416B2 - Measuring method of silanol group concentration - Google Patents

Measuring method of silanol group concentration Download PDF

Info

Publication number
JP4036416B2
JP4036416B2 JP2000021404A JP2000021404A JP4036416B2 JP 4036416 B2 JP4036416 B2 JP 4036416B2 JP 2000021404 A JP2000021404 A JP 2000021404A JP 2000021404 A JP2000021404 A JP 2000021404A JP 4036416 B2 JP4036416 B2 JP 4036416B2
Authority
JP
Japan
Prior art keywords
concentration
silanol group
fine particles
silica
silica fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000021404A
Other languages
Japanese (ja)
Other versions
JP2001208683A (en
Inventor
良典 木全
修太 中川
秀樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2000021404A priority Critical patent/JP4036416B2/en
Publication of JP2001208683A publication Critical patent/JP2001208683A/en
Application granted granted Critical
Publication of JP4036416B2 publication Critical patent/JP4036416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Description

【0001】
【発明の属する技術分野】
本発明は、近赤外線を光源とする吸光光度法を利用して、シリカ微粒子中のシラノール基の濃度(mmol/g)を測定する方法に関する。
【0002】
【従来の技術】
シラノール基を有するシリカの粉体は物質を吸・脱着する性質があるため、これを利用して乾燥剤、吸着剤、クロマトグラフのカラム充填剤など幅広い分野で利用されている材料である。シリカ粉体の性質はその粒子表面に存在するシラノール基の濃度に依存するため、シリカ粒子の品質管理のためには、そのシラノール基濃度を測定する必要がある。
従来、シリカのシラノール基を定量する方法としては、その化学反応性を用いた方法が幾つか提案されている。例えばメチルリチウムをシラノール基と反応させ、発生したメタンを定量することによりシラノールの量を求める方法が知られている〔S.C.Antakli, J.Serpinet, Chromatographia, Vol.23, No.10, p.767-769 (1987) 〕。また、不活性な有機溶剤中にシリカ粒子を分散させ、この分散液に既知量のトリエトキシシランを添加し、それとシラノール基との反応後のトリエトキシシランの濃度をガスクロマトグラフィー等で測定することにより、シラノール基の量を求める方法もある。上記の方法では、シラノール基濃度が0.5mmol/g程度かそれ以上の場合であれば測定可能であるが、それを下回るような量に対しては測定が難しかった。
【0003】
一方、赤外吸収スペクトル法により3000〜3700cm-1におけるシラノール基の赤外線吸収を利用して、シラノール基濃度を測定することも原理的には可能である。しかしながら、上記波数領域における赤外線吸収は、水のヒドロキシ基による吸収と重なりなり表面吸着水の影響を受けるために、シリカ粒子表面に存在するシラノール基を正確に測定することはできない。
これに対して近赤外吸収帯を利用すると、水の吸収は5100〜5200cm-1に、またシラノール基の吸収は4500cm-1および7200cm-1付近に観測され、それぞれは分離する。従来、近赤外法によるシラノール基の定量は、主にシリル化反応等においてシラノール基の相対量をモニターする手段として利用されていた。
シラノール基の絶対量を測定した例としては、比表面積が100 〜300m2 /gのクロマトグラフ用シリカゲルを四塩化炭素中に分散させ、その分散液の近赤外線吸光度を測定し、別途作成した検量線により定量したという報告がある〔S.G.Bosh, J.W.Jorgenson, J.Chromatogr., Vol.503, No.1, p.69-91 (1990) 〕。この方法では、検量線の作成のために用いるシリカゲル試料について、そのシラノール基の絶対量をシリル化反応法または重水素置換法にて求める必要があり、この点でやはり低濃度のシラノール基の測定には制約があった。
【0004】
【発明が解決しようとする課題】
本発明においては、低濃度たとえば0.1mmol/g以下の濃度の測定が可能で、かつ操作の簡便なシラノール基濃度の測定方法の提供を目的とした。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、シリカ微粒子の表面に存在するシラノール基の濃度を測定するために、粒径が20μ m 以下のシリカ微粒子の四塩化炭素分散液を試料として、透過法による近赤外線吸光光度法を適用し、得られた吸光度をオルガノシラノールの標準溶液で作成した検量線によりシラノール基濃度に変換することにより、低濃度のシラノール基の濃度を相対値ながら容易に数値化できることを見出した。検量線の作成にシラノール基濃度が既知なシリカ微粒子を使用せずに、オルガノシラノールの四塩化炭素溶液を使用する点で、得られるシラノール濃度は相対値であるものの、本測定法で得られるシラノール基の濃度数値はシリカ微粒子の物性から予測されるシラノール基濃度と良好な相関関係があることも見出した。
【0006】
すなわち、本発明は、近赤外線を光源とする吸光光度法により粒径20μm以下のシリカ微粒子中のシラノール基の濃度(mmol/g)を測定するに当たり、シリカ微粒子を四塩化炭素に分散させ、得られる分散液を試料として透過法により4385〜4800cm-1吸収帯の吸光度を測定し、得られたピーク面積/シリカ濃度の直線関係の勾配値をシラノール基濃度が既知のオルガノシラノールの四塩化炭素溶液のピーク面積/シラノール基濃度の直線関係の勾配値と対比させることによりシラノール基濃度に変換させることを特徴とするシリカ微粒子中のシラノール基濃度の測定方法である。
上記本発明によれば、粒径が20μm以下のシリカ微粒子中のシラノール基濃度を数値化でき、しかもその数値によりシリカ微粒子の物性を管理できるという優れた効果が奏される。
【0007】
【発明の実施の形態】
本発明においては、粒径が20μm以下のシリカ微粒子の四塩化炭素分散液を試料として、透過法により近赤外線の吸光度を測定する。用いる近赤外線の波数としては、シラノール基の特性吸収帯である4385〜4800cm-1が好ましい。近赤外線の吸光度の測定で光路にセットする試料セルの長さ(一般に光路長またはセル長と称される)としては、2〜10mmが好ましい。本発明による測定の対象となるシリカ微粒子の粒径としては、20μm以下であり、その下限は0.1μmが好ましい。さらに好ましい粒径は1〜10μmである。シリカ微粒子の粒径が20μmを越えると、シリカ微粒子による近赤外線の屈折および散乱等が無視できなくなり、測定誤差すなわちシラノール基の吸光以外の作用により吸光度が変動を受け易い。
【0008】
シリカ微粒子の分散液を得るために用いる媒体は四塩化炭素である。四塩化炭素は、4200〜4800 cm -1 の波数領域を含む近赤外領域に吸収を持たない点で好ましく使用できる。さらに、四塩化炭素(以下有機溶剤ということがある)は、屈折率がシリカの屈折率(1.45)と近似している点で好ましい。使用する媒体とシリカの屈折率が大幅に異なると、試料セルに当てられた入射光がそのまま直進せず屈折するため、かかる屈折が起こる分だけ透過光が減少し、その結果測定のノイズが大きくなる。測定に供するシリカ微粒子の分散液中の好ましいシリカ濃度は、0.1〜1g/mlである。
【0009】
本発明においては、オルガノシラノールを基準物質として使用する。種々のオルガノシラノールを用いることができ、具体的にはトリメチルシラノール、トリエチルシラノール、ジメチルシランジオール、ジエチルシランジオール、1,1,2,2,- テトラメチル-1,2- ジヒドロキシジシロキサン、ジターシャリブチルシランジオール、トリフェニルシラノールまたはジフェニルシランジオール等が挙げられる。
シラノール基は一般に反応性が高く水分の存在下にそれが自己縮合反応を起こすとその量が変動し、かかるシラノール基を有するオルガノシラノールは基準物質として使用し難い。従って、反応性の低い程、基準物質として好ましく使用することができ、その点で、トリメチルシラノール、1,1,2,2,- テトラメチル-1,2- ジヒドロキシジシロキサンまたはジターシャリブチルシランジオールが特に好ましい。
【0010】
本発明においては、試料分散液から得られた吸光度をシラノール基濃度が既知のオルガノシラノール(以下基準物質ということがある)の有機溶剤溶液の吸光度と対比させるが、かかる対比に際しては、基準物質で作成した検量線を利用することが好ましい。
後記した具体例における検量線は、トリメチルシラノールの四塩化炭素溶液(シラノール基濃度; 0.0056mol/L 〜0.17mol/L )を使用し、以下の測定装置によって作成した。吸光度としては、4800〜4385cm-1の波数領域における吸光度を積算したものすなわち吸光度を縦軸として吸光スペクトルにおける吸収ピーク面積を採用したが、特定の波数における吸光度すなわちピーク高さを採用することもできる。
使用装置:Nicolet 製MAGNA750型フーリエ変換赤外分光光度計
[光源:タングステンハロゲンランプ、ビームスプリッタ:フッ化カルシウム、検出器:DTGS]
測定用セル:5mm (液体用石英セル)
測定波数領域:8000〜4000cm-1
波数分解能:8cm -1
積算回数:32回
測定時の温度:25℃
【0011】
試料分散液から得られた吸光度を上記方法によって作成された検量線に適用することにより、試料分散液中のシラノール基濃度が求められる。シリカ微粒子が有機溶剤に溶解しておらず、固形物のシリカ微粒子により近赤外線の試料セル透過が多少とも影響を受けるとすれば、本方法で真値を得ることは理論上無理であるが、シリカ微粒子の物性の管理にとって十分な基準物質換算のシラノール基濃度を求めることができる。
シリカ微粒子の表面に存在するシラノール基の量は、シリカ微粒子を加熱することにより減少させることもできるし、またシリカ微粒子は周囲の空気中の水分を吸って表面シラノール基の量が徐徐に増加する。そして、前述のとおり、そのシラノール基の濃度によりシリカ微粒子の実用物性が異なるのである。本発明の方法によってシリカ微粒子中のシラノール基の量が管理できれば、シリカ微粒子を使用する者にとって好都合である。
以下に、実施例に基づいて本発明を具体的に説明する。
【0012】
<検量線の作成方法>標準物質のオルガノシラノール化合物としてトリメチルシラノール〔信越化学工業(株)製〕を選択し、検量線用標準近赤外吸収スペクトルを測定した。得られた近赤外スペクトルを図1に示した。シラノール基の吸収帯4800〜4385cm-1 のピーク面積を計算してトリメチルシラノール、すなわちシラノール基のモル濃度に対してこれをプロットすると、図2の検量線が得られた。
【0013】
【化1】

Figure 0004036416
【0014】
【化2】
Figure 0004036416
【0015】
【実施例2】
平均粒子径5μm、比表面積250m2/g(BET法)の粉末状シリカA(東亞合成株式会社製)0.205gを5mmのセルに採取し、四塩化炭素1.0mLを加えて攪拌してシリカの分散液を調製した(試料濃度;0.164g/mL)。積算回数を500 回にしたこと以外は<検量線の作成方法>と同様の分析条件とし、シリカA分散液の近赤外吸収スペクトルを測定した。濃度を0.364g/mL、0.423g/mL、0.439g/mL、0.559g/mLに調製したシリカA分散液についても同様にスペクトル測定を実施した。四塩化炭素中に種々の濃度で分散させた粉末状シリカAの近赤外スペクトルを図3に示した。シラノール基の吸収ピークが4700〜4300cm-1に観測され、これらのピーク面積を分散液の濃度Cwに対してプロットすると図4が得られた。濃度と面積は比例関係が成立しており、Beerの法則に従うことが確認できた。<検量線の作成方法>よりシラノール基のモル濃度Cm[mol/L]と近赤外スペクトルのピーク面積Sとの関係式は、
S=69.90×Cm・・・・・・・<1>
であり、本実施例から粉末状シリカAの分散重量濃度Cw[g/mL]と近赤外スペクトルのピーク面積Sとの関係式は、
S=42.07×Cw・・・・・・・<2>
であるので、粉末状シリカAのシラノール基濃度C[mmol/g]は、
C=Cm/Cw=(S/69.90)/(S/42.07)=0.602[mmol/g]と求められた。
【0016】
【化3】
Figure 0004036416
【0017】
【化4】
Figure 0004036416
【0018】
【実施例3】
実施例2の被検試料である粉末状シリカAを1000℃で1時間熱処理してシラノール基の脱水縮合を行った比表面積が1.9m2/gである試料(以下、粉末状シリカBと言う)を用い、濃度Cwを0.381g/mL、0.454g/mL、0.594g/mL、0.620g/mLに調製した四塩化炭素分散液について実施例2と同様にして近赤外スペクトルの測定を行った。Cwとシラノール基吸収ピークの面積は図5のように比例関係が確認され、粉末状シリカBのシラノール基濃度は<検量線の作成方法>に基づく検量線式<1>より0.012[mmol/g]と求められた。
【0019】
【化5】
Figure 0004036416
【0020】
【発明の効果】
本発明の方法によれば、粉末状シリカ中のシラノール基濃度を簡便な近赤外分光法で迅速に測定することができ、水分が共存しても極めて低濃度のシラノール量まで定量することできる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the concentration (mmol / g) of silanol groups in silica fine particles using an absorptiometric method using near infrared rays as a light source.
[0002]
[Prior art]
Silica powder having a silanol group has a property of adsorbing and desorbing substances. Therefore, it is a material used in a wide range of fields such as a desiccant, an adsorbent, and a chromatographic column filler. Since the properties of silica powder depend on the concentration of silanol groups present on the surface of the particles, it is necessary to measure the silanol group concentration for quality control of the silica particles.
Conventionally, several methods using the chemical reactivity have been proposed as methods for quantifying the silanol group of silica. For example, a method for determining the amount of silanol by reacting methyllithium with a silanol group and quantifying the generated methane is known [SCAntakli, J. Serpinet, Chromatographia, Vol. 23, No. 10, p.767- 769 (1987)]. In addition, silica particles are dispersed in an inert organic solvent, a known amount of triethoxysilane is added to the dispersion, and the concentration of triethoxysilane after reaction with the silanol group is measured by gas chromatography or the like. There is also a method for determining the amount of silanol groups. In the above method, measurement is possible if the silanol group concentration is about 0.5 mmol / g or more, but it was difficult to measure the amount below that.
[0003]
On the other hand, it is also possible in principle to measure the silanol group concentration by utilizing infrared absorption of silanol groups at 3000 to 3700 cm −1 by infrared absorption spectroscopy. However, since the infrared absorption in the wave number region overlaps with the absorption by the hydroxyl group of water and is affected by the surface adsorbed water, the silanol group present on the surface of the silica particles cannot be accurately measured.
By using near-infrared absorption bands contrast, the absorption of water in 5100~5200Cm -1, also absorption of silanol group is observed near 4500cm -1 and 7200cm -1, respectively separated. Conventionally, the quantification of silanol groups by the near infrared method has been utilized as a means for monitoring the relative amount of silanol groups mainly in silylation reactions and the like.
As an example of measuring the absolute amount of silanol groups, a silica gel for chromatography having a specific surface area of 100 to 300 m 2 / g was dispersed in carbon tetrachloride, and the near-infrared absorbance of the dispersion was measured. There is a report that it was quantified by lines [SGBosh, JW Jorgenson, J. Chromatogr., Vol. 503, No. 1, p. 69-91 (1990)]. In this method, it is necessary to determine the absolute amount of silanol groups in the silica gel sample used for preparing a calibration curve by the silylation reaction method or the deuterium substitution method. There were limitations.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for measuring a silanol group concentration that can measure a low concentration, for example, a concentration of 0.1 mmol / g or less and is easy to operate.
[0005]
[Means for Solving the Problems]
The present inventors have made intensive studies in order to solve the above problems, in order to measure the concentration of silanol groups present on the surface of the silica fine particles having a particle size of less silica fine 20 [mu] m carbon tetrachloride dispersion Using the near-infrared absorptiometry by the transmission method as a sample, and converting the resulting absorbance to a silanol group concentration using a calibration curve prepared with a standard solution of organosilanol, the relative concentration of low-concentration silanol groups It was found that it was easy to digitize the value. Although silanol concentration obtained is a relative value in using a carbon tetrachloride solution of organosilanol without using silica fine particles with a known silanol group concentration for the preparation of a calibration curve, the silanol obtained by this measurement method is used. It was also found that the group concentration value had a good correlation with the silanol group concentration predicted from the physical properties of the silica fine particles.
[0006]
That is, in the present invention, when measuring the concentration (mmol / g) of silanol groups in silica fine particles having a particle diameter of 20 μm or less by an absorptiometry using a near infrared light source, the silica fine particles are dispersed in carbon tetrachloride. the dispersion was measured absorbance at 4385 ~4800cm -1 absorption band by a transmission method as a sample to be, carbon tetrachloride organosilanol gradient values silanol group concentration of the known linear relationship of the peak area / silica concentrations obtained solution This is a method for measuring the silanol group concentration in silica fine particles, wherein the concentration is converted to a silanol group concentration by comparing with the gradient value of the linear relationship of the peak area / silanol group concentration .
According to the present invention, the silanol group concentration in the silica fine particles having a particle diameter of 20 μm or less can be quantified, and the excellent effect that the physical properties of the silica fine particles can be managed by the numerical values is exhibited.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the absorbance of near infrared rays is measured by a transmission method using a carbon tetrachloride dispersion of silica fine particles having a particle size of 20 μm or less as a sample. The wave number of the near infrared ray to be used is preferably 4 385 to 4800 cm −1 which is a characteristic absorption band of a silanol group. The length of the sample cell (generally referred to as optical path length or cell length) set in the optical path in the measurement of near-infrared absorbance is preferably 2 to 10 mm. The particle diameter of the silica fine particles to be measured according to the present invention is 20 μm or less, and the lower limit is preferably 0.1 μm. A more preferable particle size is 1 to 10 μm. If the particle size of the silica fine particles exceeds 20 μm, near infrared refraction and scattering by the silica fine particles cannot be ignored, and the absorbance is likely to fluctuate due to measurement errors, that is, actions other than the absorption of silanol groups.
[0008]
The medium used to obtain the dispersion of silica fine particles is carbon tetrachloride. Carbon tetrachloride can be preferably used in that it has no absorption in the near infrared region including the wave number region of 4200 to 4800 cm −1 . Further, carbon tetrachloride (hereinafter sometimes referred to as an organic solvent) is preferable in that the refractive index approximates that of silica (1.45). If the refractive index of the medium used and the silica are significantly different, the incident light applied to the sample cell will be refracted without going straight, so the transmitted light will be reduced by the amount of such refraction, resulting in a large measurement noise. Become. A preferable silica concentration in the dispersion of silica fine particles used for the measurement is 0.1 to 1 g / ml.
[0009]
In the present invention, organosilanol is used as a reference substance. Various organosilanols can be used, such as trimethylsilanol, triethylsilanol, dimethylsilanediol, diethylsilanediol, 1,1,2,2, -tetramethyl-1,2-dihydroxydisiloxane, ditertiary. Examples include butylsilane diol, triphenylsilanol, diphenylsilane diol, and the like.
Silanol groups are generally highly reactive and their amount varies when they undergo a self-condensation reaction in the presence of moisture, and organosilanols having such silanol groups are difficult to use as reference materials. Therefore, the lower the reactivity, the more preferable it can be used as a reference substance. In that respect, trimethylsilanol, 1,1,2,2, -tetramethyl-1,2-dihydroxydisiloxane or ditertiarybutylsilanediol Is particularly preferred.
[0010]
In the present invention, the absorbance obtained from the sample dispersion is compared with the absorbance of an organic solvent solution of organosilanol having a known silanol group concentration (hereinafter sometimes referred to as a reference substance). It is preferable to use the prepared calibration curve.
The calibration curve in the specific examples described later was prepared by the following measuring apparatus using a carbon tetrachloride solution of trimethylsilanol (silanol group concentration; 0.0022 mol / L to 0.17 mol / L). As the absorbance, the absorbance in the wave number region of 4800 to 4385 cm −1 is integrated, that is, the absorption peak area in the absorption spectrum is used with the absorbance as the vertical axis, but the absorbance at a specific wave number, that is, the peak height can also be adopted. .
Equipment used: Nicolet MAGNA750 Fourier transform infrared spectrophotometer [Light source: tungsten halogen lamp, beam splitter: calcium fluoride, detector: DTGS]
Measurement cell: 5mm (Quartz cell for liquid)
Measurement wave number range: 8000-4000cm -1
Wave number resolution: 8cm -1
Integration count: 32 times Measurement temperature: 25 ° C
[0011]
By applying the absorbance obtained from the sample dispersion to the calibration curve created by the above method, the silanol group concentration in the sample dispersion is determined. If the silica fine particles are not dissolved in the organic solvent and the near-infrared sample cell transmission is somewhat affected by the solid silica fine particles, it is theoretically impossible to obtain a true value by this method. It is possible to obtain a silanol group concentration in terms of a reference material sufficient for management of physical properties of silica fine particles.
The amount of silanol groups present on the surface of the silica fine particles can be reduced by heating the silica fine particles, and the silica fine particles absorb the moisture in the surrounding air and the amount of surface silanol groups gradually increases. . As described above, the practical physical properties of the silica fine particles differ depending on the concentration of the silanol group. If the amount of silanol groups in the silica fine particles can be controlled by the method of the present invention, it is convenient for those who use the silica fine particles.
Hereinafter, the present invention will be specifically described based on examples.
[0012]
<Method for preparing calibration curve> Trimethylsilanol [manufactured by Shin-Etsu Chemical Co., Ltd.] was selected as the organosilanol compound of the standard substance, and a standard near infrared absorption spectrum for a calibration curve was measured. The obtained near-infrared spectrum is shown in FIG. The peak area of the silanol group absorption band 4800-4385 cm-1 was calculated and plotted against the molar concentration of trimethylsilanol, that is, silanol group, the calibration curve of FIG. 2 was obtained.
[0013]
[Chemical 1]
Figure 0004036416
[0014]
[Chemical 2]
Figure 0004036416
[0015]
[Example 2]
0.205 g of powdered silica A (manufactured by Toagosei Co., Ltd.) having an average particle size of 5 μm and a specific surface area of 250 m 2 / g (BET method) was sampled in a 5 mm cell, added with 1.0 mL of carbon tetrachloride and stirred. A dispersion was prepared (sample concentration: 0.164 g / mL). The near-infrared absorption spectrum of the silica A dispersion was measured under the same analysis conditions as in <Method for creating calibration curve> except that the number of integrations was 500. Spectral measurements were similarly performed on silica A dispersions prepared at concentrations of 0.364 g / mL, 0.423 g / mL, 0.439 g / mL, and 0.559 g / mL. FIG. 3 shows near-infrared spectra of powdered silica A dispersed at various concentrations in carbon tetrachloride. Absorption peaks of silanol groups were observed at 4700-4300 cm-1, and when these peak areas were plotted against the concentration Cw of the dispersion, FIG. 4 was obtained. Concentration and area are in a proportional relationship, confirming that Beer's law is obeyed. <Method for preparing calibration curve> From the relationship between the molar concentration Cm [mol / L] of the silanol group and the peak area S of the near infrared spectrum,
S = 69.90 × Cm ・ ・ ・ ・ ・ ・<1>
From this example, the relationship between the dispersion weight concentration Cw [g / mL] of the powdered silica A and the peak area S of the near-infrared spectrum is
S = 42.07 x Cw ... <2>
Therefore, the silanol group concentration C [mmol / g] of the powdered silica A is
C = Cm / Cw = (S / 69.90) / (S / 42.07) = 0.602 [mmol / g].
[0016]
[Chemical 3]
Figure 0004036416
[0017]
[Formula 4]
Figure 0004036416
[0018]
[Example 3]
A sample having a specific surface area of 1.9 m 2 / g (hereinafter referred to as powdered silica B) obtained by subjecting the powdered silica A, which is a test sample of Example 2, to heat treatment at 1000 ° C. for 1 hour to perform dehydration condensation of silanol groups. ), And measuring the near-infrared spectrum of the carbon tetrachloride dispersion prepared at concentrations Cw of 0.381 g / mL, 0.454 g / mL, 0.594 g / mL, and 0.620 g / mL in the same manner as in Example 2. It was. The area of the Cw and silanol group absorption peak has a proportional relationship as shown in FIG. 5, and the silanol group concentration of the powdered silica B is 0.012 [mmol / g from the calibration curve formula <1> based on the <calibration curve creation method>. I was asked.
[0019]
[Chemical formula 5]
Figure 0004036416
[0020]
【The invention's effect】
According to the method of the present invention, the concentration of silanol groups in powdered silica can be quickly measured by simple near infrared spectroscopy, and even in the presence of moisture, it can be quantified to a very low concentration of silanol. .

Claims (1)

近赤外線を光源とする吸光光度法により粒径が20μm以下のシリカ微粒子中のシラノール基の濃度(mmol/g)を測定するに当たり、該シリカ微粒子を複数の濃度で四塩化炭素に分散させ、得られる分散液を試料として透過法により4385〜4800cm-1吸収帯の吸光度を測定し、得られたピーク面積/シリカ分散液濃度の直線関係の勾配値をシラノール基濃度が既知のオルガノシラノールの四塩化炭素溶液のピーク面積/シラノール基濃度の直線関係の勾配値と対比させることによりシラノール基濃度に変換させることを特徴とするシリカ微粒子中のシラノール基濃度の測定方法。In measuring the concentration (mmol / g) of silanol groups in silica fine particles having a particle diameter of 20 μm or less by absorptiometry using a near infrared light source, the silica fine particles are dispersed in carbon tetrachloride at a plurality of concentrations. The absorbance of 4 385 to 4800 cm −1 absorption band was measured by the transmission method using the obtained dispersion liquid as a sample, and the gradient value of the linear relationship of the peak area / silica dispersion concentration obtained was measured using four silanol group concentrations of known organosilanols. A method for measuring a silanol group concentration in silica fine particles, wherein the concentration is converted to a silanol group concentration by comparing with a gradient value of a linear relationship of peak area / silanol group concentration of a carbon chloride solution.
JP2000021404A 2000-01-31 2000-01-31 Measuring method of silanol group concentration Expired - Fee Related JP4036416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000021404A JP4036416B2 (en) 2000-01-31 2000-01-31 Measuring method of silanol group concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000021404A JP4036416B2 (en) 2000-01-31 2000-01-31 Measuring method of silanol group concentration

Publications (2)

Publication Number Publication Date
JP2001208683A JP2001208683A (en) 2001-08-03
JP4036416B2 true JP4036416B2 (en) 2008-01-23

Family

ID=18547817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000021404A Expired - Fee Related JP4036416B2 (en) 2000-01-31 2000-01-31 Measuring method of silanol group concentration

Country Status (1)

Country Link
JP (1) JP4036416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60334544D1 (en) 2002-08-09 2010-11-25 Toagosei Co Ltd METHOD FOR MEASURING A SILANOL GROUP
EP2216682B1 (en) 2007-11-13 2013-07-17 Adeka Corporation Positive photosensitive composition, positive permanent resist, and method for producing positive permanent resist

Also Published As

Publication number Publication date
JP2001208683A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
Sander et al. Recent advances in bonded phases for liquid chromatography
Murthy et al. Quantitative determination of (3-aminopropyl) triethoxysilane on silica gel surface using diffuse reflectance infrared Fourier transform spectrometry
Sander et al. Shape selectivity in reversed-phase liquid chromatography for the separation of planar and non-planar solutes
US10732093B2 (en) Gas sensor
Estella et al. A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element
Berntsson et al. Estimation of effective sample size when analysing powders with diffuse reflectance near-infrared spectrometry
Boboň et al. State of water molecules and silanol groups in opal minerals: a near infrared spectroscopic study of opals from Slovakia
McKenzie et al. Applications of diffuse reflectance FT-IR to the characterization of an E-glass fiber/γ-APS coupling agent system
Doyle et al. Characterization of liquid chromatographic stationary phases by Raman spectroscopy Effect of ligand type
Bauer et al. Functionalization of porous siliceous materials, Part 2: Surface characterization by inverse gas chromatography
Boroumand et al. Quantitative diffuse reflectance and transmittance infrared spectroscopy of nondiluted powders
JP4036416B2 (en) Measuring method of silanol group concentration
Scholten et al. Fundamental study of residual silanol populations on alkylsilane-derivatized silica surfaces
Kiselev et al. Adsorption of triethylamine and water vapor and the modification of silica surface by gaseous trimethylchlorosilane
JP7239595B2 (en) Method for measuring the transmittance of superabsorbents
Bush et al. Transmission near-infrared technique for evaluation and relative quantitation of surface groups on silica
Linton et al. Surface characterization of chemically modified (trimethylsily) silicas by 29Si solid state NMR, XPS, and IR photoacoustic spectroscopy
Leyden et al. Diffuse reflectance Fourier transform IR spectroscopy
Van der Beek et al. Polymer desorption by monomeric and polymeric displacers, as studied by attenuated total reflection FT-IR spectroscopy
Bukleski et al. A direct method of quantification of maximal chemisorption of 3-aminopropylsilyl groups on silica gel using DRIFT spectroscopy
Ahmed et al. A quantitative method for infrared spectroscopy of surface species
Lochmüller et al. The Effect of Bonded Ligand Structure on Solute Retention in Reversed-Phase High Performance Liquid Chromatography
Wang et al. Determination of bilirubin using near infrared diffuse reflectance spectroscopy with selective concentration on β-cyclodextrin
TeVrucht et al. Quantitative investigation of matrices for diffuse reflectance infrared Fourier transform spectrometry
Fong et al. Near-IR Spectroscopic Examination of Thin-Layer Chromatography Plates in the Diffuse Transmittance Mode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050610

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050711

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees