JP4036345B2 - Metal substrate coating composition - Google Patents

Metal substrate coating composition Download PDF

Info

Publication number
JP4036345B2
JP4036345B2 JP11214896A JP11214896A JP4036345B2 JP 4036345 B2 JP4036345 B2 JP 4036345B2 JP 11214896 A JP11214896 A JP 11214896A JP 11214896 A JP11214896 A JP 11214896A JP 4036345 B2 JP4036345 B2 JP 4036345B2
Authority
JP
Japan
Prior art keywords
melt
weight
composition
copolymer
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11214896A
Other languages
Japanese (ja)
Other versions
JPH09278966A (en
Inventor
信一 名村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP11214896A priority Critical patent/JP4036345B2/en
Publication of JPH09278966A publication Critical patent/JPH09278966A/en
Application granted granted Critical
Publication of JP4036345B2 publication Critical patent/JP4036345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、テトラフルオロエチレンとパーフルオロビニル化合物との共重合体からなる接着性に優れた金属基材被覆用組成物に関する。
【0002】
【従来技術】
テトラフルオロエチレンとパーフルオロビニル化合物との共重合体は、非粘着性、耐薬品性、耐熱性に優れているため金属基材のコーティングやラミネーション等に利用されているが、基材との接着性に乏しいという欠点を有する。従来このような接着性の問題を解決するため、予めサンドブラスト等により基材を粗面化したのちにプライマーを塗布する等の下地前処理が行われている。
【0003】
【発明が解決しようとする課題】
本発明は、前記のような特別の前処理をすることなく、テトラフルオロエチレンとパーフルオロビニル化合物との共重合体で金属基材を被覆する技術を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明者は、前記の目的を達成するために研究した結果、テトラフルオロエチレンとパーフルオロビニル化合物との共重合体に、少量の溶融流動性液晶ポリエステルを配合することにより、金属基材に対する接着性が著しく改善されることを見い出し、本発明を完成した。
【0005】
本発明のテトラフルオロエチレンとパーフルオロビニル化合物との共重合体は融点以上の温度において流動性を有するものであり、372℃±1℃において0.5〜500g/10分、好ましくは0.5〜50g/10分のメルトフローレート(MFR)を有する。好適なパーフルオロビニル化合物としては、炭素数3から10のパーフルオロアルキルトリフルオロエチレンや式
【0006】
【化1】

Figure 0004036345
【0007】
(式中、XはH又はF、mは0〜7の整数、nは0〜4の整数である。)
又は式
【0008】
【化2】
Figure 0004036345
【0009】
(式中、qは0〜3の整数である。)
で表わされるパーフルオロアルコキシトリフルオロエチレン等が挙げられる。共重合体中のパーフルオロビニル化合物の含有量は通常0.5〜20モル%の範囲から選択される。本発明において、上記テトラフルオロエチレン共重合体は反応性末端基を有するものでなければならない。反応性末端基としては−COOH、−CONH 2 、−COF、−CF=CF2等が挙げられる。このような末端基の存在は、後記する赤外吸収スペクトルの測定により確認することが出来る。このような反応性末端基の少なくとも1種がテトラフルオロエチレン共重合体中の炭素106個当たり6個以上の割合で存在することが好ましい。
【0010】
本発明において、溶融流動性液晶ポリエステル(以下LCPと略称する)とは、加熱により異方性溶融相を形成しうる溶融加工性のポリエステルであって、全芳香族ポリエステル、芳香族/脂肪族ポリエステル、芳香族ポリエステルアミド、芳香族ポリエステルカーボネート、芳香族ポリイミドエステル等を含有する。代表的な全芳香族ポリエステルとしては、例えば(1)2種以上の芳香族ヒドロキシカルボン酸を構成単位とするもの、(2)芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、及び芳香族ジオールを構成単位とするもの、(3)芳香族ジカルボン酸及び芳香族ジオールを構成単位とするもの等があり、芳香族ヒドロキシカルボン酸としては、4−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸(ナフタレンカルボン酸)等が、芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等が、芳香族ジオールとしては、ヒドロキノン、4,4−ビフェニルジオール、6−ヒドロキシ−2−ナフトール等が、それぞれ挙げられる。芳香族/脂肪族ポリエステルとしては、例えば、4−ヒドロキシ安息香酸及びポリエチレンテレフタレートを構成単位とするポリマーがある。芳香族ポリエステルアミドとしては、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸及び芳香族ヒドロキシアミン(又は芳香族ジアミン)を構成単位とするポリマー等があり、芳香族ヒドロキシアミンとしては、4−アミノフェノール、N−メチルアミノフェノール、芳香族ジアミンとしては、1,4−フェニレンジアミン、N−メチル−1,4−フェニレンジアミン等を挙げることができる。芳香族ポリエステルカーボネートとしては、例えば、4−オキシベンゾイル、4−ジオキシベンゾイル、ジオキシカルボニル及びテレフトイル単位を構成単位とするポリマーがある。芳香族ポリイミドエステルとしては、例えば、2,6−ナフタレンジカルボン酸、テレフタル酸及び4−(4′−ヒドロキシフタルイミド)フェノールを構成単位とするポリマーやジフェノール及び4−(4′−ヒドロキシフタルイミド)安息香酸を構成単位とするポリマー等を挙げることができる。本発明においては、全芳香族ポリエステルが特に好ましい。
【0011】
本発明の組成物においては、テトラフルオロエチレン共重合体100重量部に対して、LCPが0.1〜20重量部、好ましくは0.1〜10重量部、より好ましくは0.1〜3重量部の割合で配合される。LCPの配合割合が0.1重量部未満では、接着性の改善は不十分である。一方、20重量部を越える配合割合は、かえって接着性を低下させる傾向が有るほか、組成物の耐熱性や耐薬品性を悪化させるため、好ましくない。
【0012】
本発明においては、また、テトラフルオロエチレン共重合体の融点以上の温度でLCPの熱分解を促進する無機物の粒子を配合することにより、組成物の金属に対する接着性を一層向上させることができる。有用な無機物は、固体酸又は固体塩基として知られる物質の中から選択することができ、(1)Al23、TiO2、MgO、ZnO、SiO2等のような金属酸化物やこれらの混合物、あるいはSiO2−Al23、K2O−nTiO2等のような複合金属酸化物、(2)酸性白土、カオリナイト、ベントナイト、モンモリロナイト、タルク等のような粘土鉱物や雲母、ゼオライト、けい酸塩ガラス等のようなけい酸塩化合物、(3)硫酸アルミニウム、硫酸カルシウム等のような金属硫酸塩、(4)炭酸カリウム等のような金属炭酸塩、(5)水酸化カルシウム等のような金属水酸化物等を例示することができる。本発明においては、無機物のテトラフルオロエチレン共重合体に対する分解促進作用は小さいか全く無いことが好ましく、好ましい例としては、上記(1)及び(2)の無機物を挙げることができる。このような無機物を配合することにより、常温下での接着力のみならず、高温における接着の耐久性を著しく向上させることができる。テトラフルオロエチレン共重合体に対する分解促進作用が大きい無機物では、接着の高温耐久性を向上させる効果は得られない。LCP及びテトラフルオロエチレン共重合体に対する無機物粒子の分解促進性は、後記の参考例に従って、350℃におけるLCP及びテトラフルオロエチレン共重合体の重量減少を測定することにより、確認することができる。
【0013】
無機物粒子の形状には特に限定はなく、粒状、鱗片状、繊維状等であることができる。粒子径も特に限定されないが、組成物の成形性やコーティングやラミネーション被膜等の表面平滑性を考慮すると、20μm以下の微粒子が好ましい。接着性は無機物粒子の添加と共に向上するが、添加量が一定範囲を越えると、溶融時LCPの分解が過大となって、発泡が生じ易くなると共に接着性が低下する傾向が現れる。無機物粒子の最適添加量は無機物の酸又は塩基としての強度、粒子径、比表面積等の因子によって変化するが、通常は0.01〜30重量%の範囲から選択される。
【0014】
テトラフルオロエチレン共重合体にLCPや無機物粒子を配合する方法としては、溶融混練、乾式混合又は湿式混合等のような従来慣用の方法を採用することができる。組成物の形態も任意であって、フィルム、シート、チューブ等のような成形体のほか、ペレット、粉末、分散液等の形態を用途に応じて採用することができる。
【0015】
【発明の効果】
本発明の組成物は、鋼、ステンレス鋼、アルミニウム等のような金属の基材上でテトラフルオロエチレン共重合体の融点以上に加熱することにより、基材に対して優れた接着性を示し、従来接着性向上のために行われていた基材の粗面化処理やプライマー処理等のような前処理を特に必要としない利点を有する。また、本発明組成物は、テトラフルオロエチレン共重合体以外の添加物が少量であるため、テトラフルオロエチレン共重合体の利点である非粘着性、耐熱性、耐薬品性等の特性が損なわれず、溶融成形性や被膜の形成性等の加工性にも優れている。このため、本発明の組成物は、耐熱耐薬品性接着剤としての用途のほか、例えば金属基材に対するラミネーションフィルムや熱収縮チューブとして、コーティングや回転ライニング用の粉末として、コーティング用の分散液等として、有用である。さらに、本発明の組成物は、フィルム、粉末、分散液等の形態で、PTFE、PFA、FEP等のような難接着性ふっ素樹脂による金属基材被覆のためのプライマーとしても、利用することが出来る。
【0016】
以下に実施例及び比較例を示し、本発明を具体的に説明する。なお、テトラフルオロエチレン共重合体としてはテトラフルオロエチレンとパーフルオロプロピルビニルエーテル(PPVE)との共重合体(PFA)を使用した。メルトフローレート(MFR)、PPVE含有量、融解温度及び反応性末端基の測定は、下記の方法によった。
【0017】
メルトフローレート(MFR):東洋精機製メルトインデクサーを使用し、5gの試料を372℃±1℃に保持された内径9.53mmのシリンダーに充填して5分間保持した後、49.03Nの荷重(ピストン及びおもり)下に内径2.1mm、長さ8mmのオリフィスを通して押し出し、この時の押し出し速度(g/10分)をMFRとして求めた。
【0018】
PPVE含有量の測定:試料PFAを350℃で圧縮したのち水冷して得られた厚さ約50μmのフィルムの赤外吸収スペクトル(窒素雰囲気)から、下記式により吸光度比を求め、予めPPVE含有量既知のスタンダードフィルムによって得られた検量線を使用して試料のPPVE含有量を求めた。
【0019】
【数1】
Figure 0004036345
【0020】
融解温度の測定:パーキンエルマー社製DSC7型を使用し、試料量5mg及び昇温速度10℃/分で得られる融解曲線から、融解ピーク温度として求めた。
【0021】
反応性末端基の測定:試料PFAを350℃で圧縮して得られる厚さ約250μmのフィルムについて、窒素雰囲気下、パーキンエルマー社製の1720X型FTIRを使用して赤外吸収スペクトルを得た。同様に、対照試料として末端が完全にふっ素化されたPFAのフィルムについても、赤外吸収スペクトルを得た。次いで、FTIR付属のソフトウエアを使用して、下記の式で示される操作により、試料と対照試料との差スペクトルを得た。
【0022】
差スペクトル=A−F×B
A:試料の赤外吸収スペクトル
B:対照試料の赤外吸収スペクトル
F:試料フィルムの厚み補正係数
試料フィルムの厚み補正係数は、PFA中の−CF2−構造による波長4.25μmの吸収帯における差スペクトルの吸光度が0となるよう求めた。得られた差スペクトル上で下表の帰属に基づいて各反応性末端基に対応する吸光度を求め、下表に示す補正係数(CF)を使用して、下記の式により、共重合体中の反応性末端基の数を求めた。
【0023】
【数2】
Figure 0004036345
【0024】
末端基 波長(μm) 補正係数(CF)
−COF 5.31 406
−COOH(モノマー) 5.52 335
−COOH(ダイマー) 5.64 320
−CO2CH3 5.57 368
−CONH2 2.91 914
−CF=CF2 5.58 635
−CH2OH 2.75 2220
【0025】
【実施例】
実施例1〜3及び比較例1
炭素106個当たり54個の−CONH2末端基を有する、PPVE含有量3.4重量%、MFR13g/10分、融解温度307℃のPFAの溶融押し出しペレット及びLCPとして4−ヒドロキシ安息香酸/フタル酸/ビフェニルジオールを構成単位とする全芳香族ポリエステル粉末(スミカスーパーE6000、住友化学製)を、それぞれ表1に示す割合でローラーミキサー(東洋精機製R−60H型、ミキサー容量約60ml、混練部材質ハステロイC276)に投入し、混練部設定温度360℃、ローラー回転数15rpmで10分間溶融混練して、PFA組成物を得た。また、比較のため液晶ポリエステルを配合せず、PFAのみを前記条件で溶融混練した。
【0026】
実施例4〜34及び比較例2〜7
炭素106個当たり54個の−CONH2末端基を有する、PPVE含有量3.4重量%、MFR13g/10分、融解温度307℃のPFAの溶融押し出しペレット、LCPとして4−ヒドロキシ安息香酸/フタル酸/ビフェニルジオールを構成単位とする全芳香族ポリエステル粉末(スミカスーパーE6000、住友化学製)及び下記の無機物粒子を、それぞれ表1に示す割合でローラーミキサー(東洋精機製R−60H型、ミキサー容量約60ml、混練部材質ハステロイC276)に投入し、混練部設定温度360℃、ローラー回転数15rpmで10分間溶融混練して、PFA組成物を得た。また、比較のため液晶ポリエステルを配合せず、PFAと無機粒子を前記条件で溶融混練した。
【0027】
Figure 0004036345
上記で得たPFA組成物から、350℃に保持された加熱プレスを使用して、溶融圧縮成形により、直径約40mm、厚さ約150μmの試料フィルムを作成した。試料フィルムを予めアセトンにより脱脂されたステンレス板(材質:SUS430、寸法100mm×100mm×0.5mm)の上に置き、350℃に保持された空気循環炉中で14分間加熱した後、炉より取り出して室温で放冷した。このようにして得た接着試験片について、試料フィルムの90度剥離強度(N/mm)を室温下引っ張り速度50mm/分で測定した(これを初期剥離強度とする)。更に、接着の耐熱性を評価するため、同様にして得た接着試験片を300℃に保持された空気循環炉中で16時間加熱後、炉より取り出して室温で放冷し、これについても90度剥離強度を前記と同一の条件で測定した(これを300℃加熱後剥離強度とする)。また、接着試験片を水道水中で8時間煮沸したのちにフィルムの剥離の有無を観察して、接着の耐水性を評価した。これらの結果を表1に示す。表1における耐水性の評価の尺度は、次のとおりである。
【0028】
A:全く剥離なし
B:一部分が剥離
C:完全に剥離
【0029】
【表1】
Figure 0004036345
【0030】
実施例35〜37及び比較例8〜10
炭素106個当たり80個の−COOH末端基を有する、PPVE含有量3.4重量%、MFR13g/10分、融解温度308℃のPFAの溶融押し出しペレットを使用し、無機粒子として実施例4のAl23及び実施例11のガラスビーズを使用する他は実施例1と同様に溶融混練して、組成物を得た。この組成物についての接着試験の結果を表2(耐水性の尺度は表1と同じ)に示す。
【0031】
【表2】
Figure 0004036345
【0032】
比較例11〜18
末端基が完全にふっ素化された、PPVE含有量3.3重量%、MFR13g/10分、融解温度308℃のPFAの溶融押し出しペレットを使用し、無機粒子として実施例4のAl23、実施例9のTiO2及び実施例11のガラスビーズを使用する他は実施例1と同様に溶融混練して、組成物を得た。この組成物についての接着試験の結果を表3(耐水性の尺度は表1と同じ)に示す。
【0033】
【表3】
Figure 0004036345
【0034】
実施例38
炭素106個当たり75個の−CONH2末端基を有する、PPVE含有量3.3重量%、MFR12g/10分、融解温度307℃、平均粒径約20μmのPFA粉末100重量部、実施例1記載のLCP粉末を粉砕して得られた平均粒径約70ミクロンの粉末3重量部及び実施例4のAl23粉末3重量部を均一に乾式混合して、粉末状組成物を得た。予めアセトンにより脱脂された実施例1記載のステンレス板の上に、この粉末状組成物を振りかけ、380℃に保持された空気循環炉中で20分間加熱した後、炉より取り出して室温で放冷した。このようにして形成されたステンレス板上の塗膜(厚さ約150μm)の初期剥離強度及び300℃で16時間加熱後の剥離強度は、共に2N/mm以上であった。上記PFA粉末のみによって形成された比較のための塗膜の初期剥離強度及び300℃で16時間加熱後の剥離強度は、共に0.4N/mmであった。
【0035】
比較例19〜23
芳香族ポリエステルとして4−ヒドロキシ安息香酸の非溶融流動性ホモポリマーであるオキシベンゾイルポリエステル(スミカスーパーE101、住友化学製)の粉末を、無機粒子として実施例4のAl23、実施例9のTiO2及び実施例11のガラスビーズを使用する他は実施例1と同様に溶融混練して、組成物を得た。この組成物についての接着試験の結果を表4(耐水性の尺度は表1と同じ)に示す。
【0036】
【表4】
Figure 0004036345
【0037】
参考例
[液晶ポリエステル/無機物混合粉末の加熱試験]
実施例1記載のLCP粉末の70メッシュふるい下粉末と前記実施例の無機物粒子とを重量比1:0.2の割合で均一に乾式混合し、得られた各混合粉末の試料約1gをアルミカップに精秤し、350℃に保持された空気循環炉中で1時間加熱した後、炉より取り出して室温で放冷し、再度精秤することによって、加熱前の混合粉末重量に対する重量減少X(%)を測定した。同時に、各無機物粒子のみを約1gアルミカップに秤取り、同様にして350℃で1時間加熱した時の加熱前の無機物重量に対する重量減少Y(%)を測定した。各無機物を混合した時のLCPの重量減少ZLCP(%)を下記式により求め、表5に示した。
【0038】
【数3】
Figure 0004036345
【0039】
[PFA/無機物混合粉末の加熱試験]
実施例38のPFA粉末と前記の各無機物とを重量比1:0.1の割合で均一に乾式混合し、得られた各混合粉末の試料約1gをアルミカップに精秤した。この混合粉末の重量を初期重量W。(g)とする。試料を350℃に保持された空気循環炉中で30分加熱した後、炉より取り出して室温で放冷し、精秤した。この時の試料重量をW1(g)とする。次いで、再び試料を350℃に保持された空気循環炉中で30分加熱した後、炉より取り出して室温で放冷し、精秤した。この時の試料重量をW2(g)とする。再加熱時のPFAの初期重量に対する重量減少(%)ZPFAを下記式により求め、表5に示した。
【0040】
【数4】
Figure 0004036345
【0041】
【表5】
Figure 0004036345
[0001]
[Industrial application fields]
The present invention relates to a composition for coating a metal substrate, which is made of a copolymer of tetrafluoroethylene and a perfluorovinyl compound and has excellent adhesion.
[0002]
[Prior art]
Copolymers of tetrafluoroethylene and perfluorovinyl compounds are excellent in non-adhesiveness, chemical resistance and heat resistance, and are used for coating and lamination of metal substrates. It has the disadvantage of poor nature. Conventionally, in order to solve such a problem of adhesiveness, a pretreatment such as applying a primer after roughening the substrate in advance by sandblasting or the like has been performed.
[0003]
[Problems to be solved by the invention]
An object of this invention is to provide the technique which coat | covers a metal base material with the copolymer of a tetrafluoroethylene and a perfluoro vinyl compound, without performing the above-mentioned special pretreatment.
[0004]
[Means for Solving the Problems]
As a result of researches to achieve the above object, the present inventor has found that a small amount of melt-flowable liquid crystal polyester is blended with a copolymer of tetrafluoroethylene and a perfluorovinyl compound, thereby adhering to a metal substrate. As a result, the present invention has been completed.
[0005]
The copolymer of tetrafluoroethylene and perfluorovinyl compound of the present invention has fluidity at a temperature above the melting point and is 0.5 to 500 g / 10 min at 372 ° C. ± 1 ° C., preferably 0.5. It has a melt flow rate (MFR) of -50 g / 10 min. Suitable perfluorovinyl compounds include perfluoroalkyl trifluoroethylenes having 3 to 10 carbon atoms and the formula
[Chemical 1]
Figure 0004036345
[0007]
(In the formula, X is H or F, m is an integer of 0 to 7, and n is an integer of 0 to 4.)
Or formula
[Chemical 2]
Figure 0004036345
[0009]
(In the formula, q is an integer of 0 to 3.)
Perfluoroalkoxytrifluoroethylene represented by the formula: The content of the perfluorovinyl compound in the copolymer is usually selected from the range of 0.5 to 20 mol%. In the present invention, the tetrafluoroethylene copolymer must have a reactive end group. The reactive end groups -COOH, -CONH 2, -COF, -CF = CF 2 , and the like. The presence of such a terminal group can be confirmed by measuring an infrared absorption spectrum described later. It is preferable that at least one of such reactive terminal groups is present in a ratio of 6 or more per 10 6 carbons in the tetrafluoroethylene copolymer.
[0010]
In the present invention, the melt-flowable liquid crystal polyester (hereinafter abbreviated as LCP) is a melt-processable polyester capable of forming an anisotropic melt phase by heating, and is a wholly aromatic polyester or aromatic / aliphatic polyester. , Aromatic polyester amide, aromatic polyester carbonate, aromatic polyimide ester and the like. As typical wholly aromatic polyesters, for example, (1) those having two or more types of aromatic hydroxycarboxylic acids as constituent units, (2) constituting aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, and aromatic diols. And (3) aromatic dicarboxylic acids and aromatic diols as structural units. Examples of aromatic hydroxycarboxylic acids include 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid (naphthalene). Carboxylic acid) and the like as aromatic dicarboxylic acid, terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid and the like, and as aromatic diol, hydroquinone, 4,4-biphenyldiol, 6-hydroxy-2-naphthol and the like, Each is listed. Examples of the aromatic / aliphatic polyester include polymers having 4-hydroxybenzoic acid and polyethylene terephthalate as structural units. Examples of the aromatic polyester amide include polymers having aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid and aromatic hydroxyamine (or aromatic diamine) as structural units, and examples of the aromatic hydroxyamine include 4-aminophenol, Examples of N-methylaminophenol and aromatic diamine include 1,4-phenylenediamine and N-methyl-1,4-phenylenediamine. Examples of the aromatic polyester carbonate include polymers having 4-oxybenzoyl, 4-dioxybenzoyl, dioxycarbonyl, and terephthalyl units as constituent units. Examples of the aromatic polyimide ester include polymers having 2,6-naphthalenedicarboxylic acid, terephthalic acid and 4- (4'-hydroxyphthalimide) phenol as structural units, diphenols and 4- (4'-hydroxyphthalimide) benzoic acid. Examples thereof include polymers having an acid as a structural unit. In the present invention, wholly aromatic polyesters are particularly preferred.
[0011]
In the composition of the present invention, the LCP is 0.1 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the tetrafluoroethylene copolymer. It is blended at a ratio of parts. When the blending ratio of LCP is less than 0.1 parts by weight, the improvement in adhesion is insufficient. On the other hand, a blending ratio exceeding 20 parts by weight is not preferable because it tends to lower the adhesiveness and deteriorates the heat resistance and chemical resistance of the composition.
[0012]
In the present invention, the adhesion of the composition to the metal can be further improved by blending inorganic particles that promote the thermal decomposition of LCP at a temperature equal to or higher than the melting point of the tetrafluoroethylene copolymer. Useful inorganics can be selected from materials known as solid acids or solid bases, (1) metal oxides such as Al 2 O 3 , TiO 2 , MgO, ZnO, SiO 2 , and the like Mixtures, or composite metal oxides such as SiO 2 —Al 2 O 3 , K 2 O—nTiO 2 , (2) clay minerals such as acid clay, kaolinite, bentonite, montmorillonite, talc, mica, zeolite Silicate compounds such as silicate glass, (3) metal sulfates such as aluminum sulfate and calcium sulfate, (4) metal carbonates such as potassium carbonate, (5) calcium hydroxide, etc. Examples of such metal hydroxides can be given. In the present invention, it is preferable that the inorganic substance has little or no decomposition promoting action on the tetrafluoroethylene copolymer, and preferred examples thereof include the inorganic substances (1) and (2). By blending such an inorganic substance, not only the adhesive strength at normal temperature but also the durability of adhesion at high temperature can be remarkably improved. An inorganic substance having a large decomposition promoting action on the tetrafluoroethylene copolymer cannot provide the effect of improving the high temperature durability of the adhesion. The decomposition promotion property of the inorganic particles with respect to the LCP and the tetrafluoroethylene copolymer can be confirmed by measuring the weight loss of the LCP and the tetrafluoroethylene copolymer at 350 ° C. according to a reference example described later.
[0013]
The shape of the inorganic particles is not particularly limited, and may be granular, scale-like, fibrous or the like. The particle diameter is not particularly limited, but in consideration of moldability of the composition and surface smoothness such as coating and lamination film, fine particles of 20 μm or less are preferable. Adhesion improves with the addition of inorganic particles. However, if the addition amount exceeds a certain range, the decomposition of LCP at the time of melting becomes excessive, and foaming tends to occur and the adhesiveness tends to decrease. The optimum addition amount of the inorganic particles varies depending on factors such as the inorganic acid strength or particle size, particle diameter, specific surface area, etc., but is usually selected from the range of 0.01 to 30% by weight.
[0014]
As a method of blending LCP or inorganic particles with the tetrafluoroethylene copolymer, a conventional method such as melt kneading, dry mixing, or wet mixing can be employed. The form of the composition is also arbitrary, and forms such as pellets, powders, dispersions, and the like can be adopted depending on the application, in addition to shaped bodies such as films, sheets, tubes, and the like.
[0015]
【The invention's effect】
The composition of the present invention exhibits excellent adhesion to the substrate by heating it above the melting point of the tetrafluoroethylene copolymer on a metal substrate such as steel, stainless steel, aluminum, etc. There is an advantage that no pretreatment such as roughening treatment of a base material or primer treatment, which has been conventionally performed for improving adhesiveness, is required. In addition, since the composition of the present invention contains a small amount of additives other than the tetrafluoroethylene copolymer, characteristics such as non-adhesiveness, heat resistance and chemical resistance, which are advantages of the tetrafluoroethylene copolymer, are not impaired. Also, it has excellent workability such as melt moldability and film formability. Therefore, the composition of the present invention can be used as a heat-resistant and chemical-resistant adhesive, as a lamination film or heat-shrinkable tube for a metal substrate, as a powder for coating or rotating lining, a coating dispersion, etc. As useful. Furthermore, the composition of the present invention can be used as a primer for coating a metal substrate with a hardly adhesive fluororesin such as PTFE, PFA, FEP or the like in the form of a film, powder, dispersion or the like. I can do it.
[0016]
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. As the tetrafluoroethylene copolymer, a copolymer (PFA) of tetrafluoroethylene and perfluoropropyl vinyl ether (PPVE) was used. The melt flow rate (MFR), PPVE content, melting temperature and reactive end groups were measured by the following methods.
[0017]
Melt flow rate (MFR): Using a Toyo Seiki melt indexer, 5 g of a sample was filled in a cylinder with an inner diameter of 9.53 mm held at 372 ° C. ± 1 ° C. and held for 5 minutes, and then 49.03 N Extrusion was performed through an orifice having an inner diameter of 2.1 mm and a length of 8 mm under a load (piston and weight), and the extrusion speed (g / 10 minutes) at this time was determined as MFR.
[0018]
Measurement of PPVE content: From the infrared absorption spectrum (nitrogen atmosphere) of a film having a thickness of about 50 μm obtained by compressing the sample PFA at 350 ° C. and cooling with water, the absorbance ratio is obtained in advance by the following formula. The calibration curve obtained with a known standard film was used to determine the PPVE content of the sample.
[0019]
[Expression 1]
Figure 0004036345
[0020]
Measurement of melting temperature: Using a DSC7 model manufactured by PerkinElmer, a melting peak temperature was obtained from a melting curve obtained with a sample amount of 5 mg and a heating rate of 10 ° C./min.
[0021]
Measurement of reactive end group: An infrared absorption spectrum was obtained using a 1720X type FTIR manufactured by Perkin Elmer Co., Ltd. under a nitrogen atmosphere for a film having a thickness of about 250 μm obtained by compressing sample PFA at 350 ° C. Similarly, an infrared absorption spectrum was obtained for a PFA film having a completely fluorinated end as a control sample. Subsequently, using the software attached to FTIR, a difference spectrum between the sample and the control sample was obtained by the operation represented by the following formula.
[0022]
Difference spectrum = A−F × B
A: Infrared absorption spectrum of the sample B: Infrared absorption spectrum of the control sample F: Thickness correction coefficient of the sample film The thickness correction coefficient of the sample film is in an absorption band at a wavelength of 4.25 μm due to the —CF 2 — structure in PFA. The absorbance of the difference spectrum was determined to be zero. On the obtained difference spectrum, the absorbance corresponding to each reactive end group is determined based on the assignments in the table below, and using the correction coefficient (CF) shown in the table below, The number of reactive end groups was determined.
[0023]
[Expression 2]
Figure 0004036345
[0024]
Terminal group Wavelength (μm) Correction factor (CF)
-COF 5.31 406
-COOH (monomer) 5.52 335
-COOH (dimer) 5.64 320
—CO 2 CH 3 5.57 368
-CONH 2 2.91 914
-CF = CF 2 5.58 635
-CH 2 OH 2.75 2220
[0025]
【Example】
Examples 1 to 3 and Comparative Example 1
Melt extruded pellets of PFA with PPVE content of 3.4% by weight, MFR 13 g / 10 min, melting temperature 307 ° C. with 54 —CONH 2 end groups per 10 6 carbons and 4-hydroxybenzoic acid / phthalate as LCP Totally aromatic polyester powder (Sumika Super E6000, manufactured by Sumitomo Chemical Co., Ltd.) containing acid / biphenyldiol as a structural unit is a roller mixer (Toyo Seiki R-60H type, mixer capacity: about 60 ml, kneading part at the ratio shown in Table 1 respectively. Was put into a material Hastelloy C276) and melt kneaded at a kneading part set temperature of 360 ° C. and a roller rotation speed of 15 rpm for 10 minutes to obtain a PFA composition. For comparison, liquid crystal polyester was not blended, and only PFA was melt-kneaded under the above conditions.
[0026]
Examples 4-34 and Comparative Examples 2-7
Melt extruded pellets of PFA with a PPVE content of 3.4% by weight, a MFR of 13 g / 10 min, a melting temperature of 307 ° C. with 54 —CONH 2 end groups per 10 6 carbons, 4-hydroxybenzoic acid / phthalate as LCP Roller mixers (R-60H manufactured by Toyo Seiki Co., Ltd., mixer capacity) with total aromatic polyester powder (Sumikasuper E6000, manufactured by Sumitomo Chemical Co., Ltd.) and the following inorganic particles having acid / biphenyldiol as a structural unit in the proportions shown in Table 1 respectively. About 60 ml of the kneading member material Hastelloy C276) was melted and kneaded at a kneading part set temperature of 360 ° C. and a roller rotation speed of 15 rpm for 10 minutes to obtain a PFA composition. For comparison, liquid crystal polyester was not blended, and PFA and inorganic particles were melt-kneaded under the above conditions.
[0027]
Figure 0004036345
A sample film having a diameter of about 40 mm and a thickness of about 150 μm was prepared from the PFA composition obtained above by melt compression molding using a heated press maintained at 350 ° C. The sample film was placed on a stainless steel plate (material: SUS430, dimensions 100 mm × 100 mm × 0.5 mm) previously degreased with acetone, heated for 14 minutes in an air circulation furnace maintained at 350 ° C., and then taken out from the furnace. And allowed to cool at room temperature. With respect to the adhesion test piece thus obtained, the 90 ° peel strength (N / mm) of the sample film was measured at room temperature at a pulling speed of 50 mm / min (this is the initial peel strength). Further, in order to evaluate the heat resistance of the adhesion, the adhesion test piece obtained in the same manner was heated for 16 hours in an air circulation furnace maintained at 300 ° C., then taken out of the furnace and allowed to cool at room temperature. The peel strength was measured under the same conditions as described above (this is the peel strength after heating at 300 ° C.). Moreover, after the adhesion test piece was boiled in tap water for 8 hours, the presence or absence of peeling of the film was observed to evaluate the water resistance of the adhesion. These results are shown in Table 1. The scale of evaluation of water resistance in Table 1 is as follows.
[0028]
A: No peeling at all B: Partial peeling C: Complete peeling
[Table 1]
Figure 0004036345
[0030]
Examples 35-37 and Comparative Examples 8-10
A melt extruded pellet of PFA having a PPVE content of 3.4 wt%, MFR 13 g / 10 min, melting temperature 308 ° C. with 80 —COOH end groups per 10 6 carbons was used as inorganic particles. A composition was obtained by melt-kneading in the same manner as in Example 1 except that Al 2 O 3 and the glass beads of Example 11 were used. The results of the adhesion test for this composition are shown in Table 2 (the water resistance scale is the same as in Table 1).
[0031]
[Table 2]
Figure 0004036345
[0032]
Comparative Examples 11-18
Using PFA melt-extruded pellets with a PPVE content of 3.3 wt%, MFR 13 g / 10 min, melting temperature 308 ° C., with the end groups fully fluorinated, Al 2 O 3 of Example 4 as inorganic particles, A composition was obtained by melt-kneading in the same manner as in Example 1 except that TiO 2 of Example 9 and the glass beads of Example 11 were used. The results of the adhesion test for this composition are shown in Table 3 (the water resistance scale is the same as in Table 1).
[0033]
[Table 3]
Figure 0004036345
[0034]
Example 38
Having -CONH 2 end groups 75 per 10 6 carbon, PPVE content of 3.3 wt%, MFR12g / 10 min, melting temperature 307 ° C., an average particle PFA powder 100 parts by weight of the size of about 20 [mu] m, Example 1 3 parts by weight of the powder having an average particle size of about 70 microns obtained by pulverizing the LCP powder described above and 3 parts by weight of the Al 2 O 3 powder of Example 4 were uniformly dry mixed to obtain a powdery composition. . The powdered composition is sprinkled on the stainless steel plate described in Example 1 previously degreased with acetone, heated in an air circulating furnace maintained at 380 ° C. for 20 minutes, then taken out of the furnace and allowed to cool at room temperature. did. The initial peel strength of the coating (thickness: about 150 μm) on the stainless steel plate thus formed and the peel strength after heating at 300 ° C. for 16 hours were both 2 N / mm or more. The initial peel strength of the coating film for comparison formed only with the PFA powder and the peel strength after heating at 300 ° C. for 16 hours were both 0.4 N / mm.
[0035]
Comparative Examples 19-23
The powder of oxybenzoyl polyester (Sumikasuper E101, manufactured by Sumitomo Chemical Co., Ltd.), which is a non-melt flowable homopolymer of 4-hydroxybenzoic acid, is used as the aromatic polyester, and Al 2 O 3 of Example 4 and Example 9 are used as the inorganic particles. A composition was obtained by melt-kneading in the same manner as in Example 1 except that TiO 2 and the glass beads of Example 11 were used. The results of the adhesion test for this composition are shown in Table 4 (the water resistance scale is the same as in Table 1).
[0036]
[Table 4]
Figure 0004036345
[0037]
Reference example [heating test of liquid crystal polyester / inorganic mixed powder]
The powder under 70 mesh LCP powder described in Example 1 and the inorganic particles of the above example were uniformly dry-mixed at a weight ratio of 1: 0.2, and about 1 g of each of the obtained mixed powder was mixed with aluminum. Weigh accurately in a cup and heat in an air circulating furnace maintained at 350 ° C. for 1 hour, then remove from the furnace, cool at room temperature, and weigh again to reduce the weight of the mixed powder before heating X (%) Was measured. At the same time, only about 1 g of each inorganic particle was weighed in an aluminum cup, and the weight reduction Y (%) relative to the inorganic weight before heating when heated at 350 ° C. for 1 hour was measured in the same manner. The weight loss Z LCP (%) of LCP when each inorganic substance was mixed was determined by the following formula and shown in Table 5.
[0038]
[Equation 3]
Figure 0004036345
[0039]
[Heating test of PFA / inorganic mixed powder]
The PFA powder of Example 38 and each inorganic substance were uniformly dry mixed at a weight ratio of 1: 0.1, and about 1 g of each obtained mixed powder sample was precisely weighed in an aluminum cup. The weight of this mixed powder is the initial weight W. (G). The sample was heated in an air circulating furnace maintained at 350 ° C. for 30 minutes, then removed from the furnace, allowed to cool at room temperature, and precisely weighed. The sample weight at this time is defined as W 1 (g). Next, the sample was again heated in an air circulating furnace maintained at 350 ° C. for 30 minutes, then removed from the furnace, allowed to cool at room temperature, and precisely weighed. The sample weight at this time is defined as W 2 (g). The weight loss (%) Z PFA with respect to the initial weight of PFA during reheating was determined by the following formula and shown in Table 5.
[0040]
[Expression 4]
Figure 0004036345
[0041]
[Table 5]
Figure 0004036345

Claims (5)

−COOH及び−CONH 2 から選ばれる少なくとも1つの反応性末端基を有するテトラフルオロエチレンとパーフルオロアルコキシトリフルオロエチレンとの溶融流動性共重合体であって、該反応性末端基が該共重合体中の炭素106個当り54個以上の割合で存在する溶融流動性共重合体100重量部及び溶融流動性液晶ポリエステル0.1〜20重量部からなる金属基材被覆用組成物。A melt-flowable copolymer of tetrafluoroethylene and perfluoroalkoxytrifluoroethylene having at least one reactive end group selected from —COOH and —CONH 2 , wherein the reactive end group is the copolymer melt fluidity copolymer 100 parts by weight and the metal substrate coating composition comprising a melt-flowable liquid crystal polyester 0.1 to 20 parts by weight present in the carbon 10 6 per 54 or more percentage of in. 溶融流動性液晶ポリエステルの含有量が0.1〜10重量部である請求項1記載の組成物。  The composition according to claim 1, wherein the content of the melt-flowable liquid crystal polyester is 0.1 to 10 parts by weight. 溶融流動性液晶ポリエステルに対して熱分解促進作用を示す無機物粒子を含有する請求項1又は2記載の組成物。  The composition of Claim 1 or 2 containing the inorganic particle which shows a thermal decomposition promotion effect | action with respect to melt fluidity | liquidity liquid crystal polyester. 無機物が金属酸化物、複合金属酸化物及びけい酸化合物から選ばれた少なくとも1種である請求項3記載の組成物。  The composition according to claim 3, wherein the inorganic substance is at least one selected from a metal oxide, a composite metal oxide, and a silicate compound. 金属基材が、鋼、ステンレス鋼及びアルミニウムから選ばれる請求項1〜のいずれかに記載の組成物。The composition according to any one of claims 1 to 4 , wherein the metal substrate is selected from steel, stainless steel, and aluminum.
JP11214896A 1996-04-10 1996-04-10 Metal substrate coating composition Expired - Fee Related JP4036345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11214896A JP4036345B2 (en) 1996-04-10 1996-04-10 Metal substrate coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11214896A JP4036345B2 (en) 1996-04-10 1996-04-10 Metal substrate coating composition

Publications (2)

Publication Number Publication Date
JPH09278966A JPH09278966A (en) 1997-10-28
JP4036345B2 true JP4036345B2 (en) 2008-01-23

Family

ID=14579442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11214896A Expired - Fee Related JP4036345B2 (en) 1996-04-10 1996-04-10 Metal substrate coating composition

Country Status (1)

Country Link
JP (1) JP4036345B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919725A1 (en) * 1999-04-30 2000-11-02 Mahle Gmbh Piston engine with a cylinder made of light metal
JP4744669B2 (en) * 2000-04-20 2011-08-10 関東電化工業株式会社 Curable fluorine-containing copolymer, production method and composition thereof
JP4598408B2 (en) * 2004-01-15 2010-12-15 ジャパンゴアテックス株式会社 Adhesive sheet
WO2005083007A1 (en) * 2004-03-02 2005-09-09 Polyplastics Co., Ltd. Liquid crystalline resin composition
US7638709B2 (en) * 2007-05-15 2009-12-29 E. I. Du Pont De Nemours And Company Fluoropolymer wire insulation
JP6328951B2 (en) * 2014-02-20 2018-05-23 株式会社潤工社 Melt adhesive film
CN110669302A (en) * 2018-07-02 2020-01-10 清华大学 Fluorine-containing resin composition and method for producing same
KR20220101067A (en) * 2019-11-11 2022-07-19 에이지씨 가부시키가이샤 Powder composition, film, and method for producing film
CN115335482B (en) * 2020-04-06 2024-06-25 东洋纺Mc株式会社 Adhesive composition, adhesive sheet, laminate, and printed wiring board
JPWO2021235427A1 (en) * 2020-05-21 2021-11-25

Also Published As

Publication number Publication date
JPH09278966A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP3700178B2 (en) Thermoplastic resin composition
TW201224017A (en) Liquid crystal polyester resin composition and camera module component
JP4036345B2 (en) Metal substrate coating composition
TWI448505B (en) Camera module with liquid crystal polyester resin composition
TW200808860A (en) Liquid crystalling polymer composition and use thereof
TW200422345A (en) Aromatic liquid crystal polyester and film thereof
WO2009119863A1 (en) Liquid-crystal polyester resin composition for camera modules
JPH02173156A (en) Liquid crystalline polyester resin composition having improved fluidity
EP3029107A1 (en) Liquid crystalline polyester composition
JP7029237B2 (en) Liquid crystal polyester composition and its molded product
JP6844755B1 (en) Liquid crystal polyester resin composition, laminate, liquid crystal polyester resin film and its manufacturing method
KR102331109B1 (en) Liquid crystalline polyester resin composition for ovenware and ovenware formation
JP3730150B2 (en) Totally aromatic polyester and polyester resin composition
US6153303A (en) Tetrafluoroethylene copolymer composition for coating metal articles
JP2008019428A (en) Liquid crystalline polymer composition and application of the same
EP3494845A1 (en) Ovenware, method for producing ovenware, and resin composition for molding ovenware
JP2011137064A (en) Liquid crystalline polyester resin composition, molded product, and composite member
JPH11322910A (en) Wholly aromatic thermotropic liquid crystal copolyester and its composition
WO2021235427A1 (en) Liquid crystalline polyester liquid composition, liquid crystalline polyester film, laminate, and method for manufacturing liquid crystalline polyester film
JP7309529B2 (en) Liquid crystalline polyester resin composition and molding
WO2022254910A1 (en) Coating composition, coating film, and coated article
JPH04130131A (en) Easily processable, wholly aromatic polyester
JP2005232210A (en) Liquid crystal polyester resin composition
WO2005083007A1 (en) Liquid crystalline resin composition
JP6839966B2 (en) Thermally Conductive Liquid Crystal Thermoplastic Resin and Thermoplastic Resin Composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees