JP4036179B2 - Laser marking device - Google Patents

Laser marking device Download PDF

Info

Publication number
JP4036179B2
JP4036179B2 JP2003359695A JP2003359695A JP4036179B2 JP 4036179 B2 JP4036179 B2 JP 4036179B2 JP 2003359695 A JP2003359695 A JP 2003359695A JP 2003359695 A JP2003359695 A JP 2003359695A JP 4036179 B2 JP4036179 B2 JP 4036179B2
Authority
JP
Japan
Prior art keywords
voltage
light
command voltage
output
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003359695A
Other languages
Japanese (ja)
Other versions
JP2005121608A (en
Inventor
浩一 寺裏
幸彦 岡村
正人 傘谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003359695A priority Critical patent/JP4036179B2/en
Publication of JP2005121608A publication Critical patent/JP2005121608A/en
Application granted granted Critical
Publication of JP4036179B2 publication Critical patent/JP4036179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、レーザ光によるライン光を用いて墨出しを行うレーザ墨出し器に関するものである。   The present invention relates to a laser marking device that performs marking using line light from a laser beam.

従来より、レーザ光によるライン光を用いて墨出しを行うレーザ墨出し器が提供されている(例えば、特許文献1参照)。
特開2002−131055号公報
2. Description of the Related Art Conventionally, there has been provided a laser marking device that performs marking using line light generated by laser light (see, for example, Patent Document 1).
JP 2002-131055 A

従来のレーザ墨出し器には、製造段階において半導体レーザの出力を調整して、半導体レーザの定格出力を所定の範囲内に調整するための調整手段が設けられており、メーカ側でこの調整手段を用いてレーザ光の定格出力を一定の範囲内に調整していたが、ユーザ側でレーザ光の光量を調整する機能を備えたものはなかった。   Conventional laser marking devices are provided with adjusting means for adjusting the output of the semiconductor laser in the manufacturing stage to adjust the rated output of the semiconductor laser within a predetermined range. Although the rated output of the laser beam was adjusted within a certain range using the above, there was no one provided with a function for adjusting the light amount of the laser beam on the user side.

ところで、レーザ墨出し器は様々な明るさの場所で使用されるのであるが、明るい場所でもレーザ光が見えるように半導体レーザの光量を明るめに調整していると、このレーザ墨出し器を暗い場所で使用した場合、レーザ光によるライン光が太くなってしまい、墨出しの精度が低下するという問題があった。またレーザ光の光量が明るすぎると、長時間作業を行う場合は目が疲れるという問題があった。また暗い場所での使用に適するように半導体レーザの光量を暗めに調整していると、明るい場所で使用する場合にレーザ光によるライン光が見えなくなるという問題があった。   By the way, the laser marking device is used in places with various brightnesses. If the light intensity of the semiconductor laser is adjusted so that the laser beam can be seen even in a bright place, the laser marking device is darkened. When used in a place, there is a problem that the line light from the laser light becomes thick and the accuracy of inking is lowered. Further, when the amount of laser light is too bright, there is a problem that eyes are tired when working for a long time. Further, when the light amount of the semiconductor laser is adjusted to be dark so as to be suitable for use in a dark place, there is a problem that the line light from the laser beam cannot be seen when used in a bright place.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、現場の明るさに合わせてユーザが光量を調整できるレーザ墨出し器を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a laser marking device in which the user can adjust the amount of light according to the brightness of the site.

上記目的を達成するために、請求項1の発明は、墨出しのためのレーザ光を出力する光出力部と、光出力部から出力されるレーザ光の光量に応じた電気量のモニタ信号を出力する光モニタ部と、モニタ信号をその電気量に比例した電圧信号に変換するモニタ信号変換部と、光量の指令値である光量指令電圧を生成する指令電圧生成部と、光量指令電圧を分圧して基準電圧を生成する分圧手段、及び、当該分圧手段の分圧比をメーカ側で調整することによって光出力部の定格出力を所定の範囲内に調整する光出力調整手段からなる基準電圧生成部と、モニタ信号変換部の出力電圧が基準電圧に一致するように光出力部の出力をフィードバック制御するレーザ駆動部とを備え、前記指令電圧生成部は、ユーザ側で操作可能な可変抵抗と固定抵抗との直列回路からなる分圧回路を具備し、この分圧回路で定電圧源の一定電圧を分圧して得た電圧を光量指令電圧として出力することを特徴とする。 In order to achieve the above object, the invention of claim 1 is directed to a light output unit that outputs laser light for inking, and a monitor signal having an electrical quantity corresponding to the amount of laser light output from the light output unit. The output light monitor unit, the monitor signal conversion unit that converts the monitor signal into a voltage signal proportional to the amount of electricity, the command voltage generation unit that generates the light amount command voltage that is the light amount command value, and the light amount command voltage are divided. A reference voltage comprising voltage dividing means for generating a reference voltage by pressure, and a light output adjusting means for adjusting a rated output of the light output unit within a predetermined range by adjusting a voltage dividing ratio of the voltage dividing means on the manufacturer side And a laser drive unit that feedback-controls the output of the optical output unit so that the output voltage of the monitor signal conversion unit matches the reference voltage. The command voltage generation unit is a variable resistor that can be operated on the user side. and a fixed resistance Comprising a voltage divider circuit comprising a series circuit, and outputs a voltage obtained by dividing the constant voltage of the constant voltage source in the voltage dividing circuit as the light intensity command voltage.

請求項2の発明は、請求項1の発明において、前記指令電圧生成部に、光量指令電圧を所定の最大値以下に制限する指令電圧制限部を設けたことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the command voltage generating unit is provided with a command voltage limiting unit that limits the light amount command voltage to a predetermined maximum value or less.

請求項3の発明は、請求項2の発明において、前記指令電圧制限部を、光量指令電圧の最大値である最大指令電圧を生成する最大指令電圧生成部と、前記最大指令電圧よりも低い所定の閾値電圧を前記分圧回路による分圧電圧が超えなければ、前記分圧電圧を光量指令電圧として出力するとともに、前記分圧電圧が前記閾値電圧を超えると前記最大指令電圧を光量指令電圧として出力する指令電圧切替部とで構成したことを特徴とする。   According to a third aspect of the present invention, in the second aspect of the present invention, the command voltage limiting unit includes a maximum command voltage generating unit that generates a maximum command voltage that is a maximum value of the light amount command voltage, and a predetermined value lower than the maximum command voltage. If the divided voltage by the voltage dividing circuit does not exceed the threshold voltage, the divided voltage is output as a light amount command voltage, and if the divided voltage exceeds the threshold voltage, the maximum command voltage is used as the light amount command voltage. It is characterized by comprising a command voltage switching unit for outputting.

請求項4の発明は、請求項1乃至3の何れか1つの発明において、前記定電圧源と光出力部の駆動電源とが別々の電源からなることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the constant voltage source and the driving power source of the optical output unit are composed of separate power sources.

以上説明したように、請求項1の発明では、製造段階においてメーカ側でレーザ光の光量を一定の範囲内に調整するための光出力調整手段とは別に、定電圧源の一定電圧を分圧して光量指令電圧を生成する分圧回路を設けてあり、この分圧回路を構成する可変抵抗の抵抗値を変化させることで、可変抵抗と固定抵抗とで構成される分圧回路の分圧比が変化し、定電圧源の一定電圧を分圧して得られる光量指令電圧が変化するので、この光量指令電圧を基準電圧生成部で分圧して得られる基準電圧を変化させることができる。したがって、この基準電圧にモニタ信号変換部の出力が一致するようにレーザ駆動部がフィードバック制御を行うことで、光出力部から出力されるレーザ光の光量を変化させることができ、レーザ墨出し器の使用場所に応じてレーザ光の明るさを変化させることができる。 As described above, according to the first aspect of the invention, the constant voltage of the constant voltage source is divided apart from the light output adjusting means for adjusting the light quantity of the laser beam within a certain range on the maker side in the manufacturing stage. The voltage dividing circuit for generating the light quantity command voltage is provided, and the voltage dividing ratio of the voltage dividing circuit composed of the variable resistor and the fixed resistor is changed by changing the resistance value of the variable resistor constituting the voltage dividing circuit. Since the light quantity command voltage obtained by dividing and dividing the constant voltage of the constant voltage source changes, the reference voltage obtained by dividing the light quantity command voltage by the reference voltage generation unit can be changed. Therefore, the laser drive unit performs feedback control so that the output of the monitor signal conversion unit matches this reference voltage, so that the amount of laser light output from the light output unit can be changed. The brightness of the laser beam can be changed according to the place of use.

また請求項2の発明では、指令電圧制限部によって光量指令電圧が所定の最大値以下に制限されるので、光量指令電圧を分圧して得られる基準電圧に上限値が設定されて、光出力部のレーザ出力に上限が設けられ、レーザ出力が過大になるのを防止できる。   In the invention of claim 2, since the light amount command voltage is limited to a predetermined maximum value or less by the command voltage limiting unit, an upper limit value is set to a reference voltage obtained by dividing the light amount command voltage, and the light output unit An upper limit is set for the laser output, and it is possible to prevent the laser output from becoming excessive.

また更に請求項3の発明では、最大指令電圧よりも低い所定の閾値電圧を分圧回路の分圧電圧が超えると、指令電圧切換部が最大指令電圧を光量指令電圧として出力するので、この時の光量指令電圧を分圧して得た基準電圧が最大の電圧値となり、光出力部のレーザ出力を最大の出力とすることができる。   Further, in the invention of claim 3, when the divided voltage of the voltage dividing circuit exceeds a predetermined threshold voltage lower than the maximum command voltage, the command voltage switching unit outputs the maximum command voltage as the light amount command voltage. The reference voltage obtained by dividing the light amount command voltage is the maximum voltage value, and the laser output of the light output unit can be the maximum output.

また、指令電圧生成部の電源と光出力部の駆動電源とを同じ電源とした場合は、レーザ光が消えてしまうため、光出力部の最低駆動電圧以下まで光量指令電圧を下げることができないが、請求項4の発明では定電圧源と光出力部の駆動電源とを別々の電源としているので、光量指令電圧を任意の電圧に設定でき、光出力部の最低駆動電圧以下まで下げることもできる。   In addition, if the power source of the command voltage generation unit and the drive power source of the light output unit are the same power source, the laser light will disappear, so the light amount command voltage cannot be lowered below the minimum drive voltage of the light output unit. In the invention of claim 4, since the constant voltage source and the drive power source of the light output unit are separate power sources, the light amount command voltage can be set to an arbitrary voltage, and can be lowered to the minimum drive voltage or less of the light output unit. .

以下に本発明の実施の形態を図1〜図4に基づいて説明する。図1は本実施形態のブロック図であり、このレーザ墨出し器は、半導体レーザモジュール1と、レーザ駆動回路ブロック2と、光量調整回路ブロック3と、最大指令電圧生成回路ブロック4と、指令電圧切替回路ブロック5とを主要な構成として備え、光量調整回路ブロック3と最大指令電圧生成回路ブロック4と指令電圧切替回路ブロック5とで指令電圧生成部6を構成している。   Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram of this embodiment. This laser marking device includes a semiconductor laser module 1, a laser drive circuit block 2, a light amount adjustment circuit block 3, a maximum command voltage generation circuit block 4, and a command voltage. The switching circuit block 5 is provided as a main configuration, and the command voltage generation unit 6 is configured by the light amount adjustment circuit block 3, the maximum command voltage generation circuit block 4, and the command voltage switching circuit block 5.

半導体レーザモジュール1は、レーザ駆動回路ブロック2から供給される駆動電流I1に応じてレーザ光を出力するレーザダイオード1a(光出力部)と、レーザダイオード1aから出力されるレーザ光を受光して、レーザ光の光量に比例した大きさのモニタ電流I2を発生するモニタダイオード1b(光モニタ部)とを1つのモジュールに収納したものである。   The semiconductor laser module 1 receives a laser diode 1a (light output unit) that outputs a laser beam in response to a drive current I1 supplied from the laser drive circuit block 2, and a laser beam output from the laser diode 1a. A monitor diode 1b (light monitor unit) that generates a monitor current I2 having a magnitude proportional to the amount of laser light is housed in one module.

図2はレーザ駆動回路ブロック2の一例を示すブロック図であり、このレーザ駆動回路ブロック2は、モニタダイオード1bに流れるモニタ電流I2をその電流値に応じた電圧値の電圧信号V4に変換する電流−電圧変換回路2a(モニタ信号変換部)と、指令電圧切替回路ブロック5から入力される光量指令電圧V2を分圧することによって基準電圧V3を生成する分圧回路2b及び分圧回路2bの分圧比を調整するための光出力調整部2eを具備した基準電圧生成回路2fと、電流−電圧変換回路2aの出力電圧V4と基準電圧V3との差分を増幅する差動増幅器2cと、差動増幅器2cの出力電圧が制御端子に入力され、差動増幅器2cの出力電圧に比例した大きさの駆動電流I1をレーザダイオード1aに供給するパワー素子2dとを備える。ここに、差動増幅器2cとパワー素子2dとで、レーザダイオード1aの出力をフィードバック制御するレーザ駆動部が構成される。   FIG. 2 is a block diagram showing an example of the laser drive circuit block 2. The laser drive circuit block 2 converts the monitor current I2 flowing through the monitor diode 1b into a voltage signal V4 having a voltage value corresponding to the current value. -Voltage dividing circuit 2a (monitor signal converting unit) and voltage dividing ratio of voltage dividing circuit 2b and voltage dividing circuit 2b for generating reference voltage V3 by dividing light quantity command voltage V2 inputted from command voltage switching circuit block 5 A reference voltage generation circuit 2f having an optical output adjustment unit 2e for adjusting the difference, a differential amplifier 2c for amplifying a difference between the output voltage V4 of the current-voltage conversion circuit 2a and the reference voltage V3, and a differential amplifier 2c Is supplied to the control terminal, and a power element 2d that supplies a driving current I1 having a magnitude proportional to the output voltage of the differential amplifier 2c to the laser diode 1a; Provided. Here, the differential amplifier 2c and the power element 2d constitute a laser drive unit that feedback-controls the output of the laser diode 1a.

ここで、レーザ駆動回路ブロック2の具体回路を図5に基づいて説明する。電流−電圧変換回路2aは抵抗R11からなり、モニタダイオード1bからのモニタ電流I2が抵抗R10を流れることによって、抵抗R10の両端間に発生する電圧信号V4を差動増幅器2cに出力する。また分圧回路2bは可変抵抗VR2及び抵抗R9,R10の直列回路からなり、抵抗R9,R10の接続点の電圧を基準電圧V3として差動増幅器2cに出力する。パワー素子2dは例えばトランジスタからなり、レーザダイオード1aとパワー素子2dと抵抗R13との直列回路に駆動電源Vccの電圧が印加される。そして、差動増幅器2cの出力端が抵抗R12を介してパワー素子2dの制御端に接続されており、差動増幅器2cは電流−電圧変換回路2aの出力電圧V4が基準電圧V3に一致するようにパワー素子2dを制御している。   Here, a specific circuit of the laser drive circuit block 2 will be described with reference to FIG. The current-voltage conversion circuit 2a includes a resistor R11. When the monitor current I2 from the monitor diode 1b flows through the resistor R10, the voltage signal V4 generated between both ends of the resistor R10 is output to the differential amplifier 2c. The voltage dividing circuit 2b is composed of a series circuit of a variable resistor VR2 and resistors R9 and R10, and outputs the voltage at the connection point of the resistors R9 and R10 as a reference voltage V3 to the differential amplifier 2c. The power element 2d is made of, for example, a transistor, and the voltage of the drive power supply Vcc is applied to a series circuit of the laser diode 1a, the power element 2d, and the resistor R13. The output terminal of the differential amplifier 2c is connected to the control terminal of the power element 2d via the resistor R12, and the differential amplifier 2c is configured so that the output voltage V4 of the current-voltage conversion circuit 2a matches the reference voltage V3. The power element 2d is controlled.

ここで、指令電圧切替回路ブロック5から入力される光量指令電圧V2が一定の場合に、光出力調整部2eとしての可変抵抗VR2を操作して分圧回路2bの分圧比を変化させると、分圧回路2bにより光量指令電圧V2を分圧して得られる基準電圧V3の電圧値が変化し、この基準電圧V3に電流−電圧変換回路2aの出力が一致するようにパワー素子2dから供給される駆動電流I1が制御されるので、レーザダイオード1aに供給される電力が増加又は減少し、レーザ光の光量が制御されるのである。なお光出力調整部2eは製造段階においてメーカ側でレーザ光の定格出力を所定の範囲内に調整するためのものであり、分圧回路2bの分圧比を変化させることで、レーザ光の光量を所定の範囲内に調整することができる。また、光出力調整部2eはレーザ墨出し器の外殻(図示せず)の内側に配置され、外殻の外側からは操作できないようになっているので、ユーザ側で光出力調整部2eを操作してレーザ光の光量を変化させることはできない。   Here, when the light quantity command voltage V2 input from the command voltage switching circuit block 5 is constant, the variable resistance VR2 as the light output adjustment unit 2e is operated to change the voltage dividing ratio of the voltage dividing circuit 2b. The voltage value of the reference voltage V3 obtained by dividing the light quantity command voltage V2 by the voltage circuit 2b changes, and the drive supplied from the power element 2d so that the output of the current-voltage conversion circuit 2a matches this reference voltage V3. Since the current I1 is controlled, the power supplied to the laser diode 1a is increased or decreased, and the amount of laser light is controlled. The light output adjusting unit 2e is for adjusting the rated output of the laser light within a predetermined range on the manufacturer side in the manufacturing stage, and the amount of the laser light is changed by changing the voltage dividing ratio of the voltage dividing circuit 2b. Adjustment can be made within a predetermined range. The light output adjusting unit 2e is arranged inside the outer shell (not shown) of the laser marking device and cannot be operated from the outside of the outer shell. The amount of laser light cannot be changed by operation.

次に光量調整回路ブロック3、最大指令電圧生成回路ブロック4、及び指令電圧切替回路ブロック5からなる指令電圧生成部6の回路構成を図3の具体回路図をもとに説明する。尚、光量調整回路ブロック3、最大指令電圧生成回路ブロック4、及び指令電圧切替回路ブロック5の回路構成を図3の回路に限定する趣旨のものではなく、例えばマイクロコンピュータの備えるD/Aコンバータ、A/Dコンバータ、PWM制御などの機能を用いても実現することは可能である。   Next, the circuit configuration of the command voltage generation unit 6 including the light amount adjustment circuit block 3, the maximum command voltage generation circuit block 4, and the command voltage switching circuit block 5 will be described with reference to the specific circuit diagram of FIG. The circuit configuration of the light amount adjustment circuit block 3, the maximum command voltage generation circuit block 4, and the command voltage switching circuit block 5 is not intended to limit the circuit configuration to the circuit of FIG. 3, but for example, a D / A converter provided in a microcomputer, It can also be realized using functions such as an A / D converter and PWM control.

光量調整回路ブロック3は、定電圧源の略一定の電源電圧Vrefを分圧する抵抗R1と可変抵抗VR1と抵抗R2との直列回路からなり、抵抗R1及び可変抵抗VR1の接続点の電圧を光量調整電圧V1として出力する。ここで、可変抵抗VR1の抵抗値を増加又は減少させることによって、抵抗R1の抵抗値と可変抵抗VR1及び抵抗R2の合成抵抗値とで決まる分圧比が変化して、光量調整電圧V1の電圧値が変化する。図4(a)は可変抵抗VR1の抵抗値と光量調整電圧V1の関係を示す図であり、可変抵抗VR1の抵抗値が増加するにつれて、分圧比が高くなり、光量調整電圧V1が増加する。   The light amount adjustment circuit block 3 is composed of a series circuit of a resistor R1, a variable resistor VR1, and a resistor R2 that divides a substantially constant power supply voltage Vref of a constant voltage source, and adjusts the voltage at the connection point between the resistor R1 and the variable resistor VR1. Output as voltage V1. Here, by increasing or decreasing the resistance value of the variable resistor VR1, the voltage dividing ratio determined by the resistance value of the resistor R1 and the combined resistance value of the variable resistor VR1 and the resistor R2 changes, and the voltage value of the light amount adjustment voltage V1. Changes. FIG. 4A is a diagram illustrating the relationship between the resistance value of the variable resistor VR1 and the light amount adjustment voltage V1, and as the resistance value of the variable resistor VR1 increases, the voltage dividing ratio increases and the light amount adjustment voltage V1 increases.

最大指令電圧生成回路ブロック4は、定電圧源の一定電圧Vrefを分圧する抵抗R3,R4の直列回路からなり、定電圧源の電圧Vrefを高精度の抵抗R3,R4で分圧することによって、ばらつきの少ない一定の最大指令電圧Vmaxが生成される。図4(b)は可変抵抗VR1の抵抗値と最大指令電圧Vmaxの関係を示す図であり、可変抵抗VR1の抵抗値の増減に関係なく、最大指令電圧Vmaxは略一定の値となる。   The maximum command voltage generation circuit block 4 is composed of a series circuit of resistors R3 and R4 that divide a constant voltage Vref of a constant voltage source, and varies by dividing the voltage Vref of the constant voltage source by high-precision resistors R3 and R4. A constant maximum command voltage Vmax with a small value is generated. FIG. 4B is a diagram showing the relationship between the resistance value of the variable resistor VR1 and the maximum command voltage Vmax. The maximum command voltage Vmax is a substantially constant value regardless of the increase or decrease in the resistance value of the variable resistor VR1.

指令電圧切替回路ブロック5は、光量調整回路ブロック3の光量調整電圧V1および最大指令電圧生成回路ブロック4の最大指令電圧Vmaxが入力端子CH1,CH0にそれぞれ入力されるマルチプレクサMPXと、抵抗R5,R6の直列回路からなり定電圧源の一定電圧Vrefを分圧して閾値電圧V5を生成する閾値電圧生成回路5aと、光量調整回路ブロック3の出力電圧V1と閾値電圧V5との高低を比較するコンパレータCPと、コンパレータCPの出力端に抵抗R7を介してベース端子が接続されるとともに、エミッタが回路のグランドに接続され、コレクタがマルチプレクサMPXの制御端子Aに接続されるトランジスタT1とを備え、マルチプレクサMPXの出力端子OUTの電圧V2が光量指令電圧としてレーザ駆動回路ブロック2に供給される。なお、トランジスタT1のコレクタ端子は抵抗R8を介して一定電圧Vccにプルアップされている。   The command voltage switching circuit block 5 includes a multiplexer MPX in which the light amount adjustment voltage V1 of the light amount adjustment circuit block 3 and the maximum command voltage Vmax of the maximum command voltage generation circuit block 4 are input to input terminals CH1 and CH0, respectively, and resistors R5 and R6. A threshold voltage generating circuit 5a that divides a constant voltage Vref of a constant voltage source to generate a threshold voltage V5, and a comparator CP that compares the levels of the output voltage V1 and the threshold voltage V5 of the light amount adjusting circuit block 3 And a transistor T1 having a base terminal connected to the output terminal of the comparator CP via a resistor R7, an emitter connected to the circuit ground, and a collector connected to the control terminal A of the multiplexer MPX. The output terminal OUT voltage V2 is used as the light quantity command voltage for the laser drive circuit. It is supplied to the block 2. Note that the collector terminal of the transistor T1 is pulled up to a constant voltage Vcc via a resistor R8.

ここで、閾値電圧生成回路5aでは、定電圧源の一定電圧Vrefを高精度の抵抗R5,R6で分圧することによって、最大指令電圧Vmaxよりも低く、且つ、ばらつきの少ない一定の閾値電圧V5を生成する。コンパレータCPは光量調整回路ブロック3から入力される光量調整電圧V1と閾値電圧V5との高低を比較しており、光量調整電圧V1が閾値電圧V5を超えない場合は、コンパレータCPの出力がLレベルとなって、トランジスタT1がオフになり、マルチプレクサMPXの制御端子Aの電圧がHレベルとなる。マルチプレクサMPXは、制御端子Aの電圧がHレベルの場合は入力端子CH1の電圧を出力端子OUTから出力させ、制御端子Aの電圧がLレベルの場合は入力端子CH0の電圧を出力端子OUTから出力させるので、光量調整電圧V1が閾値電圧V5よりも低い場合は入力端子CH1に入力された光量調整電圧V1が出力端子OUTから出力される。一方、光量調整回路ブロック3から入力される光量調整電圧V1が閾値電圧V5を超えると、コンパレータCPの出力がHレベルとなって、トランジスタT1がオンになり、マルチプレクサMPXの制御端子Aの電圧がLレベルとなるので、入力端子CH0に入力された最大指令電圧Vmaxが出力端子OUTから出力される。   Here, in the threshold voltage generation circuit 5a, the constant voltage Vref of the constant voltage source is divided by the high-precision resistors R5 and R6, whereby the constant threshold voltage V5 that is lower than the maximum command voltage Vmax and has little variation is obtained. Generate. The comparator CP compares the light intensity adjustment voltage V1 input from the light intensity adjustment circuit block 3 with the threshold voltage V5. If the light intensity adjustment voltage V1 does not exceed the threshold voltage V5, the output of the comparator CP is at L level. Thus, the transistor T1 is turned off, and the voltage at the control terminal A of the multiplexer MPX becomes H level. The multiplexer MPX outputs the voltage at the input terminal CH1 from the output terminal OUT when the voltage at the control terminal A is H level, and outputs the voltage at the input terminal CH0 from the output terminal OUT when the voltage at the control terminal A is L level. Therefore, when the light amount adjustment voltage V1 is lower than the threshold voltage V5, the light amount adjustment voltage V1 input to the input terminal CH1 is output from the output terminal OUT. On the other hand, when the light amount adjustment voltage V1 input from the light amount adjustment circuit block 3 exceeds the threshold voltage V5, the output of the comparator CP becomes H level, the transistor T1 is turned on, and the voltage at the control terminal A of the multiplexer MPX is changed. Since it is at the L level, the maximum command voltage Vmax input to the input terminal CH0 is output from the output terminal OUT.

図4(c)は可変抵抗VR1の抵抗値と指令電圧切替回路ブロック5から出力される光量指令電圧V2との関係を示す図であり、光量調整電圧V1が閾値電圧V5よりも低い範囲では光量指令電圧V2は光量調整電圧V1となり、光量調整電圧V1が閾値電圧V5よりも高い範囲では光量指令電圧V2は最大指令電圧Vmaxとなる。   FIG. 4C is a diagram showing the relationship between the resistance value of the variable resistor VR1 and the light amount command voltage V2 output from the command voltage switching circuit block 5. In the range where the light amount adjustment voltage V1 is lower than the threshold voltage V5, the light amount The command voltage V2 is the light amount adjustment voltage V1, and the light amount command voltage V2 is the maximum command voltage Vmax when the light amount adjustment voltage V1 is higher than the threshold voltage V5.

このように、本実施形態では光出力調整部2eとは別に、定電圧源の一定電圧を分圧して光量調整電圧V1を生成する光量調整回路ブロック3を設けており、この光量調整回路ブロック3を構成する可変抵抗VR1の抵抗値を変化させることによって、光量調整回路ブロック3の分圧比が変化して光量調整電圧V1が変化するので、光量調整電圧V1が閾値電圧V5を超えない範囲では可変抵抗VR1の抵抗値を変化させることで、光量指令電圧V2を変化させて、この光量指令電圧V2を分圧回路2bで分圧して得られる基準電圧V3を変化させることができる。そして、この基準電圧V3に電流−電圧変換回路2aの出力電圧V4が一致するようにフィードバック制御することで、レーザダイオード1aから出力されるレーザ光の光量を変化させることができ、レーザ墨出し器の使用場所に応じてレーザ光の明るさを変化させることができる。   As described above, in the present embodiment, the light amount adjustment circuit block 3 for dividing the constant voltage of the constant voltage source to generate the light amount adjustment voltage V1 is provided separately from the light output adjustment unit 2e. Since the voltage dividing ratio of the light amount adjustment circuit block 3 is changed and the light amount adjustment voltage V1 is changed by changing the resistance value of the variable resistor VR1 forming the variable resistor VR1, the variable amount is variable in a range where the light amount adjustment voltage V1 does not exceed the threshold voltage V5. By changing the resistance value of the resistor VR1, the light amount command voltage V2 can be changed, and the reference voltage V3 obtained by dividing the light amount command voltage V2 by the voltage dividing circuit 2b can be changed. The amount of laser light output from the laser diode 1a can be changed by feedback control so that the output voltage V4 of the current-voltage conversion circuit 2a matches the reference voltage V3. The brightness of the laser beam can be changed according to the place of use.

また、最大指令電圧Vmaxよりも低い所定の閾値電圧V5を光量調整電圧V1が超えると、指令電圧切替回路ブロック5が最大指令電圧Vmaxを光量指令電圧V2として出力するので、この時の光量指令電圧V2を分圧して得た基準電圧V3が最大の電圧値となり、レーザダイオード1aから出力されるレーザ出力を最大の出力とすることができる。また、最大指令電圧生成回路ブロック4と指令電圧切替回路ブロック5とで構成される指令電圧制限部によって、光量指令電圧V2が最大指令電圧Vmax以下に制限されるので、光量指令電圧V2を分圧して得られる基準電圧V3を所定の上限値以下に制限することができ、その結果レーザダイオード1aから出力されるレーザ出力に上限が設けられ、レーザ出力が過大になるのを防止できる。   Further, when the light amount adjustment voltage V1 exceeds a predetermined threshold voltage V5 lower than the maximum command voltage Vmax, the command voltage switching circuit block 5 outputs the maximum command voltage Vmax as the light amount command voltage V2. Therefore, the light amount command voltage at this time The reference voltage V3 obtained by dividing V2 is the maximum voltage value, and the laser output output from the laser diode 1a can be the maximum output. Further, since the light amount command voltage V2 is limited to the maximum command voltage Vmax or less by the command voltage limiter configured by the maximum command voltage generation circuit block 4 and the command voltage switching circuit block 5, the light amount command voltage V2 is divided. The reference voltage V3 obtained in this manner can be limited to a predetermined upper limit value or less, and as a result, an upper limit is provided for the laser output output from the laser diode 1a, and the laser output can be prevented from becoming excessive.

また、指令電圧生成部6の電源と、レーザダイオード1aの駆動電源Vccとを同じ電源とした場合は、レーザ光が消えてしまうためにレーザダイオード1aの最低駆動電圧以下まで光量指令電圧V2を下げることができないが、本実施形態では指令電圧生成部6の定電圧源Vrefと、レーザダイオード1aの駆動電源とを別々の電源としているので、光量指令電圧V2を任意の電圧に設定でき、レーザダイオード1aの最低駆動電圧以下まで下げることもできる。   Further, when the power supply of the command voltage generator 6 and the drive power supply Vcc of the laser diode 1a are the same power supply, the laser light is extinguished, so that the light quantity command voltage V2 is lowered to the minimum drive voltage or less of the laser diode 1a. However, since the constant voltage source Vref of the command voltage generator 6 and the driving power source of the laser diode 1a are separate power sources in this embodiment, the light amount command voltage V2 can be set to an arbitrary voltage. It can also be lowered to below the minimum driving voltage of 1a.

本実施形態のブロック図である。It is a block diagram of this embodiment. 同上の要部ブロック図である。It is a principal part block diagram same as the above. 同上の要部の具体回路図である。It is a specific circuit diagram of the principal part same as the above. 同上を示し、(a)は可変抵抗VR1の抵抗値と光量調整電圧V1との関係を示す図、(b)は可変抵抗VR1の抵抗値と最大指令電圧Vmaxとの関係を示す図、(c)は可変抵抗VR1の抵抗値と光量指令電圧V2との関係を示す図である。(A) is a diagram showing the relationship between the resistance value of the variable resistor VR1 and the light amount adjustment voltage V1, (b) is a diagram showing the relationship between the resistance value of the variable resistor VR1 and the maximum command voltage Vmax. ) Is a diagram showing the relationship between the resistance value of the variable resistor VR1 and the light amount command voltage V2. 同上の要部の具体回路図である。It is a specific circuit diagram of the principal part same as the above.

符号の説明Explanation of symbols

1 半導体レーザモジュール
1a レーザダイオード
1b モニタダイオード
2 レーザ駆動回路ブロック
3 光量調整回路ブロック
4 最大指令電圧生成回路ブロック
5 指令電圧切替回路ブロック
6 指令電圧生成部
I1 駆動電流
I2 モニタ電流
V1 光量調整電圧
V2 光量指令電圧
Vmax 最大指令電圧
DESCRIPTION OF SYMBOLS 1 Semiconductor laser module 1a Laser diode 1b Monitor diode 2 Laser drive circuit block 3 Light quantity adjustment circuit block 4 Maximum command voltage generation circuit block 5 Command voltage switching circuit block 6 Command voltage generation part I1 Drive current I2 Monitor current V1 Light quantity adjustment voltage V2 Light quantity Command voltage Vmax Maximum command voltage

Claims (4)

墨出しのためのレーザ光を出力する光出力部と、光出力部から出力されるレーザ光の光量に応じた電気量のモニタ信号を出力する光モニタ部と、モニタ信号をその電気量に比例した電圧信号に変換するモニタ信号変換部と、光量の指令値である光量指令電圧を生成する指令電圧生成部と、光量指令電圧を分圧して基準電圧を生成する分圧手段、及び、当該分圧手段の分圧比をメーカ側で調整することによって光出力部の定格出力を所定の範囲内に調整する光出力調整手段からなる基準電圧生成部と、モニタ信号変換部の出力電圧が基準電圧に一致するように光出力部の出力をフィードバック制御するレーザ駆動部とを備え、前記指令電圧生成部は、ユーザ側で操作可能な可変抵抗と固定抵抗との直列回路からなる分圧回路を具備し、この分圧回路で定電圧源の一定電圧を分圧して得た電圧を光量指令電圧として出力することを特徴とするレーザ墨出し器。 A light output unit that outputs laser light for inking, a light monitor unit that outputs a monitor signal of an amount of electricity corresponding to the amount of laser light output from the light output unit, and the monitor signal is proportional to the amount of electricity A monitor signal conversion unit for converting into a voltage signal, a command voltage generation unit for generating a light amount command voltage that is a light amount command value, a voltage dividing means for dividing the light amount command voltage to generate a reference voltage, The reference voltage generator comprising optical output adjusting means for adjusting the rated output of the optical output part within a predetermined range by adjusting the voltage dividing ratio of the pressure means on the maker side, and the output voltage of the monitor signal converting part to the reference voltage A laser drive unit that feedback-controls the output of the optical output unit so as to match, and the command voltage generation unit includes a voltage dividing circuit including a series circuit of a variable resistor and a fixed resistor that can be operated on the user side. This partial pressure Laser marking instrument and outputs a voltage obtained by dividing the constant voltage of the constant voltage source in the road as the light intensity command voltage. 前記指令電圧生成部に、光量指令電圧を所定の最大値以下に制限する指令電圧制限部を設けたことを特徴とする請求項1記載のレーザ墨出し器。   2. The laser marking device according to claim 1, wherein the command voltage generating unit is provided with a command voltage limiting unit that limits the light amount command voltage to a predetermined maximum value or less. 前記指令電圧制限部を、光量指令電圧の最大値である最大指令電圧を生成する最大指令電圧生成部と、前記最大指令電圧よりも低い所定の閾値電圧を前記分圧回路による分圧電圧が超えなければ、前記分圧電圧を光量指令電圧として出力するとともに、前記分圧電圧が前記閾値電圧を超えると前記最大指令電圧を光量指令電圧として出力する指令電圧切替部とで構成したことを特徴とする請求項2記載のレーザ墨出し器。   The command voltage limiting unit includes a maximum command voltage generation unit that generates a maximum command voltage that is a maximum value of the light amount command voltage, and a divided voltage by the voltage dividing circuit exceeds a predetermined threshold voltage that is lower than the maximum command voltage. Otherwise, the divided voltage is output as a light amount command voltage, and when the divided voltage exceeds the threshold voltage, the command voltage switching unit is configured to output the maximum command voltage as the light amount command voltage. The laser marking device according to claim 2. 前記定電圧源と光出力部の駆動電源とが別々の電源からなることを特徴とする請求項1乃至3の何れか1つに記載のレーザ墨出し器。   The laser marking device according to any one of claims 1 to 3, wherein the constant voltage source and the driving power source of the light output unit are separate power sources.
JP2003359695A 2003-10-20 2003-10-20 Laser marking device Expired - Lifetime JP4036179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003359695A JP4036179B2 (en) 2003-10-20 2003-10-20 Laser marking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003359695A JP4036179B2 (en) 2003-10-20 2003-10-20 Laser marking device

Publications (2)

Publication Number Publication Date
JP2005121608A JP2005121608A (en) 2005-05-12
JP4036179B2 true JP4036179B2 (en) 2008-01-23

Family

ID=34615838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003359695A Expired - Lifetime JP4036179B2 (en) 2003-10-20 2003-10-20 Laser marking device

Country Status (1)

Country Link
JP (1) JP4036179B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357400B2 (en) * 2007-03-15 2013-12-04 日立工機株式会社 Laser marking machine
CN103887706B (en) * 2014-03-20 2016-05-18 常州华达科捷光电仪器有限公司 A kind of laser control circuit, control method and there is the laser marker of this control circuit
JP6739775B2 (en) * 2018-10-23 2020-08-12 株式会社藤興業 Felling aid

Also Published As

Publication number Publication date
JP2005121608A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
TWI455646B (en) Current regulator and its control method
US6950079B2 (en) Light emitting diode driving circuit
JPH11214183A (en) Light emitting circuit
KR20060048353A (en) Power supply comprising overcurrent protection function
JP2009093122A (en) Camera, interchangeable lens, camera system and power supply method for camera system
JP2007294682A (en) Optical transmitter
JP4036179B2 (en) Laser marking device
US6531830B2 (en) Discharge-lamp drive apparatus
JP3423115B2 (en) Optical signal transmission device
JP2006085993A (en) Light emitting diode lighting device
JP2004281922A (en) Current control device of light emitting element
JP2005110356A (en) Load driver and portable apparatus
US7355353B2 (en) Illumination control circuit
JP2008518444A (en) Laser driver controller for safe operation of laser diode based optical transmitter
JP2005252211A (en) Led luminance adjustment circuit
US7772825B2 (en) Current source providing large supply current
JPH0661555A (en) Laser diode drive circuit
ES2184374T3 (en) CIRCUIT AS WELL AS CALIBRATION AND OPERATION PROCEDURE OF A PWM SWITCHED MODE POWER SUPPLY FOR LOW VOLTAGE LAMPS.
JP2019021839A (en) Semiconductor laser drive circuit
JP4506593B2 (en) Lighting device
KR100594891B1 (en) Forward dimming control circuit of inverter
KR100459884B1 (en) High limit voltage limiter and laser diode driving device using the same
JP2010040213A (en) Light source driving circuit, light source device, and display
US8664894B2 (en) Method and device for driving a fluorescent lamp
KR100544204B1 (en) Optical output controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R151 Written notification of patent or utility model registration

Ref document number: 4036179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

EXPY Cancellation because of completion of term