JP4035088B2 - Method for manufacturing throw-away tip - Google Patents

Method for manufacturing throw-away tip Download PDF

Info

Publication number
JP4035088B2
JP4035088B2 JP2003200194A JP2003200194A JP4035088B2 JP 4035088 B2 JP4035088 B2 JP 4035088B2 JP 2003200194 A JP2003200194 A JP 2003200194A JP 2003200194 A JP2003200194 A JP 2003200194A JP 4035088 B2 JP4035088 B2 JP 4035088B2
Authority
JP
Japan
Prior art keywords
cemented carbide
throw
chip
manufacturing
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003200194A
Other languages
Japanese (ja)
Other versions
JP2005040868A (en
Inventor
浩美 城御堂
安則 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003200194A priority Critical patent/JP4035088B2/en
Publication of JP2005040868A publication Critical patent/JP2005040868A/en
Application granted granted Critical
Publication of JP4035088B2 publication Critical patent/JP4035088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、製造時の取り扱いが容易であり、かつ長寿命なスローアウェイチップの製造方法に関する。
【0002】
【従来の技術】
従来より、超硬合金は切削工具や耐摩工具等に用いられており、例えば、特許文献1では、結合相としてニッケルを用いた透磁率の低い、いわゆる非磁性超硬合金を用いて磁性粉を成形するような金型として使用することが記載されている。
【0003】
また、特許文献2では、結合相としてコバルト等の強磁性材料に磁化率の低い材料を含有せしめて非磁性または弱磁性ダイヤモンド焼結体を作製し、これを磁気を帯びた製品の運搬や搬送用部材や磁気テープのガイド等の耐摩工具として好適に使用できることが記載されている。
【0004】
一方、超硬合金はスローアウェイチップを含む切削工具に使用されているが、一般的に炭化タングステン粒子とのなじみがよく、強度、靭性に優れることから結合相としてはコバルトが用いられており、チップ自体が磁気を帯びやすい性質となっている。そこで、この性質を利用して、チップ製造時の表面研磨工程やコーティング層を成膜する場合やチップを搬送する場合の製品固定のために、チップを磁石からなる台板上に置いたりして容易に固定することが行われていた。
【0005】
【特許文献1】
特開平8−120374号公報
【0006】
【特許文献2】
特開平7−331376号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の磁性を帯びた超硬合金からなるスローアウェイチップでは、鉄やステンレス等の切削中に切屑がチップ表面に磁力で引き寄せられてより激しく衝突しやすくなり、また、チップ表面にくっついて系外へ排出されにくく、結果的にチッピングや欠損を起こしやすくなるという問題があった。
【0008】
また、上記特許文献1、2に記載されるように、結合相としてニッケルまたはその他の材料を含有せしめた非磁性超硬合金では、超硬合金の焼結性が低下して、ボイド等の不均質部が生じたり、炭化タングステン粒子が粒成長する結果、硬度や強度が低下するという問題があった。
【0009】
したがって、本発明の目的は、充分な耐欠損性および耐摩耗性を有するとともに、切削中の切屑によるチッピングや欠損を防止したスローアウェイチップの製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記不具合を解消すべく、炭化タングステン粒子をコバルトからなる結合相にて焼結によって結合した超硬合金、磁気を帯びた部材に接触させて残留磁束密度を30×10−4Tより大きくした後、チップの残存する磁化を消磁する脱磁工程をチップ製造の最終段階に設けてスローアウェイチップの残留磁束密度を30×10−4T以下に確実に制御することによって、切削工具として充分な性能を有するとともに、切削中に強磁性体である被削材の切屑が、チップ表面に磁力で引き寄せられてより激しく衝突しやすい、または系外へ排出されにくい、等の不具合を生じることなく、良好な切削が可能となることを要旨とするものである。
【0011】
ここで、前記超硬合金中のコバルトの含有量が7〜13質量%であること、前記超硬合金中のニッケルの含有量が0.1質量%以下であることが超硬合金の強度を高めてチップの耐欠損性および耐摩耗性を高める点で望ましい。
【0012】
また、前記超硬合金を粉砕し、20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを5〜15質量%の割合で含有することが、残留磁束密度を確実に制御できる点で望ましい。
【0013】
【発明の実施の形態】
本発明のスローアウェイチップの製造方法によって得られたスローアウェイチップは、炭化タングステン粒子をコバルトからなる結合相にて焼結によって結合した超硬合金からなる。
【0014】
本発明のスローアウェイチップの製造方法によれば、磁気を帯びた部材に接触させて残留磁束密度を30×10−4Tより大きくした後、チップの残存する残留磁化を消磁する脱磁工程をチップ製造の最終段階に設けてスローアウェイチップの残留磁束密度を30×10−4T以下に確実に制御していることが大きな特徴であり、これによって、切削中に生成する強磁性体材料からなる切屑がチップ表面に磁力で引き寄せられてより激しく衝突したり、切刃部に付着した切屑が磁力によって捕獲されたまま系外へ排出されにくくなることを防止して、良好な切屑排出状態とすることができる。
【0015】
ここで、前記超硬合金中のコバルトの含有量が7〜13質量%、特に8〜12質量%であること、および前記超硬合金中のニッケルの含有量が0.1質量%以下であることが超硬合金の残留磁束密度を容易に所望の値に変化させることができるとともに、硬度および強度を高めてチップの耐欠損性、および耐摩耗性を高める点で望ましい。
【0016】
また、前記超硬合金を粉砕し、20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを5〜15質量%の割合で含有することが、残留磁束密度を確実に制御できる点で望ましい。すなわち、結合相およびその周囲に含有されるタングステン量を上記範囲に制御することにより、最低限必要な一定の脱磁条件によってもより確実な脱磁処理を行うことができる。
【0017】
また、本発明によれば、炭化タングステン粒子の平均粒径は0.1〜1.5μm、特に0.2〜0.8μmであることが、硬度および強度を高める点で望ましく、炭化タングステン粒子の含有量は耐チッピング性および耐摩耗性の点で70〜92体積%であることが望ましい。
【0018】
また、上記超硬合金中には炭化タングステン粒子以外に、周期律表第4a,5a,6a族金属の少なくとも1種の炭化物、窒化物または炭窒化物粒子(以下、β相粒子と称す。ただし、WC粒子は除く。)が存在していてもよい。この時、合金の耐熱衝撃性を高める点で、β相粒子中に、Wを周期律表第4a,5a,6a族金属の総量に対して金属換算で30質量%以上、特に40〜60質量%の割合で含有することが望ましい。
【0019】
さらに、本発明によれば、合金の組織を上記のように制御することによって、粒径が0.3μm以上、特に0.5μm以上の結合相が凝集した結合相プールを組織中に含有せしめて、超硬合金の残留磁束密度の制御を容易に行うこともできる。ただし、超硬合金の高強度を維持する点では、結合相プールの最大粒径は3μm以下、特に2μm以下であることが望ましい。
【0020】
なお、上記本発明のスローアウェイチップの製造方法によって得られたスローアウェイチップは、それ単独でもよいが、この超硬合金母材の表面に、周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物、TiAlN、TiZrN、TiCrN、ダイヤモンド、ダイヤモンドライクカーボン(DLC)、立方晶窒化ホウ素(cBN)およびAlの群から選ばれる少なくとも1種の被覆層を単層または複数層形成することによって、さらに耐酸化性、耐摩耗性に優れた切削工具等の高硬度材とすることができる。なお、この場合でも、被覆層の膜厚が10μm以下であれば、残留磁束密度の制御は硬質相を被覆しないスローアウェイチップと同様に制御することができる。
【0021】
(製造方法)
次に、上述したスローアウェイチップを製造する方法について説明すると、まず、例えば、平均粒径0.1〜1.5μm、特に0.1〜0.8μmのWC粉末を70〜92質量%、平均粒径1〜1.3μmの周期律表4a、5a、6a族金属、特に、Ti、Zr、V、Cr、Mo、Ta、Nb、Wの群から選ばれる少なくとも1種の金属の炭化物、窒化物および炭窒化物粉末もしくは前記金属2種以上の固溶体粉末を総量で0〜15質量%、平均粒径0.1〜1μmの鉄族金属粉末を8〜12質量%、さらには所望により、金属W(W)粉末、あるいはカーボンブラック(C)を調合して、混合、粉砕する。混合、粉砕は、アトライタミルを用いて18〜35時間混合、粉砕することが、残留磁束密度の制御および硬度、強度および靭性の向上の点で望ましい。
【0022】
その後、上記混合、粉砕粉末を金型プレス等の成形方法によって所定のチップ形状にプレス成形した後に焼成する。焼成にあたっては、まず、この成形体を、1400〜1450℃にて1〜2時間真空焼成する。この真空焼成によって、相対密度98%以上にち密化する。そして、この後、前記焼成温度より20〜50℃低い温度にて0.5〜1時間、50〜100MPaの圧力で熱間静水圧処理を施す。なお、真空焼成時の真空度は、0.1〜100Paであることが適当である。
【0023】
ここで、上記焼成条件において、焼成後の冷却速度は1〜4℃/分であることが脱磁の均一性の点で望ましい。
【0024】
そして、本発明によれば、上記方法によって得られた超硬合金に対して、表面研磨(すくい面、すくい面と着座面(両頭研磨)、逃げ面(外周研磨))を施した後にチップを表面研磨時に使用した枠体状の冶具(研磨された超硬合金は冶具内に埋没した状態となる)から取り出す際、またはイオンプレーティング法のような物理蒸着(PVD)法にてチップ表面に硬質被覆層を成膜する際に、磁化率が1000×10−4T以上の磁石からなる固定冶具を用いて前記超硬合金の残留磁束密度を30×10−4Tより大きくすることが大きな特徴であり、これによって、製造時のチップの取り扱いが容易、かつ確実に行えることから、製造の歩留まり、信頼性が向上する。
【0025】
なお、上記の超硬合金に、前述したような被覆層を形成するには、所望により、上記超硬合金の表面を研削、研磨、洗浄した後、従来公知のPVD法やCVD法等の薄膜形成法によって形成することができるが、本発明によれば、イオンプレーティング法によって被覆層を成膜する際、磁石からなる冶具にチップを載置して固定した状態で成膜すると製造が容易となる。また、被覆層の厚みは、耐衝撃性、耐摩耗性の点で1〜10μmであることが望ましい。
【0026】
その後、脱磁機にてチップの残留磁束密度を30×10−4T以下に脱磁することによって、切屑処理性に優れた長寿命のローアウェイチップを作製することができる。
【0027】
脱磁条件としては、効率よく、かつ確実にスローアウェイチップの脱磁を行うために、スローアウェイチップを出荷ケースにいれた状態で、3〜5m/分の通過速度で脱磁器の脱磁面上を通過させて脱磁面より20cm以上離れた距離までチップを移動させる一連の動作を3〜10回繰り返して、総脱磁時間が10秒以上、特に10〜30秒となるように行うことが望ましい。
【0028】
【実施例】
表1に示す平均粒径の炭化タングステン粉末、コバルト粉末、他の炭化物粉末を用いて表1の割合で添加し、アトライタミルにて表1に示す時間混合、粉砕し、乾燥した後、プレス成形により切削工具形状(VPGT110302)に成形し、表1に示す温度で1時間焼成した後、表1に示す冷却速度で冷却した。
【0029】
得られた焼結体チップを超硬合金製の枠体からなる固定冶具内にセットして両頭研磨した後、フェライト製(残留磁束密度=0.4T)の磁石からなる冶具にてチップをくっつけて取り出した。そして、フェライト製(残留磁束密度=0.4T)製の磁石からなる固定冶具にくっつけて装置内にセットし、イオンプレーティング法にてTiCN膜を2μm成膜して、VPGT形状のスローアウェイチップを作製した。
【0030】
そして、スローアウェイチップを出荷ケースにいれた状態で、表1の通過速度で脱磁器の脱磁面上を通過させて脱磁面より20cm以上離れた距離までチップを移動させる一連の動作を3〜10回繰り返して行う。
【0031】
得られたスローアウェイチップについて、ガウス計によりチップのすくい面表面に接触させた状態で残留磁束密度を測定し、5箇所での平均値を表1に記載した。また、下記の条件により切削試験を行い、被削材の算術平均表面粗さ(Ra)が0.10μmを超えた時点を寿命としてワークの加工数を測定した。
【0032】
切削条件
被削材 SUS430F
加工形態 Φ8mm 外径端面仕上げ切削
切削速度 V=150m/min
切り込み 0.03mm
送り 0.03mm/rev
切削状態 湿式
さらに、切削試験に用いたチップの断面SEM観察から画像解析法にて炭化タングステン粒子の平均粒径を測定するとともに、結合相プールの最大粒径を測定した。また、チップの一部を粉砕し20メッシュを通した粉砕粉末1gに塩酸(HCl:HO=1:1)溶液を加え、スターラーにて攪拌し24時間50℃で加熱溶解した溶液をろ過した。この溶液に希塩酸(HCl:HO=1:1)溶液を加えて50ml定容とし、このろ液について、ICP法によってろ液中のタングステンを含む各金属の含有量および含有比率を測定した。結果は表1に示した。
【0033】
【表1】

Figure 0004035088
【0034】
表1に示すように、残留磁束密度が30×10−4T以下の試料No.1〜4では、残留磁束密度が30×10−4Tより大きい試料No.5、6に比べて切削試験における切刃の欠損が少なく、切削寿命が長いものであった。
【0035】
【発明の効果】
以上詳述したとおり、本発明のスローアウェイチップの製造方法によれば、炭化タングステン粒子をコバルトからなる結合相にて焼結によって結合した超硬合金、磁気を帯びた部材に接触させて残留磁束密度を30×10−4Tより大きくした後、チップの残存する磁化を消磁する脱磁工程をチップ製造の最終段階に設けてスローアウェイチップの残留磁束密度を30×10−4T以下に確実に制御することによって、切削工具として充分な性能を有するとともに、切削中に強磁性体である被削材の切屑がチップ表面に当たりやすく、また、系外へ排出されにくい等の不具合を生じることなく、良好な切削が可能となる結果、長寿命のスローアウェイチップを作製することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a throw-away tip that is easy to handle during manufacture and has a long life.
[0002]
[Prior art]
Conventionally, cemented carbide has been used for cutting tools, wear-resistant tools, and the like. For example, in Patent Document 1, magnetic powder is made using a so-called nonmagnetic cemented carbide with low permeability using nickel as a binder phase. It is described that it is used as a mold for molding.
[0003]
Further, in Patent Document 2, a nonmagnetic or weakly magnetic diamond sintered body is produced by incorporating a low magnetic susceptibility material into a ferromagnetic material such as cobalt as a binder phase, and this is used to transport and transport magnetized products. It is described that it can be suitably used as a wear-resistant tool such as a construction member or a magnetic tape guide.
[0004]
On the other hand, cemented carbide is used for cutting tools including throw-away inserts, but generally has good compatibility with tungsten carbide particles and has excellent strength and toughness, and cobalt is used as the binder phase. The chip itself is easily magnetized. Therefore, using this property, the chip is placed on a base plate made of magnets for fixing the product when the surface polishing process at the time of chip production, coating layer formation, or chip transportation is carried out. It was easy to fix.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-120374
[Patent Document 2]
JP 7-331376 A
[Problems to be solved by the invention]
However, in the conventional throw-away tip made of a cemented carbide with magnetism, chips are attracted to the tip surface by magnetic force during cutting of iron or stainless steel and are more likely to collide more violently and stick to the tip surface. As a result, there is a problem that it is difficult to be discharged out of the system, and as a result, chipping and defects are likely to occur.
[0008]
In addition, as described in Patent Documents 1 and 2, nonmagnetic cemented carbide containing nickel or other materials as a binder phase reduces the sinterability of the cemented carbide and causes voids and the like to be inconsistent. As a result of the formation of a homogeneous portion or the growth of tungsten carbide particles, there is a problem that the hardness and strength are reduced.
[0009]
Accordingly, an object of the present invention is to provide a method for manufacturing a throw-away tip that has sufficient fracture resistance and wear resistance and that prevents chipping and chipping due to chips during cutting.
[0010]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, a cemented carbide in which tungsten carbide particles are bonded by sintering in a binder phase made of cobalt is brought into contact with a magnetic member to reduce the residual magnetic flux density to 30 × 10 −4. After making it larger than T, a demagnetizing step for demagnetizing the remaining magnetization of the tip is provided at the final stage of chip manufacture, and the residual magnetic flux density of the throw-away tip is reliably controlled to 30 × 10 −4 T or less, thereby cutting In addition to having sufficient performance as a tool, the chip of the work material, which is a ferromagnetic material, is attracted by the magnetic force to the chip surface during cutting and is more likely to collide or not be discharged out of the system. The gist is that good cutting can be performed without occurring.
[0011]
Here, the strength of the cemented carbide is that the content of cobalt in the cemented carbide is 7 to 13% by mass, and the content of nickel in the cemented carbide is 0.1% by mass or less. It is desirable in terms of increasing the chip resistance and wear resistance of the chip.
[0012]
Further, the cemented carbide is pulverized, and the pulverized powder passing through 20 mesh is dissolved in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. for 24 hours. It is desirable to contain tungsten at a ratio of 5 to 15% by mass with respect to the total amount of metals in that the residual magnetic flux density can be reliably controlled.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The throw-away tip obtained by the throw-away tip manufacturing method of the present invention is made of a cemented carbide in which tungsten carbide particles are bonded together by sintering in a binder phase made of cobalt.
[0014]
According to the manufacturing method of the indexable insert of the present invention, after more than 30 × 10 -4 T remanence in contact with the member tinged magnetic, demagnetization step for demagnetizing the residual magnetization remaining chips Is provided in the final stage of chip manufacturing, and the residual magnetic flux density of the throw-away chip is reliably controlled to 30 × 10 −4 T or less, and thereby, a ferromagnetic material generated during cutting Good chip discharge state by preventing chips made of magnetic material from being attracted to the chip surface by magnetic force and colliding more violently, and chips attached to the cutting edge from becoming difficult to be discharged out of the system while being captured by the magnetic force It can be.
[0015]
Here, the cobalt content in the cemented carbide is 7 to 13% by mass, particularly 8 to 12% by mass, and the nickel content in the cemented carbide is 0.1% by mass or less. This is desirable in that the residual magnetic flux density of the cemented carbide can be easily changed to a desired value, and the hardness and strength are increased to enhance chip fracture resistance and wear resistance.
[0016]
Further, the cemented carbide is pulverized, and the pulverized powder passing through 20 mesh is dissolved in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. for 24 hours. It is desirable to contain tungsten at a ratio of 5 to 15% by mass with respect to the total amount of metals in that the residual magnetic flux density can be reliably controlled. That is, by controlling the amount of tungsten contained in the binder phase and its surroundings within the above range, a more reliable demagnetization process can be performed even under a certain minimum demagnetization condition.
[0017]
Further, according to the present invention, the average particle size of the tungsten carbide particles is preferably 0.1 to 1.5 μm, particularly preferably 0.2 to 0.8 μm from the viewpoint of increasing the hardness and strength. The content is desirably 70 to 92% by volume in terms of chipping resistance and wear resistance.
[0018]
In the cemented carbide, in addition to tungsten carbide particles, at least one kind of carbide, nitride or carbonitride particles (hereinafter referred to as β phase particles) of Group 4a, 5a and 6a metals of the periodic table. , Except for WC particles) may be present. At this time, in order to increase the thermal shock resistance of the alloy, in the β-phase particles, W is 30% by mass or more in terms of metal with respect to the total amount of metals in Group 4a, 5a, and 6a of the periodic table, particularly 40 to 60% by mass. It is desirable to contain it in the ratio of%.
[0019]
Furthermore, according to the present invention, by controlling the structure of the alloy as described above, a binder phase pool in which binder phases having a particle diameter of 0.3 μm or more, particularly 0.5 μm or more are aggregated is contained in the structure. The residual magnetic flux density of the cemented carbide can be easily controlled. However, in order to maintain the high strength of the cemented carbide, the maximum particle size of the binder phase pool is desirably 3 μm or less, particularly 2 μm or less.
[0020]
The throw-away tip obtained by the above-described throw-away tip manufacturing method of the present invention may be used alone, but on the surface of the cemented carbide base material, carbides of Group 4a, 5a, and 6a metals in the periodic table At least one coating layer selected from the group consisting of nitride, carbonitride, TiAlN, TiZrN, TiCrN, diamond, diamond-like carbon (DLC), cubic boron nitride (cBN), and Al 2 O 3 By forming a plurality of layers, it is possible to obtain a high-hardness material such as a cutting tool that is further excellent in oxidation resistance and wear resistance. Even in this case, if the film thickness of the coating layer is 10 μm or less, the residual magnetic flux density can be controlled in the same manner as a throw-away chip that does not cover the hard phase.
[0021]
(Production method)
Next, the method for producing the above-described throw-away tip will be described. First, for example, 70 to 92% by mass of WC powder having an average particle size of 0.1 to 1.5 μm, particularly 0.1 to 0.8 μm, is averaged. Periodic table 4a, 5a, 6a group metal having a particle size of 1 to 1.3 μm, in particular, carbide, nitridation of at least one metal selected from the group of Ti, Zr, V, Cr, Mo, Ta, Nb, W And carbon nitride powder or solid solution powder of two or more metals described above in a total amount of 0 to 15% by mass, iron group metal powder having an average particle size of 0.1 to 1 μm is 8 to 12% by mass, and further, if desired, a metal W (W) powder or carbon black (C) is prepared, mixed and pulverized. For mixing and pulverization, mixing and pulverization for 18 to 35 hours using an attritor mill is desirable in terms of control of residual magnetic flux density and improvement of hardness, strength and toughness.
[0022]
Thereafter, the mixed and pulverized powder is press-molded into a predetermined chip shape by a molding method such as a die press and fired. In firing, first, this compact is vacuum fired at 1400-1450 ° C. for 1-2 hours. By this vacuum firing, the relative density becomes 98% or higher. Then, hot isostatic pressure treatment is performed at a temperature lower by 20 to 50 ° C. than the firing temperature for 0.5 to 1 hour at a pressure of 50 to 100 MPa. The degree of vacuum at the time of vacuum firing is suitably 0.1 to 100 Pa.
[0023]
Here, in the above firing conditions, the cooling rate after firing is preferably 1 to 4 ° C./minute from the viewpoint of uniformity of demagnetization.
[0024]
Then, according to the present invention, the cemented carbide obtained by the above method is subjected to surface polishing (rake surface, rake surface and seating surface (double-headed polishing), flank surface (peripheral polishing)), and then the chip is applied. When taking out from the frame-shaped jig used for surface polishing (the polished cemented carbide is buried in the jig) or by physical vapor deposition (PVD) method such as ion plating method, When forming the hard coating layer, it is large to make the residual magnetic flux density of the cemented carbide higher than 30 × 10 −4 T using a fixing jig made of a magnet having a magnetic susceptibility of 1000 × 10 −4 T or more. As a result, the chip can be handled easily and reliably at the time of manufacturing, so that the manufacturing yield and reliability are improved.
[0025]
In order to form a coating layer as described above on the above cemented carbide, the surface of the cemented carbide is ground, polished, and washed as desired, and then a conventionally known thin film such as a PVD method or a CVD method. Although it can be formed by a forming method, according to the present invention, when a coating layer is formed by an ion plating method, it is easy to manufacture if the film is formed in a state where a chip is placed and fixed on a jig made of a magnet. It becomes. The thickness of the coating layer is preferably 1 to 10 μm from the viewpoint of impact resistance and wear resistance.
[0026]
Thereafter, by demagnetizing the residual magnetic flux density of the chip to 30 × 10 −4 T or less with a demagnetizer, a long-life lower-away chip excellent in chip disposal can be produced.
[0027]
As a demagnetizing condition, in order to efficiently and surely demagnetize the throwaway tip, the demagnetizing surface of the demagnetizer at a passing speed of 3 to 5 m / min with the throwaway tip placed in the shipping case. A series of operations for moving the chip to a distance of 20 cm or more away from the demagnetization surface by repeating the above is repeated 3 to 10 times so that the total demagnetization time is 10 seconds or more, particularly 10 to 30 seconds. Is desirable.
[0028]
【Example】
Using tungsten carbide powder, cobalt powder, and other carbide powders having the average particle size shown in Table 1, added in the proportions shown in Table 1, mixed, pulverized, and dried by the Attritor mill for the time shown in Table 1, and then press-molded. After forming into a cutting tool shape (VPGT110302) and firing at the temperature shown in Table 1 for 1 hour, it was cooled at the cooling rate shown in Table 1.
[0029]
The obtained sintered body chip is set in a fixed jig made of a cemented carbide frame and polished on both heads, and then the chip is attached with a jig made of ferrite (residual magnetic flux density = 0.4T). I took it out. Then, it is attached to a fixed jig made of a magnet made of ferrite (residual magnetic flux density = 0.4T) and set in the apparatus, and a TiCN film is formed by 2 μm by an ion plating method, and a VPGT-shaped throw-away chip is formed. Was made.
[0030]
Then, with the throw-away tip placed in the shipping case, a series of operations for moving the tip to a distance of 20 cm or more away from the demagnetizing surface through the demagnetizing surface of the demagnetizer at the passing speed shown in Table 1 is performed. Repeat 10 to 10 times.
[0031]
For the obtained throw-away tip, the residual magnetic flux density was measured in a state in which the tip was brought into contact with the rake face surface of the tip with a Gauss meter, and the average value at five locations is shown in Table 1. In addition, a cutting test was performed under the following conditions, and the number of workpieces was measured with the time when the arithmetic average surface roughness (Ra) of the work material exceeded 0.10 μm as the life.
[0032]
Cutting condition work material SUS430F
Machining form φ8mm Outer diameter end face finishing cutting cutting speed V = 150m / min
Notch 0.03mm
Feed 0.03mm / rev
Cutting state Wet Further, the average particle size of the tungsten carbide particles was measured by image analysis from the cross-sectional SEM observation of the chip used in the cutting test, and the maximum particle size of the binder phase pool was measured. Further, a hydrochloric acid (HCl: H 2 O = 1: 1) solution was added to 1 g of pulverized powder obtained by crushing a part of the chip and passing through 20 mesh, and the solution dissolved by heating at 50 ° C. for 24 hours with stirring with a stirrer was filtered. did. Dilute hydrochloric acid (HCl: H 2 O = 1: 1) solution was added to this solution to make a constant volume of 50 ml, and the content and content ratio of each metal containing tungsten in the filtrate were measured by ICP method for this filtrate. . The results are shown in Table 1.
[0033]
[Table 1]
Figure 0004035088
[0034]
As shown in Table 1, a sample No. with a residual magnetic flux density of 30 × 10 −4 T or less was used. In Nos. 1 to 4, sample Nos. With a residual magnetic flux density greater than 30 × 10 −4 T. Compared with 5 and 6, there were few cutting edge defects in the cutting test, and the cutting life was long.
[0035]
【The invention's effect】
As described above in detail, according to the throw-away tip manufacturing method of the present invention, the cemented carbide in which tungsten carbide particles are bonded by sintering in a binder phase made of cobalt is left in contact with a magnetic member. After the magnetic flux density is made larger than 30 × 10 −4 T, a demagnetization process for demagnetizing the remaining magnetization of the chip is provided at the final stage of chip manufacture so that the residual magnetic flux density of the throw-away chip is 30 × 10 −4 T or less. By controlling it reliably, it has sufficient performance as a cutting tool, and chipping of the work material, which is a ferromagnetic material, easily hits the chip surface during cutting, and causes problems such as being difficult to be discharged out of the system. As a result, it becomes possible to produce a long-life throw-away tip.

Claims (4)

炭化タングステン粒子をコバルトからなる結合相にて焼結によって結合した超硬合金、磁気を帯びた部材に接触させて残留磁束密度を30×10−4Tより大きくした後、残留磁束密度を30×10−4T以下に消磁することを特徴とするスローアウェイチップの製造方法A cemented carbide in which tungsten carbide particles are bonded by sintering in a binder phase made of cobalt is brought into contact with a magnetic member to increase the residual magnetic flux density from 30 × 10 −4 T, and then the residual magnetic flux density is set to 30. A method for manufacturing a throw-away tip , which is demagnetized to × 10 −4 T or less. 前記超硬合金中のコバルトの含有量が7〜13質量%であることを特徴とする請求項1記載のスローアウェイチップの製造方法The throwaway tip manufacturing method according to claim 1, wherein the content of cobalt in the cemented carbide is 7 to 13% by mass. 前記超硬合金中のニッケルの含有量が0.1質量%以下であることを特徴とする請求項1または2記載のスローアウェイチップの製造方法The throwaway tip manufacturing method according to claim 1 or 2, wherein a content of nickel in the cemented carbide is 0.1 mass% or less. 前記超硬合金を粉砕し、20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対してタングステンを5〜15質量%の割合で含有することを特徴とする請求項1乃至3のいずれか記載のスローアウェイチップの製造方法The cemented carbide is pulverized, and the pulverized powder that has passed through 20 mesh is dissolved in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. for 24 hours. The method for manufacturing a throw-away tip according to any one of claims 1 to 3, wherein tungsten is contained at a ratio of 5 to 15 mass% with respect to the amount of metal.
JP2003200194A 2003-07-23 2003-07-23 Method for manufacturing throw-away tip Expired - Fee Related JP4035088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200194A JP4035088B2 (en) 2003-07-23 2003-07-23 Method for manufacturing throw-away tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200194A JP4035088B2 (en) 2003-07-23 2003-07-23 Method for manufacturing throw-away tip

Publications (2)

Publication Number Publication Date
JP2005040868A JP2005040868A (en) 2005-02-17
JP4035088B2 true JP4035088B2 (en) 2008-01-16

Family

ID=34260686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200194A Expired - Fee Related JP4035088B2 (en) 2003-07-23 2003-07-23 Method for manufacturing throw-away tip

Country Status (1)

Country Link
JP (1) JP4035088B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
WO2009016955A1 (en) 2007-07-31 2009-02-05 Central Glass Company, Limited Laminated glass having plastic film inserted therein
JP5707669B2 (en) 2009-02-05 2015-04-30 セントラル硝子株式会社 Plastic film insertion laminated glass

Also Published As

Publication number Publication date
JP2005040868A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
EP2426229B1 (en) Process for Producing a Cubic Boron Nitride Compact
EP2462083B1 (en) Tough coated hard particles consolidated in a tough matrix material
JP4377685B2 (en) Fine grain sintered cemented carbide, its production and use
TWI636149B (en) Ferromagnetic sputtering target
US10519067B2 (en) Cemented carbide and cutting tool
WO2011136197A1 (en) Cermet and coated cermet
JP2002226273A (en) Sintered compact
US20170267588A1 (en) Composite sintered body for cutting tool and cutting tool using the same
JP5076044B2 (en) Composite wear-resistant member and manufacturing method thereof
JP2000247746A (en) Cutting tool of cubic boron nitride-based sintered compact
JP4035088B2 (en) Method for manufacturing throw-away tip
JPWO2007105477A1 (en) SUBSTRATE FOR MAGNETIC HEAD, MAGNETIC HEAD, AND RECORDING MEDIUM DRIVE DEVICE
CN116096931A (en) Cemented carbide and cutting tool comprising the same as substrate
CN103962589A (en) Surface coated cutting tool
JP4002542B2 (en) Cutting tool and cutting method
JP2004256863A (en) Cemented carbide, production method therefor, and rotary tool using the same
JP4964457B2 (en) Method for producing Co-based sputtering target material containing oxide
JP2004232000A (en) Cemented carbide and manufacturing method, and rotary tool using the cemented carbide
JP2002293634A (en) Silicon carbide sintered compact and substrate for magnetic head slider using the same
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
Chen et al. Flank wear mechanism of WC-5TiC-10Co cemented carbides inserts when machining HT250 gray cast iron
JP2004190118A (en) Cemented carbide, its production method, and cutting tool using the same
JP2006137623A (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods
JP2001205568A (en) Grinding wheel blade for cutting rare-earth magnet
TW202334448A (en) Fe-Pt-C -based sputtering target member, sputtering target assembly, method for forming film, and method for producing sputtering target member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees