JP4034229B2 - Return nozzle type gun burner - Google Patents

Return nozzle type gun burner Download PDF

Info

Publication number
JP4034229B2
JP4034229B2 JP2003136708A JP2003136708A JP4034229B2 JP 4034229 B2 JP4034229 B2 JP 4034229B2 JP 2003136708 A JP2003136708 A JP 2003136708A JP 2003136708 A JP2003136708 A JP 2003136708A JP 4034229 B2 JP4034229 B2 JP 4034229B2
Authority
JP
Japan
Prior art keywords
output
amount
oil
proportional valve
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003136708A
Other languages
Japanese (ja)
Other versions
JP2004340465A (en
Inventor
隆弘 布川
行隆 中村
政人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2003136708A priority Critical patent/JP4034229B2/en
Publication of JP2004340465A publication Critical patent/JP2004340465A/en
Application granted granted Critical
Publication of JP4034229B2 publication Critical patent/JP4034229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Combustion (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は給湯機等のバーナとして利用されるリターンノズル式ガンバーナに関するものである。
【0002】
【従来の技術】
従来よりこの種のものにおいては、例えば特許文献1に開示されているように、燃油供給路より電磁ポンプによって加圧された燃油が噴霧ノズルに供給され、ここで噴霧されて燃焼するものであり、この時油比例弁の駆動でリターン流路を介して戻されるリターン量を制御することで、熱要求量に応じた無段階の燃焼量制御を行うものであった。
【0003】
【特許文献1】
特開平3−20516号公報
【0004】
【発明が解決しようとする課題】
ところで燃油供給路内を流れる燃油は温度によって、その粘度が変動する。例えば、油温が高くなれば燃油の粘度は減少し、油温が低くなれば燃油の粘度は増加する。結果として、この燃油の粘度の変動により燃油噴霧ノズルからの噴霧量が変動し、バーナが冷えている時には熱要求量よりも多い燃油が噴霧されてしまい、熱要求量よりも大きな燃焼量で燃焼してしまうという課題があった。
【0005】
【課題を解決するための手段】
そこで、本発明はこの課題を解決するために、請求項1では、噴霧ノズルに燃油を供給する電磁ポンプを備えた燃油供給路と、前記噴霧ノズルと前記電磁ポンプより上流側の燃油供給路とを連通するリターン流路と、前記リターン流路中を流れる燃油のリターン量制御により燃焼量を制御する油比例弁と、前記油比例弁を制御して熱要求量での燃焼を開始させる制御手段とを備えたリターンノズル式ガンバーナにおいて、燃焼開始前のバーナの冷え具合を判断する冷状態判別部と、前記冷状態判別部の判別した状態に応じて熱要求量に対応する油比例弁の出力を油量減少方向へ補正する出力補正部と、前記冷状態判別部によりバーナが冷状態にあると判別されると、前記油比例弁を前記出力補正部で補正された出力に制御して燃焼を開始させ、熱要求量に対応する出力へと緩やかに上昇させるコールドスタート制御部とを設け、前記出力補正部は、熱要求量が所定量未満の場合は、油比例弁の出力補正を行わないようにしたものとした。
【0006】
これにより、通常は制御手段が熱要求量に対応した油比例弁出力に油比例弁を制御して燃焼開始し、冷状態判別部によりバーナが冷状態にあると判別されたときは、出力補正部により油比例弁出力が油量減少方向へ補正され、コールドスタート制御部がこの補正出力に油比例弁を制御して燃焼開始し、油比例弁の出力が熱要求量に対応する出力へと緩やかに上昇されて燃焼することにより、バーナが冷状態で燃焼開始してもバーナが暖まるまでの間も、燃油の温度変化に起因する粘度変化に伴う噴霧量のズレを吸収して、熱要求量にほぼ一致した燃焼量で燃焼を行うことができるものである。また、熱要求量が少ない場合は、燃油の温度変化に起因する粘度変化に伴う噴霧量のズレ量が少なく、不要な油比例弁の出力補正を行わないようにすることができる。
【0015】
【発明の実施の形態】
次に、本発明の一実施形態を図面に基づいて説明する。
1は燃油リターン方式の噴霧ノズルで、内部にはリターン穴を有したディストリビュータ(図示せず)を備え、供給された燃油の一部をリターンさせると共に、残りを旋回噴霧し燃焼させるものである。
【0016】
2は上記噴霧ノズル1と燃油タンク等の燃油供給源(図示せず)とを結ぶ燃油供給路で、途中には定圧で燃油を圧送する電磁ポンプ3を備えている。
【0017】
4は噴霧ノズル1のリターン穴と電磁ポンプ3より上流側の燃油供給路2とを連通したリターン流路で、途中には電磁コイルと弁体とスプリング等(何れも図示せず)から構成された油比例弁5を備え、該油比例弁5の電磁コイルに供給される電流値で開口量を可変しリターン量を制御することで、噴霧ノズル1からの噴霧量を決定するもので、6は燃焼空気を供給する燃焼ファンである。
【0018】
7はリターン流路4の油比例弁5の下流側に備えられたサーミスタから成る油温センサで、リターン流路4を流通する燃油温度を検知するものである。
【0019】
8は設定温度の出湯を末端の給湯栓9より可能とする給湯路で、途中には前記噴霧ノズル1の燃焼熱を受けて加熱される熱交換器10を備えている。
【0020】
11は給湯栓9近傍に設けられ給湯機の各種制御を行う操作部を司るリモコンで、所望の出湯温度を適宜設定可能な温度設定手段12や運転スイッチ13等を備えている。
【0021】
14は熱交換器10下流側の給湯路7途中に備えられたサーミスタから成る出湯温度センサで、実際の出湯温度を常に検出するもので、15は熱交換器10上流側の給水温度を検出するサーミスタから成る給水温度センサである。16は給湯路7を流れる流量を検出する流量センサである。
【0022】
17はマイコンを有して構成される制御手段で、入力側には油温センサ7、温度設定手段12、出湯温度センサ14、給水温度センサ15、および流量センサ16が接続され、また出力側には電磁ポンプ3、油比例弁5、および燃焼ファン6が接続されているものである。そして制御手段17では温度設定手段12の設定温度と給水温度センサ15で検知される給水温度との偏差と、流量センサ16で検出する流量とから熱要求量を演算し、熱要求量に対応した油比例弁5の開度を決定して制御するものである。
【0023】
18は前記制御手段17の一機能としてプログラムされて設けられた冷状態判別部で、燃焼開始前のバーナの冷え具合を判別するものである。この一実施形態では、リターン流路4の油温センサ7で検出する温度が10℃以下である場合にバーナが冷状態であると判別するようにしてバーナの冷え具合を反映した値を検出することができ、容易にバーナの冷え具合を判別することができる。
【0024】
19は前記制御手段17の一機能としてプログラムされて設けられた出力補正部で、前記冷状態判別部18の判別した状態に応じて熱要求量に対応する油比例弁5の出力を油量減少方向へ補正するものである。この一実施形態では、熱要求量に対応する油比例弁5の出力を100%として、補正出力を6%減の94%としている。この補正量は燃油の温度と噴霧量の関係から適切な値を予め求めておけばよいものである。なお、この出力補正部19は熱要求量が所定量以上のときだけ油比例弁5の出力を補正するようにしており、熱要求量が小さいとき、すなわち噴霧量が少ないときは燃油の冷状態による噴霧量増加の影響が少ないため、熱要求量が所定量未満であるときは補正を行わないようにしている。
【0025】
20は前記制御手段17の一機能としてプログラムされて設けられたコールドスタート制御部で、前記冷状態判別部18によりバーナが冷状態にあると判別されると、油比例弁5を前記出力補正部19で補正された出力に制御して燃焼を開始させ、熱要求量に対応する出力へと緩やかに上昇させるようにしているものである。この一実施形態では図2に示すように、出力補正部19で補正された要求熱量の94%の出力から30秒ごとに1%ずつ出力を緩やかに上昇させるようにし、バーナの温度上昇に伴い燃油の粘度が下がっていくのに合わせて油比例弁5の出力を熱要求量に近づけ、熱要求量に一致した燃油の噴霧を行わせるようにしているものである。なお、出力を緩やかに上昇させる方法はこの一実施例の方法に限定されるものではない。
【0026】
次に、この一実施形態の作動を図3に示すフローチャートに基づいて説明する。
まず、給湯栓9が開かれて熱要求が発生したことを制御手段17が検知すると(ステップ1、以下S1と略す)、冷状態判別部18がバーナが冷状態であるかを判別する(S2)。バーナが冷状態であり、なおかつ熱要求量が所定量以上であると(S3)、出力補正部19が油比例弁5の出力を熱要求量よりも減少させる方向へ補正を行う(S4)。
【0027】
そして、コールドスタート制御部20が出力補正部19で補正された補正出力に油比例弁5を制御して燃焼を開始する(S5)。その後、熱要求量出力へ油比例弁5の出力を緩やかに上昇させ(S6)、熱要求出力に達っした後は(S7)、制御手段17が熱要求が消滅するまでその時々の熱要求量になるよう油比例弁5の出力を制御し、熱要求消滅により(S8)燃焼を停止する(S9)。
【0028】
なお、前記S2で冷状態判別部18がバーナが冷状態でないと判別したり、また前記S3でバーナは冷状態であるけれども熱要求量が所定量未満である場合は、制御手段17が熱要求量に一致した油比例弁5の出力で燃焼を開始するものである(S10)。
【0029】
このように、バーナが冷状態となっていると判別されれば、油比例弁5の出力を熱要求量に対応する出力よりも減少させた補正出力で制御して燃焼させるので、バーナが暖まるまでの間にも熱要求量にほぼ一致した燃焼量で燃焼させることができ、機器の性能が十分に発揮できるものである。
【0030】
ここで、図4は本発明の燃焼開始からの噴霧ノズル1からの噴霧量と、従来の噴霧量をグラフ化したもので、これを見てわかるように従来はバーナが冷状態で燃焼を開始すると、バーナが暖まるまでの間に熱要求量に対して余分な燃油を噴霧してしまい、給湯温度がオーバーシュートしてしまうものであったが、本発明のもの(新方式)はバーナが暖まるまでの間にも熱要求量に近い量の燃油を噴霧するので、給湯温度がオーバーシュートしてしまうことがなく、機器の性能が十分に発揮できるものである。
【0031】
なお、本発明は上記の一実施形態に限定されるものではなく、発明の要旨を変更しない範囲で変更が可能なものであり、例えばこのリターンノズル式ガンバーナを給湯機ではなく暖房機に用いてもよいものである。
【0032】
また、冷状態判別部18は燃焼開始前にバーナが冷状態にあるかどうかを判別できればよいものであり、例えば噴霧ノズル1と電磁ポンプ3の間の燃油供給路2に油温センサを設け、この油温センサの出力によりバーナの冷状態を判別するようにしてもよい。
【0033】
また、冷状態判別部18として、燃焼停止からの時間をカウントし、この燃焼停止からの時間が所定時間以上となることでバーナが冷状態にあると判別するようにしてもよく、この場合、所定時間を外気温度等によって変更することも可能で、簡易にバーナの冷え具合を判別することができるものである。このとき、冷状態判別部18は、バーナが高温になる時間以上の燃焼が行われ、この燃焼が停止された時点から所定時間のカウントを開始するようにし、今回の燃焼がバーナが高温になる時間未満の燃焼時間であった場合は、前回からのカウントを継続するようにしているので、確実にバーナの冷え具合を判別することができるものである。
【0034】
また、出力補正部19は一定の補正量としているが、これに限らず、冷状態判別部18の判別するバーナの冷状態の度合いに応じて、例えば油温センサ7の検出温度に応じて補正量を変更するようにしてもよいものである。
【0035】
【発明の効果】
以上のように、本発明によれば、常は制御手段が熱要求量に対応した油比例弁出力に油比例弁を制御して燃焼開始し、冷状態判別部によりバーナが冷状態にあると判別されたときは、出力補正部により油比例弁出力が油量減少方向へ補正され、コールドスタート制御部がこの補正出力に油比例弁を制御して燃焼開始し、油比例弁の出力が熱要求量に対応する出力へと緩やかに上昇されて燃焼することにより、バーナが冷状態で燃焼開始してもバーナが暖まるまでの間も、燃油の温度変化に起因する粘度変化に伴う噴霧量のズレを吸収して、熱要求量にほぼ一致した燃焼量で燃焼を行うことができるものである。
【図面の簡単な説明】
【図1】本発明の一実施形態の給湯機の概略構成図。
【図2】同一実施形態のコールドスタート制御部の作動を説明する図。
【図3】同一実施形態の作動を説明するフローチャート。
【図4】同一実施形態と従来のものの噴霧量を比較説明する図。
【符号の説明】
1 噴霧ノズル
2 燃油供給路
3 電磁ポンプ
4 リターン流路
5 油比例弁
7 油温センサ
17 制御手段
18 冷状態判別部
19 出力補正部
20 コールドスタート制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a return nozzle type gun burner used as a burner for a water heater or the like.
[0002]
[Prior art]
Conventionally, in this type of fuel, as disclosed in, for example, Patent Document 1, fuel oil pressurized by an electromagnetic pump is supplied from a fuel oil supply passage to a spray nozzle, and sprayed and burned here. At this time, by controlling the return amount returned through the return flow path by driving the oil proportional valve, the stepless combustion amount control according to the heat requirement amount is performed.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 3-20516
[Problems to be solved by the invention]
By the way, the viscosity of the fuel oil flowing in the fuel oil supply path varies depending on the temperature. For example, if the oil temperature becomes high, the viscosity of the fuel oil decreases, and if the oil temperature becomes low, the viscosity of the fuel oil increases. As a result, the amount of spray from the fuel spray nozzle fluctuates due to the variation in the viscosity of the fuel oil, and when the burner is cold, more fuel oil is sprayed than the heat demand amount, and combustion is performed with a combustion amount larger than the heat demand amount. There was a problem of doing it.
[0005]
[Means for Solving the Problems]
Accordingly, in order to solve this problem, the present invention provides a fuel oil supply path including an electromagnetic pump that supplies fuel oil to the spray nozzle, a fuel oil supply path upstream of the spray nozzle and the electromagnetic pump. A return flow path that communicates with each other, an oil proportional valve that controls a combustion amount by controlling a return amount of fuel flowing in the return flow path, and a control unit that controls the oil proportional valve to start combustion at a required heat amount In a return nozzle type gun burner provided with a cooling state determining unit for determining the degree of cooling of the burner before starting combustion, and an output of the oil proportional valve corresponding to the heat demand according to the state determined by the cold state determining unit When the burner is determined to be in the cold state by the output correction unit that corrects the oil in the oil amount decreasing direction and the cold state determination unit, the oil proportional valve is controlled to the output corrected by the output correction unit and burned Start And a cold start control unit gently raise to the output corresponding to the heat demand is provided, wherein the output correction unit, the heat demand If there is less than a predetermined amount, and so not output correction of oil proportional valve It was supposed to be.
[0006]
As a result, normally, the control means controls the oil proportional valve output corresponding to the heat demand to start combustion, and when the cold state discriminating unit determines that the burner is in the cold state, output correction is performed. The oil proportional valve output is corrected in the oil quantity decreasing direction by the control unit, and the cold start control unit controls the oil proportional valve to start the combustion with this corrected output, and the output of the oil proportional valve changes to the output corresponding to the heat demand. By gradually rising and burning, even if the burner starts to burn in a cold state, it absorbs the deviation of the spray amount due to the viscosity change caused by the temperature change of the fuel oil until the burner warms up, and heat demand Combustion can be performed with a combustion amount substantially equal to the amount. Further, when the required heat amount is small, the amount of misalignment of the spray amount accompanying the change in viscosity due to the temperature change of the fuel oil is small, and unnecessary output correction of the oil proportional valve can be prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
A fuel oil return type spray nozzle 1 includes a distributor (not shown) having a return hole inside, and returns a part of the supplied fuel oil and swirls and burns the remaining fuel oil.
[0016]
A fuel oil supply path 2 connects the spray nozzle 1 and a fuel oil supply source (not shown) such as a fuel tank, and includes an electromagnetic pump 3 that pumps the fuel oil at a constant pressure.
[0017]
Reference numeral 4 denotes a return flow path that connects the return hole of the spray nozzle 1 and the fuel oil supply path 2 upstream of the electromagnetic pump 3, and is composed of an electromagnetic coil, a valve element, a spring, and the like (all not shown). The oil proportional valve 5 is provided, and the amount of opening from the current value supplied to the electromagnetic coil of the oil proportional valve 5 is varied to control the return amount, thereby determining the spray amount from the spray nozzle 1. Is a combustion fan for supplying combustion air.
[0018]
7 is an oil temperature sensor comprising a thermistor provided on the downstream side of the oil proportional valve 5 in the return flow path 4 and detects the temperature of the fuel oil flowing through the return flow path 4.
[0019]
Reference numeral 8 denotes a hot water supply passage through which hot water at a set temperature can be discharged from the hot water tap 9 at the end, and is provided with a heat exchanger 10 that receives the combustion heat of the spray nozzle 1 and is heated.
[0020]
Reference numeral 11 denotes a remote controller provided in the vicinity of the hot-water tap 9 and controlling an operation unit for performing various controls of the water heater. The remote controller 11 includes a temperature setting means 12, an operation switch 13, and the like that can appropriately set a desired hot water temperature.
[0021]
Reference numeral 14 denotes a hot water temperature sensor composed of a thermistor provided in the middle of the hot water supply passage 7 downstream of the heat exchanger 10, which always detects the actual hot water temperature, and 15 detects the hot water temperature upstream of the heat exchanger 10. This is a feed water temperature sensor composed of a thermistor. Reference numeral 16 denotes a flow rate sensor for detecting the flow rate flowing through the hot water supply passage 7.
[0022]
Reference numeral 17 denotes a control means having a microcomputer. The oil temperature sensor 7, the temperature setting means 12, the tapping temperature sensor 14, the feed water temperature sensor 15, and the flow rate sensor 16 are connected to the input side, and the output side is also connected. Is connected to the electromagnetic pump 3, the oil proportional valve 5, and the combustion fan 6. Then, the control means 17 calculates the required heat amount from the deviation between the set temperature of the temperature setting means 12 and the feed water temperature detected by the feed water temperature sensor 15 and the flow rate detected by the flow sensor 16, and corresponds to the required heat quantity. The opening degree of the oil proportional valve 5 is determined and controlled.
[0023]
Reference numeral 18 denotes a cold state determination unit programmed and provided as a function of the control means 17 for determining the degree of cooling of the burner before the start of combustion. In this embodiment, when the temperature detected by the oil temperature sensor 7 in the return flow path 4 is 10 ° C. or less, the burner is determined to be in a cold state, and a value that reflects the cooling condition of the burner is detected. It is possible to easily determine how much the burner is cold.
[0024]
An output correction unit 19 programmed and provided as a function of the control unit 17 reduces the oil amount of the output of the oil proportional valve 5 corresponding to the heat demand according to the state determined by the cold state determination unit 18. It corrects in the direction. In this embodiment, the output of the oil proportional valve 5 corresponding to the heat demand is set to 100%, and the correction output is reduced by 6% to 94%. For this correction amount, an appropriate value may be obtained in advance from the relationship between the fuel temperature and the spray amount. The output correction unit 19 corrects the output of the oil proportional valve 5 only when the required heat amount is equal to or greater than a predetermined amount. When the required heat amount is small, that is, when the spray amount is small, the fuel oil is in a cold state. Since the influence of the increase in the spray amount due to the fuel is small, the correction is not performed when the required heat amount is less than the predetermined amount.
[0025]
Reference numeral 20 denotes a cold start control unit programmed and provided as a function of the control unit 17. When the cold state determination unit 18 determines that the burner is in a cold state, the oil proportional valve 5 is connected to the output correction unit. The combustion is controlled by controlling the output corrected at 19 and gradually increased to an output corresponding to the required heat amount. In this embodiment, as shown in FIG. 2, the output is gradually increased by 1% every 30 seconds from the output of 94% of the required heat quantity corrected by the output correction unit 19, and the temperature of the burner is increased. As the viscosity of the fuel oil decreases, the output of the oil proportional valve 5 is brought close to the heat requirement amount so that the fuel oil is sprayed in accordance with the heat requirement amount. The method for gradually increasing the output is not limited to the method of this embodiment.
[0026]
Next, the operation of this embodiment will be described based on the flowchart shown in FIG.
First, when the control means 17 detects that the hot water tap 9 is opened and a heat request is generated (step 1, hereinafter abbreviated as S1), the cold state determination unit 18 determines whether the burner is in a cold state (S2). ). When the burner is in a cold state and the required heat amount is greater than or equal to a predetermined amount (S3), the output correcting unit 19 corrects the output of the oil proportional valve 5 so as to decrease below the required heat amount (S4).
[0027]
Then, the cold start control unit 20 controls the oil proportional valve 5 to the correction output corrected by the output correction unit 19 and starts combustion (S5). Thereafter, the output of the oil proportional valve 5 is gradually increased to the heat demand output (S6), and after reaching the heat demand output (S7), the heat demand at that time until the control means 17 disappears. The output of the oil proportional valve 5 is controlled so as to reach a quantity, and combustion is stopped (S9) when the heat demand disappears (S8).
[0028]
When the burner is determined not to be in the cold state in S2, or if the burner is in the cold state in S3 but the required heat amount is less than the predetermined amount, the control means 17 determines the heat request. Combustion is started at the output of the oil proportional valve 5 corresponding to the amount (S10).
[0029]
In this way, if it is determined that the burner is in a cold state, the burner is warmed because combustion is performed by controlling the output of the oil proportional valve 5 with a corrected output that is less than the output corresponding to the heat demand. In the meantime, it can be burned with a combustion amount almost corresponding to the heat demand, and the performance of the equipment can be fully exhibited.
[0030]
Here, FIG. 4 is a graph of the spray amount from the spray nozzle 1 from the start of combustion according to the present invention and the conventional spray amount, and as can be seen from the graph, conventionally, the burner starts combustion in a cold state. Then, until the burner warms up, excess fuel oil is sprayed with respect to the heat demand, and the hot water supply temperature overshoots, but the present invention (new system) warms the burner. Since the amount of fuel oil close to the required heat amount is sprayed in the meantime, the hot water supply temperature does not overshoot and the performance of the device can be fully exhibited.
[0031]
In addition, this invention is not limited to said one Embodiment, It can change in the range which does not change the summary of invention, For example, this return nozzle type gun burner is used for a heater instead of a water heater. Is also good.
[0032]
The cold state determination unit 18 only needs to be able to determine whether the burner is in a cold state before the start of combustion. For example, an oil temperature sensor is provided in the fuel supply path 2 between the spray nozzle 1 and the electromagnetic pump 3, You may make it discriminate | determine the cold state of a burner by the output of this oil temperature sensor.
[0033]
Further, the cold state determination unit 18 may count the time from the combustion stop, and may determine that the burner is in the cold state when the time from the combustion stop becomes a predetermined time or more. It is also possible to change the predetermined time according to the outside air temperature or the like, and it is possible to easily determine the degree of cooling of the burner. At this time, the cold state determination unit 18 performs combustion for a time longer than the time when the burner becomes high temperature, starts counting for a predetermined time from the time when this combustion is stopped, and this time the burner becomes high temperature. When the combustion time is less than the time, since the count from the previous time is continued, it is possible to reliably determine the degree of cooling of the burner.
[0034]
Further, the output correction unit 19 sets a fixed correction amount, but the correction is not limited to this, and the correction is performed according to the temperature of the burner determined by the cold state determination unit 18, for example, according to the temperature detected by the oil temperature sensor 7. The amount may be changed.
[0035]
【The invention's effect】
As described above, according to the present invention, when the control means normally controls the oil proportional valve output to the oil proportional valve output corresponding to the heat demand, combustion starts, and the cold state determination unit determines that the burner is in the cold state. When it is determined, the oil proportional valve output is corrected by the output correction unit in the direction of decreasing the oil amount, the cold start control unit controls the oil proportional valve to this correction output and starts combustion, and the output of the oil proportional valve is heated. By gradually rising to the output corresponding to the required amount and burning, the amount of spray that accompanies the change in viscosity due to the temperature change of the fuel oil is maintained even after the burner starts to burn in the cold state until the burner warms up. By absorbing the deviation, the combustion can be performed with the combustion amount substantially corresponding to the heat demand.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a water heater according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining the operation of the cold start control unit of the same embodiment;
FIG. 3 is a flowchart for explaining the operation of the same embodiment.
FIG. 4 is a diagram for comparing and explaining the spray amount of the same embodiment and a conventional one.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Spray nozzle 2 Fuel oil supply path 3 Electromagnetic pump 4 Return flow path 5 Oil proportional valve 7 Oil temperature sensor 17 Control means 18 Cold state discrimination | determination part 19 Output correction part 20 Cold start control part

Claims (1)

噴霧ノズルに燃油を供給する電磁ポンプを備えた燃油供給路と、前記噴霧ノズルと前記電磁ポンプより上流側の燃油供給路とを連通するリターン流路と、前記リターン流路中を流れる燃油のリターン量制御により燃焼量を制御する油比例弁と、前記油比例弁を制御して熱要求量での燃焼を開始させる制御手段とを備えたリターンノズル式ガンバーナにおいて、燃焼開始前のバーナの冷え具合を判断する冷状態判別部と、前記冷状態判別部の判別した状態に応じて熱要求量に対応する油比例弁の出力を油量減少方向へ補正する出力補正部と、前記冷状態判別部によりバーナが冷状態にあると判別されると、前記油比例弁を前記出力補正部で補正された出力に制御して燃焼を開始させ、熱要求量に対応する出力へと緩やかに上昇させるコールドスタート制御部とを設け、前記出力補正部は、熱要求量が所定量未満の場合は、油比例弁の出力補正を行わないようにしたことを特徴とするリターンノズル式ガンバーナ。A fuel supply path having an electromagnetic pump for supplying fuel to the spray nozzle, a return flow path communicating with the spray nozzle and a fuel supply path upstream of the electromagnetic pump, and a return of the fuel flowing in the return flow path In a return nozzle type gun burner comprising an oil proportional valve for controlling the combustion amount by quantity control and a control means for controlling the oil proportional valve to start combustion at a heat demand amount, the degree of cooling of the burner before starting combustion A cold state discriminating unit for judging the output, an output correcting unit for correcting the output of the oil proportional valve corresponding to the heat demand amount in the oil amount decreasing direction according to the state discriminated by the cold state discriminating unit, and the cold state discriminating unit When it is determined that the burner is in a cold state, the oil proportional valve is controlled to the output corrected by the output correction unit, combustion is started, and the cold soot is gradually increased to the output corresponding to the heat demand. Provided the over preparative controller, the output correction unit, if the heat demand is less than the predetermined amount, the return nozzle type Ganbana characterized in that so as not to perform output correction of oil proportional valve.
JP2003136708A 2003-05-15 2003-05-15 Return nozzle type gun burner Expired - Fee Related JP4034229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136708A JP4034229B2 (en) 2003-05-15 2003-05-15 Return nozzle type gun burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136708A JP4034229B2 (en) 2003-05-15 2003-05-15 Return nozzle type gun burner

Publications (2)

Publication Number Publication Date
JP2004340465A JP2004340465A (en) 2004-12-02
JP4034229B2 true JP4034229B2 (en) 2008-01-16

Family

ID=33526559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136708A Expired - Fee Related JP4034229B2 (en) 2003-05-15 2003-05-15 Return nozzle type gun burner

Country Status (1)

Country Link
JP (1) JP4034229B2 (en)

Also Published As

Publication number Publication date
JP2004340465A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US8662022B2 (en) Water heater
JP4034229B2 (en) Return nozzle type gun burner
KR20030051157A (en) Hot water supply apparatus
JPH0532652B2 (en)
JP5200748B2 (en) Water heater
JP2019199987A (en) Composite heat source machine
JP2820583B2 (en) Water heater temperature control device
JP3702759B2 (en) Heat source machine
JP3854700B2 (en) Hot water control device for hot water heater of bypass mixing system
JP3157639B2 (en) Water heater
JP3869637B2 (en) Water heater combustion control device
JP3884873B2 (en) Incomplete combustion detector for combustion equipment
KR920010739B1 (en) Temperature control apparatus
KR930009748B1 (en) Combustion control device for hot-water supplier
JP3769660B2 (en) Water heater
JP4054988B2 (en) Hot water heater
JPH06159658A (en) Hot water feeding device
JP2004028425A (en) Combustion control apparatus
JPH0713546B2 (en) Estimated water temperature detector and temperature controller for water heater
JPH02223763A (en) Temperature control device for hot water supply equipment
JPH1183008A (en) Hot water heater
JP3798142B2 (en) Combustion equipment
JP2002071220A (en) Control device for hot water storage type heat source machine
KR100232565B1 (en) Water supplier
JPH11344219A (en) Liquid fuel combustion equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4034229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees