JP4033946B2 - Flocculant and flocculation method - Google Patents
Flocculant and flocculation method Download PDFInfo
- Publication number
- JP4033946B2 JP4033946B2 JP20985397A JP20985397A JP4033946B2 JP 4033946 B2 JP4033946 B2 JP 4033946B2 JP 20985397 A JP20985397 A JP 20985397A JP 20985397 A JP20985397 A JP 20985397A JP 4033946 B2 JP4033946 B2 JP 4033946B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- oil
- group
- flocculant
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Activated Sludge Processes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は凝集剤に関し、特に水中油滴型または油中水滴型エマルジョン中の油成分および水成分を分離・凝集させる凝集剤および凝集方法に関する。
【0002】
【従来の技術】
製鉄業、機械加工業等において、水系潤滑油が多用されている。この水系潤滑剤は、不燃、安価、無毒、安全であり、また石油系潤滑剤に比較して冷却性、粘度変化、圧縮性が優れている。このため、切削油、研削油等に水中油滴型または油中水滴型エマルジョンとして多用されている。使用量が増大するとともに、このような水系潤滑油または水系潤滑油を含む液の廃液処理が重要となってきている。
従来、このような廃液処理方法としては、一次処理として凝集剤による分離・凝集が行われている。たとえば、硫酸バンドと称される硫酸アルミニウムやパックと称されるポリ塩化アルミニウムなどの無機系凝集剤、あるいはポリアクリルアミド系高分子などの有機系凝集剤を廃潤滑油等に添加してエマルジョン状態を破壊して油成分と水成分とに分離している。
また、分離された水成分については、さらに活性汚泥法処理などの二次処理が行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、一次処理剤として無機系凝集剤を添加する場合、一般に水系潤滑剤のpHを低下させる場合が多く、苛性ソーダなどのアルカリによる中和が必要となり、処理工程が複雑になるとともに処理薬剤コストが上昇するという問題がある。
【0004】
また、無機系凝集剤は、多量のコロイド粒子を発生させて吸着沈澱させるため添加量が多くなり、その結果、多量の汚泥が発生し、汚泥処分費用が上昇するという問題がある。
【0005】
さらに、活性汚泥法処理などの二次処理において、無機系凝集剤が悪影響を及ぼすという問題がある。たとえば、活性汚泥法処理において、残存する無機系凝集剤が活性汚泥に付着すると、活性汚泥の酸素消費速度を低下させたり、汚泥の一部解体を引き起こしたりして、活性汚泥の処理能力を低下させる。
【0006】
一方、ポリアクリルアミド系高分子などの有機系凝集剤は、無機系凝集剤に比較すると、その使用量は 1/2〜1/200 と少なくて済むが、活性汚泥法処理において、活性汚泥の処理能力を低下させるという問題がある。
【0007】
本発明は、このような問題に対処するためになされたもので、水中油滴型または油中水滴型エマルジョン中の油成分および水成分を分離させる場合に、汚泥を発生させることなく、また活性汚泥処理などの二次処理において、活性汚泥の処理能力を低下させることのない凝集剤およびその凝集剤を用いた凝集方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の凝集剤は、一般式R1−Yで表され、水中油滴型または油中水滴型エマルジョンの油成分および水成分を分離・凝集させ、分離された水成分について活性汚泥法処理を行なうために用いられる水溶性の凝集剤であって、該R1は四級化窒素を有する陽イオン性基を側鎖に有する単量体を含む重合体残基であり、Yは−OSO3M基で、該Mが水素または金属元素であることを特徴とする。ここで、油成分および水成分とは、エマルジョンを構成している油、水、界面活性剤、安定剤、汚濁物質等の中で、油層に存在している成分を油成分と、水層に存在している成分を水成分という。また、陽イオン性基を側鎖に有する単量体を含む重合体残基とは、Yと結合している陽イオン性基を含む重合体の残りの部分をいう。
【0010】
さらに、一般式R1 −Yが、 0.001〜 0.6 dl/g の極限粘度を有する有機重合体であることを特徴とする。
ここで極限粘度は、試料を濃度 2mol/l KBr 水溶液に溶解して温度 25 ℃で測定した値をいう。
【0012】
本発明の凝集方法は、水中油滴型または油中水滴型エマルジョンの油成分および水成分を分離・凝集させ、分離された水成分について活性汚泥法処理を行なうために用いられる水溶性の凝集剤を用いる凝集方法であって、水中油滴型または油中水滴型エマルジョンに上述のいずれか1つの凝集剤を添加することを特徴とする。
【0013】
本発明に係る凝集剤は、陽イオン性基と−OSO3 M基とを含むので、コロイド粒子のミクロフロックに対して架橋吸着を起こしやすくなり、エマルジョン中の油成分および水成分を分離して凝集させやすくする。また、 0.001〜 0.6 dl/g の極限粘度とすることにより、活性汚泥中の微生物への影響を少なくすることができる。
また、このような凝集剤を用いてエマルジョン成分を分離するので、分離後の汚泥発生や、その後の活性汚泥処理が容易となる。
【0014】
【発明の実施の形態】
本発明に係るR1 は陽イオン性基を含む化合物残基であり、陽イオン性基としては、陽イオン基、電子密度の低い官能基などを挙げることができる。
陽イオン性基としては、四級化窒素を有する基であることが好ましく、たとえば四級化アンモニウム基、四級化ピリジン基、四級化アミノ基などを挙げることができる。
【0015】
R1 の一例として、つぎの化1で表される有機基を挙げることができる。
【化1】
【0016】
R3 は水素または低級アルキル基を表すが、より親水性が得られる水素が本発明に好適である。また、低級アルキル基とは、炭素数 1〜4 の直鎖または分岐アルキル基をいう。
R4 は陽イオン性基を示し、たとえば四級化アンモニウム塩や三級アミン等を含む基であることが好ましい。これらを形成する基として−CONH2 基、またはその誘導体基を挙げることができる。また、−COOH基の誘導体基であってもよい。これら誘導体基はアミド基やカルボキシル基の水素原子を置換した基をいい、たとえば以下に示す官能基を挙げることができる。
【0017】
−CONHCH2 OH、−CON(CH3 )2 、−CONHCH2 OCH2 CH(CH3 )2 、−CONHCH2 CH(CH3 )2 CH2 SO3 H、−CONHCH2 C(CH3 )2 CH2 SO3 H、−CONHC(CH3 )2 CH2 SO3 H、−COOCH2 CH2 N(CH3 )2 、−COOC2 H4 N+ (CH3 )3 Cl- 。
【0018】
またR1 は、つぎの化2で表される少なくとも一つの単位を高分子鎖の中に含む共重合体であってもよい。
【化2】
R5 は化1と同様の水素または低級アルキル基を表し、R6 はカルボキシル基、アルコキシル基、アミノ基、スルホ基、またはこれら官能基を末端に有する基、ならびにこれらの基の誘導体を表す。
R6 を有する単位は、たとえばビニルモノマーを共重合させることにより得られ、そのようなビニルモノマーの例としては、アクリル酸、メタクリル酸、n-ブチルアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、メタクリル酸ジメチルアミノエチルエステル、アクリル酸ジメチルアミノエチルエステル、メタクリル酸ジメチルアミノエチルエステル 4級化物、アクリル酸ジメチルアミノエチルエステル 4級化物等のアクリル酸類、スチレンスルホン酸、エチレンスルホン酸、2-アクリルアミド-2- メチルプロパンスルホン酸等のスルホン酸類等を挙げることができる。
これらの中で、コスト的に安価で工業的に利用しやすい、アクリル酸エステルやメタクリル酸エステル成分が共重合成分として好ましい。
【0019】
Yは−OSO3 Mの一般式を有する基であり、Mは水素または金属元素を表す。金属元素としてはアルカリ金属が好ましく、たとえばNa、K、Liを例示することができる。好ましいMとしては、生成した塩の水溶解性が高く、工業的に安価である Na 、K を挙げることができる。このような−OSO3 M基を有することにより、エマルジョン中の油成分および水成分を容易に分離し、凝集させることができるとともに、二次処理において活性汚泥などに悪影響を及ぼさない。
【0020】
一般式R1 −Yで表される凝集剤は、高分子量体であることが好ましく、その重合度としては、極限粘度が 0.001〜 0.6 dl/g であることが好ましい。極限粘度がこの範囲となる重合度を選択することにより、−OSO3 M基と同様の効果を発揮できる。
【0021】
一般式R1 −Yで表される凝集剤は、水およびメタノール、エタノールなどの親水性溶媒中で、たとえば四級化窒素を有するモノマー単独、あるいはアクリルアミドモノマーやアクリル酸エステルモノマー等をペルオキソ二硫酸カリ( K2 S2 O8 )などのペルオキソ二硫酸塩が多量に存在する状態でレドックス重合やラジカル重合などの方法により共重合させることにより、分子末端に−OSO3 M基を導入することができる。
このように、本発明は−OSO3 M基を末端基に必ず付加するように、ペルオキソ二硫酸カリ( K2 S2 O8 )などのペルオキソ二硫酸塩を反応開始剤濃度よりも多量に用いる。具体的には、全モノマー量に対して 0.3〜1 重量%程度配合することが好ましい。
【0022】
なお、−OSO3 M基は、上述のように分子鎖末端のみでなく、分子鎖内に側鎖として含まれていてもよい。分子鎖内に側鎖として−OSO3 M基を導入する場合、R1 として二重結合を主鎖に有する化合物を用いて、その部分にペルオキソ二硫酸カリ( K2 S2 O8 )などのペルオキソ二硫酸塩や硫酸を反応させることにより得られる。この場合、二重結合に対して約等モル量のペルオキソ二硫酸カリ( K2 S2 O8 )などのペルオキソ二硫酸塩を反応させることが好ましい。
【0023】
本発明の他の凝集剤は、一般式R2 −Yで表される化合物と、少なくとも陽イオン性基を含む化合物との混合物である。
一般式R2 は、少なくとも分子内に不飽和結合を有する炭化水素およびその誘導体より反応に関与する不飽和結合を除いた部分である。不飽和結合部分と、ペルオキソ二硫酸カリ( K2 S2 O8 )などのペルオキソ二硫酸塩や硫酸とが反応することにより、分子内にYとなる−OSO3 M基を導入することができる。
R2 の出発原料としては、不飽和脂肪酸類や不飽和基を有する脂肪族炭化水素類を挙げることができる。不飽和脂肪酸類としては、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、シスバクセン酸、バクセン酸、エルカ酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエ酸、いわし油、ドコサヘキサエン酸などを挙げることができる。また、不飽和基を有する脂肪族炭化水素類としては、たとえば不飽和脂肪酸類に対応する不飽和高級アルコール類を挙げることができる。
【0024】
Yは−OSO3 Mの一般式を有する基である。このYは、R2 の不飽和基と、硫酸ないしはペルオキソ二硫酸カリ( K2 S2 O8 )などのペルオキソ二硫酸塩とを反応させることにより、分子内に−OSO3 M基などを導入することができる。
具体的には、ペルオキソ二硫酸カリ( K2 S2 O8 )などのペルオキソ二硫酸塩を、不飽和基を有するモノマー 1モルに対してモル数で0.01〜1.5 モル添加して 50 〜 80 ℃に温度を上昇させて 2〜8 時間反応させることにより得られる。
【0025】
R2 −Yで表される化合物と混合される少なくとも陽イオン性基を含む化合物としては、陽イオン性基を主鎖あるいは側鎖に含む重合性化合物を挙げることができる。陽イオン性基としては、四級化窒素を有する基が好ましく、たとえばジメチルアミンとエピクロルヒドリンとの重合体や、四級化窒素を側鎖に有する重合体を挙げることができる。
このような重合体の分子量は、二次処理において活性汚泥の活性を阻害することのない分子量であることが好ましい。分子量が小さいと陽イオン性基の殺菌性が発現され、活性汚泥も破壊される場合がある。具体的には陽イオン性基を含む化合物の極限粘度は、0.001 〜0.6dl/g であることが好ましい。
【0026】
このようにして得られた本発明の凝集剤はそれぞれ合成反応時の溶媒を除去して固体として用いることも、また、水または親水性溶液として用いることもできる。
【0027】
本発明の凝集剤の添加量は、エマルジョンの状態によっても異なるが、エマルジョン中の懸濁物質および溶解汚泥物質の合計量の 0.01 〜 10 重量%、好ましくは 0.1〜5 重量%、より好ましくは 0.1〜3 重量%である。添加量がこの範囲であると、油成分および水成分を容易に分離しやすくなり、また、分離・凝集後の汚泥発生量を少量に抑えることができる。
【0028】
添加方法としては、特に制限はない。たとえば凝集反応槽の攪拌が強い場合には、粉末状や高濃度の原液状態で、攪拌が弱い場合には、希釈した溶液として使用することができる。希釈溶媒としては、水や親水性溶媒、水と親水性溶媒との混合溶媒を挙げることができる。
【0029】
本発明の凝集剤は水中油滴型または油中水滴型エマルジョンに適用できる。該エマルジョンは、使用前の原液であっても、使用後の廃液、たとえば溶解汚泥物質を含む排水であってもよい。具体的には、一般食品排水、塗装排水、機械油排水、機械排水、個別食品排水、クーラント排水、着色排水、含油排水、染色排水、製紙排水、ラテックス排水、含界面活性剤排水等を挙げることができる。
【0030】
【実施例】
実施例1
攪拌器、還流冷却器、温度計等を備えた密閉型反応容器に、ペルオキソ二硫酸カリ( K2 S2 O8 ) 0.02 モルを含む水溶液 5リットルに、アクリル酸ジメチルアミノエチルメチルクロライドモノマー[(CH2 =CHCOOC2 H4 N+ (CH3 )3 Cl- ] 5モル、アクリル酸メチルモノマー 1モルを順に仕込み反応容器内を窒素雰囲気に保ちながら、 50 ℃で 8時間反応させた。
得られた反応生成物を多量のアセトン中に滴下し、白色粉末状の重合体を得た。この重合体を、濃度 2mol/l KBr 水溶液に溶解して温度 25 ℃で極限粘度を測定した結果、極限粘度は 0.40dl/g であった。この重合体は分子末端に−OSO3 K基を含み、分子鎖内に四級化窒素の陽イオン性基を含む重合体である。
【0031】
実施例2
攪拌器、還流冷却器、温度計等を備えた密閉型反応容器に、ペルオキソ二硫酸カリ( K2 S2 O8 ) 0.02 モルを含む水溶液 5リットルに、アクリル酸ジメチルアミノエチルメチルクロライドモノマー[(CH2 =CHCOOC2 H4 N+ (CH3 )3 Cl- ] 5モルを順に仕込み反応容器内を窒素雰囲気に保ちながら、 50 ℃で 8時間反応させた。
得られた反応生成物を多量のアセトン中に滴下し、白色粉末状の重合体を得た。この重合体を、濃度 2mol/l KBr 水溶液に溶解して温度 25 ℃で極限粘度を測定した結果、極限粘度は 0.30dl/g であった。この重合体は分子末端に−OSO3 K基を含み、分子鎖内に四級化窒素の陽イオン性基を含む重合体である。
【0032】
実施例3
アクリル酸ジメチルアミノエチルメチルクロライドモノマー[(CH2 =CHCOOC2 H4 N+ (CH3 )3 Cl- ]に代えてメタクリル酸ジメチルアミノエチルメチルクロライドモノマー[(CH2 =C(CH3 )COOC2 H4 N+ (CH3 )3 Cl- ]を使用する以外は、実施例2と同一の条件方法で凝集剤を得た。
【0033】
実施例4
攪拌器、還流冷却器、温度計等を備えた密閉型反応容器に、ペルオキソ二硫酸カリ( K2 S2 O8 ) 0.02 モルを含む水溶液 5リットルに、アクリル酸ジメチルアミノエチルメチルクロライドモノマー[(CH2 =CHCOOC2 H4 N+ (CH3 )3 Cl- ] 3モル、メタクリル酸ジメチルアミノエチルメチルクロライドモノマー[(CH2 =C(CH3 )COOC2 H4 N+ (CH3 )3 Cl- ] 2モルを順に仕込み反応容器内を窒素雰囲気に保ちながら、 50 ℃で 8時間反応させた。
得られた反応生成物を多量のアセトン中に滴下し、白色粉末状の重合体を得た。この重合体を、濃度 2mol/l KBr 水溶液に溶解して温度 25 ℃で極限粘度を測定した結果、極限粘度は 0.35dl/g であった。この重合体は分子末端に−OSO3 K基を含み、分子鎖内に四級化窒素の陽イオン性基を含む重合体である。
【0034】
実施例5
攪拌器、還流冷却器、ジャケット型冷却器、温度計等を備えた密閉型反応容器に、オレイン酸 282g ( 1モル)およびベンゼンスルホン酸ナトリウム 200g を仕込み、反応容器内を窒素雰囲気に保ちながら、ペルオキソ二硫酸カリ( K2 S2 O8 ) 270g ( 1モル)を仕込み、 15 ℃で 5時間反応させた後、水酸化カリウムで中和して、溶液1を得た。
一方、ジメチルアミンの 50 重量%水溶液 100g を攪拌器、還流冷却器、温度計等を備えた密閉型反応容器に仕込み、反応容器内を窒素雰囲気に保ちながら、102gのエピクロルヒドリンを 30 〜80℃に維持しながら徐々に添加して、溶液2を得た。
溶液1と溶液2とを重量比で 1:1 の割合で混合して凝集剤を得た。
【0035】
実施例6
クーラント更新液含有排水 5 m3 (油分 100kg含有)に実施例1で得られた白色粉末状の重合体の 30 重量%水溶液 8kgを添加して 10 分間攪拌した後、 24 時間静置した。実施例1で得られた凝集剤の配合割合は、油分の 2.4重量%である。
静置により油分が上層に分離した。油分を分離し、水層のノルマルヘキサン抽出分を測定したところ、痕跡量であった。
また、廃油の発生量は 250リットルであった。一方、比較例として硫酸バンドを使用した場合、処理に必要な量は 100kgであり、廃油含有スラッジである浮上スカムが 4 m3 発生し、脱水しても 950kgの脱水ケーキが発生した。
【0036】
つぎに、油分を分離した水層を生活排水と混合して活性汚泥槽に導き、以下の条件で二次処理を行った。なお、混合液の BODが 680ppm 、 CODが 360ppm 、SS値が 120ppm であった。
油分を分離した一次処理水 1 m3 /時間
ばっ気槽容量 350 m3
返送汚泥量 5 m3 /時間
活性汚泥濃度(廃水に対する乾燥固形分を意味する) 5000 ppm
ばっ気量 15 m3 /分
活性汚泥処理時間 36 時間
処理後の活性汚泥に変化は見られず、継続して活性汚泥を使用することができた。また、処理水の BODが 9ppm 、 CODが 14ppm 、SS値が 5ppm となった。
【0037】
実施例7
実施例1で得られた凝集剤に代えて、実施例2で得られた凝集剤を用いる以外は、実施例6と同様にしてクーラント更新液含有排水(油分 100kg含有)の処理を行った。水層のノルマルヘキサン抽出分は、いずれも痕跡量であり、活性汚泥処理後の BOD、 COD、SS値は、いずれも 15ppm以下であった。
【0038】
実施例8
実施例1で得られた凝集剤に代えて、実施例3で得られた凝集剤を用いる以外は、実施例6と同様にしてクーラント更新液含有排水(油分 100kg含有)の処理を行った。水層のノルマルヘキサン抽出分は、いずれも痕跡量であり、活性汚泥処理後の BOD、 COD、SS値は、いずれも 15ppm以下であった。
【0039】
実施例9
実施例1で得られた凝集剤に代えて、実施例4で得られた凝集剤を用いる以外は、実施例6と同様にしてクーラント更新液含有排水(油分 100kg含有)の処理を行った。水層のノルマルヘキサン抽出分は、いずれも痕跡量であり、活性汚泥処理後の BOD、 COD、SS値は、いずれも 15ppm以下であった。
【0040】
【発明の効果】
本発明の凝集剤は、一般式R1 −Yで表され、R1 が陽イオン性基を含む化合物残基であり、Yが−OSO3 M基で、該Mが水素または金属元素であるので、コロイド粒子のミクロフロックに対して架橋吸着を起こしやすくなり、多量の汚泥を発生することなくエマルジョン中の油成分および水成分を分離・凝集能力に優れている。
【0041】
また、陽イオン性基が四級化窒素を有する基なので、少量の添加でコロイド粒子のミクロフロックに対して架橋吸着を起こしやすくなる。
【0042】
さらに、一般式R1 −Yが、 0.001〜 0.6 dl/g の極限粘度を有する有機重合体であるので、上述の効果に加えて、二次処理における活性汚泥中の微生物への影響を少なくすることができる。
【0044】
本発明の凝集方法は、上述の凝集剤を用いるので、エマルジョン中の油成分および水成分を容易に分離・凝集させることができ、また、その後の活性汚泥法処理が極めて容易となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aggregating agent, and more particularly to an aggregating agent and an aggregating method for separating and aggregating an oil component and a water component in an oil-in-water or water-in-oil emulsion.
[0002]
[Prior art]
Water-based lubricants are frequently used in the steel industry, machining industry, and the like. This water-based lubricant is nonflammable, inexpensive, non-toxic and safe, and has excellent cooling properties, viscosity changes, and compressibility compared to petroleum-based lubricants. For this reason, it is frequently used as an oil-in-water or water-in-oil emulsion for cutting oil, grinding oil, and the like. As the amount of use increases, waste water treatment of such a water-based lubricating oil or a liquid containing a water-based lubricating oil has become important.
Conventionally, as such a waste liquid treatment method, separation / aggregation with a flocculant is performed as a primary treatment. For example, an inorganic flocculant such as aluminum sulfate called a sulfuric acid band or polyaluminum chloride called a pack, or an organic flocculant such as a polyacrylamide polymer is added to waste lubricating oil to make the emulsion state. It is broken and separated into an oil component and a water component.
The separated water component is further subjected to secondary treatment such as activated sludge treatment.
[0003]
[Problems to be solved by the invention]
However, when an inorganic flocculant is added as a primary treatment agent, generally the pH of the aqueous lubricant is often lowered, and neutralization with an alkali such as caustic soda is required, which complicates the treatment process and increases the cost of the treatment chemical. There is a problem of rising.
[0004]
In addition, since the inorganic coagulant generates a large amount of colloidal particles and is adsorbed and precipitated, the amount of the inorganic flocculant increases, resulting in a problem that a large amount of sludge is generated and the sludge disposal cost increases.
[0005]
Furthermore, there exists a problem that an inorganic type coagulant has a bad influence in secondary treatments, such as an activated sludge process. For example, if the remaining inorganic flocculant adheres to the activated sludge in the activated sludge process, the oxygen consumption rate of the activated sludge is reduced or the sludge is partially disassembled to reduce the activated sludge treatment capacity. Let
[0006]
On the other hand, the amount of organic flocculants such as polyacrylamide polymers used is less than 1/2 to 1/200 compared to inorganic flocculants. There is a problem of reducing ability.
[0007]
The present invention has been made in order to cope with such a problem. In the case of separating an oil component and a water component in an oil-in-water type emulsion or a water-in-oil type emulsion, the present invention is effective without generating sludge. An object of the present invention is to provide a flocculant and a flocculant using the flocculant that do not reduce the processing capacity of activated sludge in secondary treatment such as sludge treatment.
[0008]
[Means for Solving the Problems]
The flocculant of the present invention is represented by the general formula R 1 -Y, and separates and agglomerates the oil component and the water component of the oil-in-water type or water-in-oil emulsion, and the separated water component is subjected to the activated sludge process. A water-soluble flocculant used for carrying out the process, wherein R 1 is a polymer residue containing a monomer having a cationic group having a quaternized nitrogen in the side chain, and Y is —OSO 3 The M group is characterized in that M is hydrogen or a metal element. Here, the oil component and the water component are the oil, water, surfactant, stabilizer, pollutant, etc. that make up the emulsion. An existing component is called a water component. The polymer residue containing a monomer having a cationic group in the side chain refers to the remaining part of the polymer containing a cationic group bonded to Y.
[0010]
Furthermore, the general formula R 1 —Y is an organic polymer having an intrinsic viscosity of 0.001 to 0.6 dl / g.
Here, the intrinsic viscosity is a value measured at a temperature of 25 ° C. by dissolving the sample in a 2 mol / l KBr aqueous solution.
[0012]
The flocculation method of the present invention is a water- soluble flocculating agent used for separating and flocculating an oil component and a water component of an oil-in-water or water-in-oil emulsion, and subjecting the separated water component to an activated sludge process. In which an aggregating agent as described above is added to an oil-in-water emulsion or a water-in-oil emulsion.
[0013]
Since the flocculant according to the present invention contains a cationic group and -OSO 3 M group, it tends to cause cross-linking adsorption to the micro flocs of the colloidal particles, and separates the oil component and the water component in the emulsion. Make it easy to agglomerate. Moreover, by setting it as the intrinsic viscosity of 0.001-0.6 dl / g, the influence on the microorganisms in activated sludge can be decreased.
Moreover, since an emulsion component is separated using such a flocculant, generation of sludge after separation and subsequent activated sludge treatment are facilitated.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
R 1 according to the present invention is a compound residue containing a cationic group, and examples of the cationic group include a cationic group and a functional group having a low electron density.
The cationic group is preferably a group having quaternized nitrogen, and examples thereof include a quaternized ammonium group, a quaternized pyridine group, and a quaternized amino group.
[0015]
An example of R 1 is an organic group represented by the following chemical formula 1.
[Chemical 1]
[0016]
R 3 represents hydrogen or a lower alkyl group, and hydrogen that can provide more hydrophilic property is suitable for the present invention. The lower alkyl group means a linear or branched alkyl group having 1 to 4 carbon atoms.
R 4 represents a cationic group, and is preferably a group containing, for example, a quaternized ammonium salt or a tertiary amine. Examples of the group that forms these include —CONH 2 group or a derivative group thereof. Further, it may be a derivative group of -COOH group. These derivative groups are groups in which a hydrogen atom of an amide group or a carboxyl group is substituted, and examples thereof include the following functional groups.
[0017]
-CONHCH 2 OH, -CON (CH 3 ) 2, -CONHCH 2 OCH 2 CH (CH 3) 2, -CONHCH 2 CH (CH 3) 2 CH 2 SO 3 H, -CONHCH 2 C (CH 3) 2 CH 2 SO 3 H, —CONHC (CH 3 ) 2 CH 2 SO 3 H, —COOCH 2 CH 2 N (CH 3 ) 2 , —COOC 2 H 4 N + (CH 3 ) 3 Cl − .
[0018]
R 1 may be a copolymer containing at least one unit represented by the following chemical formula 2 in the polymer chain.
[Chemical 2]
R 5 represents the same hydrogen or lower alkyl group as in Chemical Formula 1, and R 6 represents a carboxyl group, an alkoxyl group, an amino group, a sulfo group, a group having these functional groups at its terminals, or a derivative of these groups.
The unit having R 6 can be obtained, for example, by copolymerizing a vinyl monomer. Examples of such vinyl monomers include acrylic acid, methacrylic acid, n-butyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl. Acrylic acid such as acrylate, methacrylic acid dimethylaminoethyl ester, acrylic acid dimethylaminoethyl ester, methacrylic acid dimethylaminoethyl ester quaternized product, acrylic acid dimethylaminoethyl ester quaternized product, styrene sulfonic acid, ethylene sulfonic acid, 2- Examples thereof include sulfonic acids such as acrylamide-2-methylpropanesulfonic acid.
Among these, an acrylic acid ester or a methacrylic acid ester component that is inexpensive and easily industrially used is preferable as the copolymer component.
[0019]
Y is a group having a general formula of -OSO 3 M, and M represents hydrogen or a metal element. The metal element is preferably an alkali metal, and examples thereof include Na, K, and Li. Preferable examples of M include Na 2 and K 3, in which the generated salt has high water solubility and is industrially inexpensive. By having such —OSO 3 M group, the oil component and water component in the emulsion can be easily separated and aggregated, and the activated sludge and the like are not adversely affected in the secondary treatment.
[0020]
The flocculant represented by the general formula R 1 -Y is preferably a high molecular weight substance, and the degree of polymerization is preferably an intrinsic viscosity of 0.001 to 0.6 dl / g. By selecting the degree of polymerization in which the intrinsic viscosity falls within this range, the same effect as that of the -OSO 3 M group can be exhibited.
[0021]
The flocculant represented by the general formula R 1 -Y is a peroxodisulfuric acid compound such as a monomer having quaternized nitrogen alone or an acrylamide monomer or an acrylate monomer in water and a hydrophilic solvent such as methanol and ethanol. It is possible to introduce an -OSO 3 M group at the molecular end by copolymerization by a method such as redox polymerization or radical polymerization in the presence of a large amount of peroxodisulfate such as potassium (K 2 S 2 O 8 ). it can.
Thus, in the present invention, a peroxodisulfate such as potassium peroxodisulfate (K 2 S 2 O 8 ) is used in a larger amount than the initiator concentration so that the —OSO 3 M group is always added to the end group. . Specifically, it is preferable to add about 0.3 to 1% by weight based on the total amount of monomers.
[0022]
The -OSO 3 M group may be included as a side chain in the molecular chain as well as the molecular chain end as described above. When -OSO 3 M group is introduced as a side chain in a molecular chain, a compound having a double bond as a main chain as R 1 is used, and potassium peroxodisulfate (K 2 S 2 O 8 ) or the like is used in that portion. It can be obtained by reacting peroxodisulfate or sulfuric acid. In this case, it is preferable to react a peroxodisulfate such as potassium peroxodisulfate (K 2 S 2 O 8 ) in an equimolar amount with respect to the double bond.
[0023]
Another flocculant of the present invention is a mixture of a compound represented by the general formula R 2 —Y and a compound containing at least a cationic group.
The general formula R 2 is a portion obtained by removing unsaturated bonds involved in the reaction from hydrocarbons having at least an unsaturated bond in the molecule and derivatives thereof. By reacting the unsaturated bond portion with peroxodisulfate such as potassium peroxodisulfate (K 2 S 2 O 8 ) or sulfuric acid, an —OSO 3 M group that becomes Y can be introduced into the molecule. .
Examples of the starting material for R 2 include unsaturated fatty acids and aliphatic hydrocarbons having an unsaturated group. Examples of unsaturated fatty acids include myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, cisbaccenoic acid, vaccenic acid, erucic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid, sardine oil, docosahexaenoic acid, etc. Can do. Examples of the aliphatic hydrocarbon having an unsaturated group include unsaturated higher alcohols corresponding to unsaturated fatty acids.
[0024]
Y is a group having the general formula -OSO 3 M. This Y introduces an -OSO 3 M group into the molecule by reacting the unsaturated group of R 2 with a peroxodisulfate such as sulfuric acid or potassium peroxodisulfate (K 2 S 2 O 8 ). can do.
Specifically, peroxodisulfate such as potassium peroxodisulfate (K 2 S 2 O 8 ) is added in an amount of 0.01 to 1.5 moles per mole of the monomer having an unsaturated group, and 50 to 80 ° C. It is obtained by reacting for 2 to 8 hours at an elevated temperature.
[0025]
Examples of the compound containing at least a cationic group mixed with the compound represented by R 2 —Y include polymerizable compounds containing a cationic group in the main chain or side chain. The cationic group is preferably a group having quaternized nitrogen, and examples thereof include a polymer of dimethylamine and epichlorohydrin and a polymer having quaternized nitrogen in the side chain.
The molecular weight of such a polymer is preferably a molecular weight that does not inhibit the activity of the activated sludge in the secondary treatment. If the molecular weight is small, the bactericidal property of the cationic group is expressed, and the activated sludge may be destroyed. Specifically, the intrinsic viscosity of the compound containing a cationic group is preferably 0.001 to 0.6 dl / g.
[0026]
The flocculant of the present invention thus obtained can be used as a solid after removing the solvent during the synthesis reaction, or can be used as water or a hydrophilic solution.
[0027]
The addition amount of the flocculant of the present invention varies depending on the state of the emulsion, but is 0.01 to 10% by weight, preferably 0.1 to 5% by weight, more preferably 0.1% of the total amount of suspended substances and dissolved sludge substances in the emulsion. ~ 3% by weight. When the addition amount is within this range, the oil component and the water component can be easily separated, and the amount of sludge generated after separation / aggregation can be suppressed to a small amount.
[0028]
There is no restriction | limiting in particular as an addition method. For example, when agitation in the agglomeration reaction tank is strong, it can be used as a diluted solution in a powdered or high-concentration stock solution state and when stirring is weak. Examples of the dilution solvent include water, a hydrophilic solvent, and a mixed solvent of water and a hydrophilic solvent.
[0029]
The flocculant of the present invention can be applied to oil-in-water or water-in-oil emulsions. The emulsion may be a stock solution before use or a waste solution after use, for example, waste water containing dissolved sludge substances. Specific examples include general food wastewater, paint wastewater, machine oil wastewater, machine wastewater, individual food wastewater, coolant wastewater, colored wastewater, oil-containing wastewater, dyeing wastewater, papermaking wastewater, latex wastewater, and surfactant-containing wastewater. Can do.
[0030]
【Example】
Example 1
In a closed reaction vessel equipped with a stirrer, reflux condenser, thermometer, etc., in a 5 liter aqueous solution containing 0.02 mol of potassium peroxodisulfate (K 2 S 2 O 8 ), dimethylaminoethyl methyl chloride monomer [( CH 2 ═CHCOOC 2 H 4 N + (CH 3 ) 3 Cl − ] 5 mol and 1 mol of methyl acrylate monomer were charged in this order, and the reaction was carried out at 50 ° C. for 8 hours while keeping the inside of the reaction vessel in a nitrogen atmosphere.
The obtained reaction product was dropped into a large amount of acetone to obtain a white powdery polymer. This polymer was dissolved in a 2 mol / l KBr aqueous solution and the intrinsic viscosity was measured at a temperature of 25 ° C. As a result, the intrinsic viscosity was 0.40 dl / g. This polymer contains -OSO 3 K group at the molecular terminal is a polymer containing a cationic group quaternized nitrogen in the molecule chain.
[0031]
Example 2
In a closed reaction vessel equipped with a stirrer, reflux condenser, thermometer, etc., in a 5 liter aqueous solution containing 0.02 mol of potassium peroxodisulfate (K 2 S 2 O 8 ), dimethylaminoethyl methyl chloride monomer [( CH 2 ═CHCOOC 2 H 4 N + (CH 3 ) 3 Cl − ] 5 mol was charged in order, and the reaction vessel was allowed to react at 50 ° C. for 8 hours while maintaining a nitrogen atmosphere.
The obtained reaction product was dropped into a large amount of acetone to obtain a white powdery polymer. This polymer was dissolved in a 2 mol / l KBr aqueous solution and the intrinsic viscosity was measured at a temperature of 25 ° C. As a result, the intrinsic viscosity was 0.30 dl / g. This polymer contains -OSO 3 K group at the molecular terminal is a polymer containing a cationic group quaternized nitrogen in the molecule chain.
[0032]
Example 3
Dimethylaminoethyl methyl chloride monomer [(CH 2 ═C (CH 3 ) COOC 2 instead of dimethylaminoethyl methyl chloride monomer [(CH 2 ═CHCOOC 2 H 4 N + (CH 3 ) 3 Cl − ]) A flocculant was obtained by the same condition method as in Example 2 except that H 4 N + (CH 3 ) 3 Cl − ] was used.
[0033]
Example 4
In a closed reaction vessel equipped with a stirrer, reflux condenser, thermometer, etc., in a 5 liter aqueous solution containing 0.02 mol of potassium peroxodisulfate (K 2 S 2 O 8 ), dimethylaminoethyl methyl chloride monomer [( CH 2 ═CHCOOC 2 H 4 N + (CH 3 ) 3 Cl − ] 3 mol, dimethylaminoethyl methyl chloride monomer [(CH 2 ═C (CH 3 ) COOC 2 H 4 N + (CH 3 ) 3 Cl - ] Two moles were charged in order, and the reaction was carried out at 50 ° C. for 8 hours while maintaining a nitrogen atmosphere in the reaction vessel.
The obtained reaction product was dropped into a large amount of acetone to obtain a white powdery polymer. This polymer was dissolved in a 2 mol / l KBr aqueous solution and the intrinsic viscosity was measured at a temperature of 25 ° C. As a result, the intrinsic viscosity was 0.35 dl / g. This polymer contains -OSO 3 K group at the molecular terminal is a polymer containing a cationic group quaternized nitrogen in the molecule chain.
[0034]
Example 5
A sealed reaction vessel equipped with a stirrer, reflux condenser, jacket-type cooler, thermometer, etc. was charged with 282 g (1 mol) of oleic acid and 200 g of sodium benzenesulfonate, and while maintaining a nitrogen atmosphere in the reaction vessel, 270 g (1 mol) of potassium peroxodisulfate (K 2 S 2 O 8 ) was charged, reacted at 15 ° C. for 5 hours, and then neutralized with potassium hydroxide to obtain Solution 1.
On the other hand, 100 g of a 50% by weight aqueous solution of dimethylamine was charged into a closed reaction vessel equipped with a stirrer, reflux condenser, thermometer, etc., and 102 g of epichlorohydrin was maintained at 30 to 80 ° C. while keeping the reaction vessel in a nitrogen atmosphere. While maintaining, the solution was gradually added to obtain a solution 2.
Solution 1 and solution 2 were mixed at a weight ratio of 1: 1 to obtain a flocculant.
[0035]
Example 6
8 kg of a 30 wt% aqueous solution of the white powder polymer obtained in Example 1 was added to 5 m 3 of coolant replenisher containing wastewater (containing 100 kg of oil), stirred for 10 minutes, and allowed to stand for 24 hours. The blending ratio of the flocculant obtained in Example 1 is 2.4% by weight of oil.
The oil separated into the upper layer by standing. When the oil was separated and the normal hexane extract of the aqueous layer was measured, it was a trace amount.
The amount of waste oil generated was 250 liters. On the other hand, when a sulfuric acid band was used as a comparative example, the amount required for the treatment was 100 kg, and 4 m 3 of floating scum, which was a sludge containing waste oil, was generated, and 950 kg of dehydrated cake was generated even after dehydration.
[0036]
Next, the water layer from which the oil was separated was mixed with domestic wastewater, led to an activated sludge tank, and subjected to secondary treatment under the following conditions. The mixed solution had a BOD of 680 ppm, a COD of 360 ppm, and an SS value of 120 ppm.
Primary treated water separated from oil 1 m 3 / hour aeration tank capacity 350 m 3
Return sludge volume 5 m 3 / hour Activated sludge concentration (meaning dry solid content of wastewater) 5000 ppm
Aeration volume 15 m 3 / min Activated sludge treatment time 36 hours No change was observed in the activated sludge after treatment, and the activated sludge could be used continuously. In addition, the BOD of the treated water was 9 ppm, the COD was 14 ppm, and the SS value was 5 ppm.
[0037]
Example 7
In place of the flocculant obtained in Example 1, instead of using the flocculant obtained in Example 2, the coolant renewal solution-containing wastewater (containing 100 kg of oil) was treated in the same manner as in Example 6. The normal hexane extract from the water layer was a trace amount, and the BOD, COD, and SS values after activated sludge treatment were all 15 ppm or less.
[0038]
Example 8
In place of the flocculant obtained in Example 1, the coolant renewal solution-containing wastewater (containing 100 kg of oil) was treated in the same manner as in Example 6 except that the flocculant obtained in Example 3 was used. The normal hexane extract from the water layer was a trace amount, and the BOD, COD, and SS values after activated sludge treatment were all 15 ppm or less.
[0039]
Example 9
Instead of the flocculant obtained in Example 1, the coolant renewal solution-containing wastewater (containing 100 kg of oil) was treated in the same manner as in Example 6 except that the flocculant obtained in Example 4 was used. The normal hexane extract from the water layer was a trace amount, and the BOD, COD, and SS values after activated sludge treatment were all 15 ppm or less.
[0040]
【The invention's effect】
Flocculants of the present invention are represented by the general formula R 1 -Y, a compound residue R 1 contains a cationic group, Y is at -OSO 3 M group, wherein M is hydrogen or a metal element Therefore, it becomes easy to cause cross-linking adsorption to the micro flocs of the colloidal particles, and the oil component and the water component in the emulsion are excellent in separation / aggregation ability without generating a large amount of sludge.
[0041]
Further, since the cationic group is a group having quaternized nitrogen, it becomes easy to cause cross-linking adsorption to the micro flocs of colloidal particles by adding a small amount.
[0042]
Furthermore, since the general formula R 1 -Y is an organic polymer having an intrinsic viscosity of 0.001 to 0.6 dl / g, in addition to the above-mentioned effects, the influence on microorganisms in the activated sludge in the secondary treatment is reduced. be able to.
[0044]
The coagulation method of the present invention uses the above-mentioned coagulant, so that the oil component and the water component in the emulsion can be easily separated and coagulated, and the subsequent activated sludge process becomes extremely easy.
Claims (4)
前記R1は四級化窒素を有する陽イオン性基を側鎖に有する単量体を含む重合体残基であり、前記Yは−OSO3M基で、該Mが水素または金属元素であることを特徴とする凝集剤。Water-soluble which is represented by the general formula R 1 -Y and is used to separate and agglomerate the oil component and water component of the oil-in-water type or water-in-oil emulsion, and to perform the activated sludge process on the separated water component. A flocculant of
R 1 is a polymer residue containing a monomer having a cationic group having quaternized nitrogen in the side chain, Y is an —OSO 3 M group, and M is hydrogen or a metal element. A flocculant characterized by that.
前記水中油滴型または油中水滴型エマルジョンに請求項1ないし請求項3のいずれか1項記載の凝集剤を添加することを特徴とする凝集方法。A coagulation method using a water-soluble coagulant used to separate and agglomerate an oil component and a water component of an oil-in-water emulsion or a water-in-oil emulsion, and to perform an activated sludge process on the separated water component. ,
A flocculating method comprising adding the flocculant according to any one of claims 1 to 3 to the oil-in-water type or water-in-oil type emulsion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20985397A JP4033946B2 (en) | 1997-07-21 | 1997-07-21 | Flocculant and flocculation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20985397A JP4033946B2 (en) | 1997-07-21 | 1997-07-21 | Flocculant and flocculation method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007149439A Division JP4034336B2 (en) | 2007-06-05 | 2007-06-05 | Flocculant and flocculation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1133309A JPH1133309A (en) | 1999-02-09 |
JP4033946B2 true JP4033946B2 (en) | 2008-01-16 |
Family
ID=16579714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20985397A Expired - Lifetime JP4033946B2 (en) | 1997-07-21 | 1997-07-21 | Flocculant and flocculation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4033946B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1329250B9 (en) | 2000-10-13 | 2013-05-29 | Japan Alsi Co., Ltd. | Flocculants for oil-water separation |
-
1997
- 1997-07-21 JP JP20985397A patent/JP4033946B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1133309A (en) | 1999-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1567570B1 (en) | Modified polymeric flocculants with improved performance characteristics | |
US4176107A (en) | Water-soluble dispersions of high molecular water-soluble polymers containing a surfactant and a water-soluble organic carrier which is a hydroxy compound containing repeating alkylene oxide units | |
JP5528660B2 (en) | Polymer flocculant | |
KR101846041B1 (en) | Methods of preparing novel halide anion free quaternary ammonium salt monomers, polymerization methods therefor, and methods of use of the resulting polymers | |
US5362827A (en) | Solution process for preparation hydrophobically functionalized cationic polymers (C-2691) | |
JP2004518783A (en) | Cation latex terpolymer for sludge dewatering | |
JP4034336B2 (en) | Flocculant and flocculation method | |
JP2006527079A (en) | Method of using an aqueous dispersion containing an ethylene copolymer wax | |
JPS63500589A (en) | Clarification of Bayer method liquid | |
JP4033946B2 (en) | Flocculant and flocculation method | |
JP4171648B2 (en) | Oil-water separation flocculant and oil-water separation flocculant method | |
JP2019214037A (en) | Water treatment method and water treatment agent | |
JP3892839B2 (en) | Polymer flocculant | |
JP2013180260A (en) | Waste water treatment method | |
JP5940881B2 (en) | Amphoteric polymer flocculant, method for producing the same and sludge dewatering method using the same | |
CN106496404B (en) | Polyacrylate polymer dispersion liquid | |
JP5866096B2 (en) | Wastewater treatment method | |
JP4106305B2 (en) | Organic coagulants and polymer flocculants | |
JP2011078882A (en) | Polymer flocculant | |
JP2022175164A (en) | Organic sludge dehydrating agent | |
RU2290414C1 (en) | Method for preparing high-molecular (meth)acrylic anionic flocculant | |
JP7152359B2 (en) | Water treatment agent and water treatment method | |
JP3901292B2 (en) | Activated sludge bulking inhibitor and wastewater treatment method | |
RU2275385C1 (en) | High-molecular weight (meth)acrylic anionic flocculant production process | |
JP5878409B2 (en) | Wastewater treatment method using organic coagulant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061228 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070726 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131102 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |