JP4033929B2 - Pen-type input device - Google Patents

Pen-type input device Download PDF

Info

Publication number
JP4033929B2
JP4033929B2 JP15286896A JP15286896A JP4033929B2 JP 4033929 B2 JP4033929 B2 JP 4033929B2 JP 15286896 A JP15286896 A JP 15286896A JP 15286896 A JP15286896 A JP 15286896A JP 4033929 B2 JP4033929 B2 JP 4033929B2
Authority
JP
Japan
Prior art keywords
pen
acceleration
axis
writing
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15286896A
Other languages
Japanese (ja)
Other versions
JPH09319510A (en
Inventor
充 新行内
康弘 佐藤
隆夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP15286896A priority Critical patent/JP4033929B2/en
Priority to US08/803,395 priority patent/US5902968A/en
Publication of JPH09319510A publication Critical patent/JPH09319510A/en
Priority to US09/141,903 priority patent/US6229102B1/en
Priority to US09/219,603 priority patent/US6084577A/en
Priority to US09/219,765 priority patent/US5981884A/en
Application granted granted Critical
Publication of JP4033929B2 publication Critical patent/JP4033929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は図形及び文字を入力するペン型入力装置に関するものである。
【0002】
【従来の技術】
コンピュータ装置等の入力装置としてはキーボード、マウス、デジタイザ、ライトペン及びタブレット等が用いられている。コンピュータ装置の小型化に伴い、携帯端末装置のニーズが高まり利用者も年々増加している。そこで、小型の入力装置が求められるようになった。
【0003】
キーボードの小型化にはヒューマンインターフェイスの点で限界があり、携帯端末装置の入力装置としては実用性が低い。また、マウスはポインティングデバイスとしては小型化が可能であるが、図形及び文字等の入力には適さない。
【0004】
このため、携帯端末装置の入力装置としてはタブレットとペンを用いたペン型の入力装置が多く採用されている。このタブレットを用いたペン型の入力装置をさらに小型化しようとした場合にはタブレットの大きさが問題となる。そこで、例えば特開平6-67799号公報に掲載されたペン型のコンピュータ入力装置、特開平7-84716号公報に掲載されたデータ入力装置、特開平7-200127号公報に掲載された手書き入力装置及び特開平6-230886号公報に掲載されたペンシル型入力装置のようなタブレットレスの入力装置が開発された。
【0005】
特開平6-67799号公報に掲載されたペン型のコンピュータ入力装置は加速度センサで移動方向と移動距離を調べ、圧電振動ジャイロで加速度センサが検出した移動方向及び移動距離のペン型のコンピュータ入力装置のローテーションによる影響を補正している。さらに、特開平7-84716号公報に掲載されたデータ入力装置は互いに直角に配置された振動ジャイロからの極性及び振幅を示す信号を基に装置の移動方向及び移動距離を検出している。さらに、特開平7-200127号公報に掲載された手書き入力装置は2個の加速度センサからの信号を基に装置の移動方向及び移動距離を求めている。さらに、特開平6-230886号公報に掲載されたペンシル型入力装置は2組の加速度センサをペン軸上の異なった位置に設け、この2組の加速度センサからの出力を基に加速度センサの取り付け異値による影響を補正したペン先端部の移動方向及び移動距離を求めている。
【0006】
また、ペン型入力装置に関するものでなく、例えばゲーム機に利用され、人体頭部の移動速度、位置、姿勢等を検出するものであるが、特開平7-294240号公報に掲載された位置センサは、X軸方向,Y軸方向及びZ軸方向の加速度を検出する加速度センサとX軸周り,Y軸周り及びZ軸周りの角速度を検出するジャイロを備え、これらが検出した加速度及び角速度基にストラップダウン方式の演算を行って、頭部の移動速度、位置、姿勢及び向きを検出している。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平6-67799号公報に掲載されたペン型のコンピュータ入力装置では、装置のローテーションによる影響を補正するもので、装置がダイナミックな傾斜を伴う場合には補正することができない。通常の筆記動作では装置のダイナミックな傾斜を伴うので、検出結果が不正確になる場合がある。
【0008】
さらに、特開平7-84716号公報に掲載されたデータ入力装置は手首の回転動作を検出して移動方向及び移動距離を入力するものなので、図形等の入力には適さない。
【0009】
さらに、特開平7-200127号公報に掲載された手書き入力装置では、装置の傾斜及び回転に対する補正手段がないため、検出結果が不正確になる場合がある。
【0010】
さらに、特開平6-230886号公報に掲載されたペンシル型入力装置は加速度センサが検出した加速度に装置の回転角に対する成分が含まれていることを考慮していないため移動距離の検出誤差が大きくなる場合がある。
【0011】
また、特開平7-294240号公報に掲載された位置センサは、頭部の移動速度、位置、姿勢及び向きを空間的に検出するものなので、複雑な演算処理を採用しているが、ペン型入力装置では装置の小型化が要求されているため、簡単な演算処理で正確に被筆記面上の移動方向及び移動距離を検出しなければならない。
【0012】
さらに、ペン型入力装置ではペン先端部に3個の加速度センサを設けることはできず、特開平7-294240号公報に掲載された位置センサでは、ペン先端部と加速度センサの取り付け位置の違いによる誤差を補正していないので、正確に筆記入力を検出することができない場合がある。
【0013】
この発明はかかる短所を解消するためになされたものであり、筆記入力を簡単な構成で正確に検出する小型なペン型入力装置を得ることを目的とする。
【0014】
【課題を解決するための手段】
この発明に係るペン型入力装置は、3個の加速度センサと3個のジャイロと演算部を有し、3個の加速度センサはそれぞれペン軸をZs軸としたペン軸座標系(Xs,Ys,Zs)のXs軸方向,Ys軸方向及びZs軸方向の加速度を示す信号を出力し、3個のジャイロはそれぞれXs軸周り,Ys軸周り及びZs軸周りの回転角速度を示す信号を出力し、演算部は初期傾斜角演算部と傾斜角変化演算部と筆記中傾斜角演算部と加速度補正部と座標変換演算部と移動量演算部を備え、初期傾斜角演算部は無筆記状態で3個の加速度センサが検出した加速度を基に重力加速度方向に伸びる軸をZg軸にした重力座標系(Xg,Yg,Zg)におけるペン軸の傾斜角の初期値を演算し、傾斜角変化演算部は筆記状態で3個のジャイロが検出した回転角速度を基にペン軸の重力座標系(Xg,Yg,Zg)における傾斜角の変化を演算し、筆記中傾斜角演算部は初期傾斜角演算部が演算した傾斜角の初期値と傾斜角変化演算部が演算した傾斜角の変化を基に筆記中のペン軸の重力座標系(Xg,Yg,Zg)における傾斜角を演算し、加速度補正部は3個の加速度センサの取り付け位置、3個のジャイロが検出した回転角速度、傾斜角変化演算部が演算したペン軸の傾斜角の変化及び筆記中傾斜角演算部が演算した筆記中のペン軸の傾斜角を基にペン軸座標系(Xs,Ys,Zs)における3個の加速度センサの取り付け位置での加速度をペン先端部での加速度に補正し、座標変換演算部は筆記中傾斜角演算部が検出した筆記中のペン軸の重力座標系(Xg,Yg,Zg)における傾斜角を基に加速度補正部が補正したペン軸座標系(Xs,Ys,Zs)における加速度を重力座標系(Xg,Yg,Zg)による加速度に変換し、移動量演算部は座標変換演算部が変換した加速度を基にペン先端部の移動方向及び移動距離を算出して、装置の傾斜角及び加速度センサの取り付け位置による影響を補正した正確な筆記入力を行う。
【0015】
Xs軸方向の加速度センサをYs=0となる位置、Ys方向の加速度センサをXs=0となる位置、Zs方向の加速度センサをZs軸上に設けて、演算部の演算を簡単にする。
【0016】
さらに、各加速度センサをZs軸近傍に設けて、演算量を少なくし演算時間を短縮する。
【0017】
さらに、3個の加速度センサ及び3個のジャイロからの信号のペン先端部と被筆記面との摩擦による高周波成分を透過するハイパスフィルタを有し、ハイパスフィルタを経由した3個の加速度センサ及び3個のジャイロからの信号のうちいずれか最初に高周波成分を含んだ信号を基に筆記開始を判断し、ハイパスフィルタを経由した3個の加速度センサ及び3個のジャイロからの信号のうちいずれか最後まで高周波成分を含んだ信号を基に筆記終了を判断して、簡単な構成で筆記開始及び筆記終了を検出する。
【0018】
さらに、筆記軌跡抽出部とフィティング部を有し、筆記軌跡抽出部は移動量演算部が算出したペン先端部の移動方向及び移動距離から筆記開始から終了までのペン先端部の軌跡を抽出し、フィティング部は筆記軌跡抽出部が抽出したペン先端部の軌跡を被筆記面に写像して、被筆記面の傾斜による影響を補正する。
【0019】
また、移動量演算部は座標変換演算部が変換した加速度を基にペン先端部のXg方向及びYg方向の移動距離を算出し、筆記軌跡抽出部は移動量演算部が算出したペン先端部のXg方向及びYg方向の移動距離から筆記開始から終了までのペン先端部の軌跡を抽出して、簡単な構成で被筆記面の傾斜による影響を補正する。
【0020】
【発明の実施の形態】
この発明のペン型入力装置は、コンピュータ装置等に文字、記号及び図形等を入力するものある。この発明のペン型入力装置は、ペン軸をZs軸としたペン軸座標系(Xs,Ys,Zs)のXs軸方向,Ys軸方向及びZs軸方向の加速度を3個の加速度センサで検出し、検出したXs軸方向,Ys軸方向及びZs軸方向の加速度を基にペン先端部の移動方向及び移動距離を検出するものである。加速度センサが検出した加速度には、加速度センサの取り付け位置による誤差及び装置の傾斜による誤差が含まれる。そこで、この発明のペン型入力装置は、無筆記状態でのペン軸座標系(Xs,Ys,Zs)のXs軸方向、Ys軸方向及びZs軸方向の加速度を検出し、検出した加速度から重力加速度方向に伸びる軸をZg軸にした重力座標系(Xg,Yg,Zg)におけるペン軸の傾斜角の初期値を求める。また、ペン型入力装置は筆記中におけるペン軸座標系(Xs,Ys,Zs)のXs軸周り,Ys軸周り及びZs軸周りの回転角速度を検出し、ペン軸の重力座標系(Xg,Yg,Zg)における傾斜角の変化を検出する。これにより、筆記時におけるペン軸の重力座標系(Xg,Yg,Zg)における傾斜角を求める。加速度センサの取り付け位置、3個のジャイロが検出した回転角速度、重力座標系におけるペン軸の傾斜角の初期値及び重力座標系におけるペン軸の傾斜角の変化を基に加速度センサにおける加速度をペン先端部における加速度に補正する。補正したペン軸座標系(Xs,Ys,Zs)における加速度を重力座標系における加速度に変換し、移動方向及び移動距離を正確に検出するものである。
【0021】
ペン型入力装置は、例えば3個の加速度センサと3個のジャイロと演算部を有する。3個の加速度センサは、例えばペン軸座標系(Xs,Ys,Zs)のZs軸近傍で、それぞれXs軸方向,Ys軸方向及びZs軸方向の加速度を検出し、検出した加速度を示す信号を出力する。3個のジャイロはそれぞれXs軸周り,Ys軸周り及びZs軸周りの回転角速度を検出し、検出した回転角速度を示す信号を出力する。演算部は初期傾斜角演算部と傾斜角変化演算部と筆記中傾斜角演算部と加速度補正部と座標変換演算部と移動量演算部を備える。初期傾斜角演算部は無筆記状態で3個の加速度センサが検出したペン軸座標系(Xs,Ys,Zs)の加速度を基にペン軸の重力座標系(Xg,Yg,Zg)における傾斜角の初期値を演算する。傾斜角変化演算部は筆記状態で3個のジャイロが検出した回転角速度を基にペン軸の重力座標系(Xg,Yg,Zg)における傾斜角の変化を演算する。筆記中傾斜角演算部は初期傾斜角演算部が演算したペン軸の重力座標系(Xg,Yg,Zg)における傾斜角の初期値と傾斜角変化演算部が演算したペン軸の重力座標系(Xg,Yg,Zg)における傾斜角の変化を基に、筆記中のペン軸の重力座標系(Xg,Yg,Zg)における傾斜角を求める。加速度補正部はペン先端部に対する3個の加速度センサの取り付け位置、3個のジャイロが検出した回転角速度、傾斜角変化演算部が演算したペン軸の傾斜角の変化及び筆記中傾斜角演算部が演算した筆記中のペン軸の傾斜角を基に3個の加速度センサが検出したペン軸座標系(Xs,Ys,Zs)の加速度をペン先端部における加速度に補正する。座標変換演算部は筆記中傾斜角演算部が検出した筆記中のペン軸の重力座標系(Xg,Yg,Zg)における傾斜角を基に加速度補正部が補正したペン軸座標系(Xs,Ys,Zs)による加速度を重力座標系(Xg,Yg,Zg)による加速度に変換する。移動量演算部は座標変換演算部が変換した加速度を基にペン先端部の移動方向及び移動距離を算出して、装置の傾斜角及び加速度センサの取り付け位置による影響を補正した正確な筆記入力を行う。
【0022】
なお、上記ペン型入力装置による筆記状態の判断にはイネーブルスイッチ等を用いても良いし、加速度センサ及びジャイロからの信号の周波数成分を基に判断するようにしても良い。例えば、ペン型入力装置は加速度センサ及びジャイロからの信号の高周波成分を、例えば10Hz近傍の周波数を境に透過するハイパスフィルタを有する。加速度センサ等からの信号の高周波数成分はペン先端部と被筆記面との摩擦によるもので、かつ、これは10Hz近傍を境としているので、3個の加速度センサ及び3個のジャイロからの信号のいずれからか上記高周波成分を検出している間を筆記中と判断する。これにより、操作間違いなどを防止でき正確に筆記の開始および終了を検出できる。
【0023】
さらに、Xs軸方向の加速度センサをYs=0となる位置、Ys方向の加速度センサをXs=0となる位置、Zs方向の加速度センサをZs軸上に設けると、加速度の補正が簡単になり、演算部の演算が簡単になるので、演算時間を短縮できる。
【0024】
また、被筆記面が水平でない場合もあるので、例えば筆記軌跡抽出部とフィティング部を有するようにしても良い。筆記軌跡抽出部は移動量演算部が算出したペン先端部の移動方向及び移動距離から筆記開始から終了までのペン先端部の軌跡を抽出する。フィティング部は筆記軌跡抽出部が抽出したペン先端部の軌跡を被筆記面に写像して、被筆記面の傾斜による影響を補正する。
【0025】
また、移動量演算部は座標変換演算部が変換した加速度を基にペン先端部のXg方向及びYg方向の移動距離を算出し、筆記軌跡抽出部は移動量演算部が算出したペン先端部のXg方向及びYg方向の移動距離から筆記開始から終了までのペン先端部の軌跡を抽出して、簡単な構成で被筆記面の傾斜による影響を補正するようにしても良い。
【0026】
【実施例】
図1はこの発明の一実施例のペン型入力装置の構成図である。図に示すように、ペン型入力装置1は加速度センサ2a,2b,2c、ジャイロ3a,3b,3c、演算部4、記憶部5及び電源部6を有する。加速度センサ2a,2b,2cは、それぞれペン軸7をZs軸とした場合のZs軸と直交するXs軸方向,Ys軸方向及びZs軸方向に向けてZs軸近傍に設けられ、Xs軸方向,Ys軸方向及びZs軸方向の加速度を検出し、検出した加速度を示す信号を出力する。加速度センサ2a,2b,2cは、ピエゾ抵抗方式のもの以外に圧電方式のもの又は静電容量方式のものでも良い。ジャイロ3a,3b,3cはそれぞれXs軸周り,Ys軸周り及びZs軸周りの回転角速度を検出し、検出した回転角速度を示す信号を出力する。以下の説明では、特に断わらない限りペン軸7をZs軸とした座標系をペン軸座標系(Xs,Ys,Zs)といい、ペン軸7と直交する2軸をXs軸及びYs軸として説明する。また、重力加速度方向に伸びる軸をZg軸とする座標系を重力座標系(Xg,Yg,Zg)といい、Zg軸と直交する2軸をXg軸及びYg軸という。さらに、Xs軸,Ys軸及びZs軸とXg軸,Yg軸及びZg軸とが成す角度をそれぞれφ,θ及びψとする。
【0027】
演算部4は、図2に示すようにA/D変換器41a〜41f、ローパスフィルタ42a〜42f、ハイパスフィルタ43a〜43f、静止判断部44、初期傾斜角演算部45、傾斜角変化演算部46、筆記中傾斜角演算部47、加速度補正部48、座標変換演算部49、重力加速度除去部50、移動量演算部51、筆記軌跡抽出部52及びフィティング部53を備える。A/D変換器41a〜41fは、それぞれ加速度センサ2a,2b,2c及びジャイロ3a,3b,3cからのアナログ信号をデジタル信号に変換する。ローパスフィルタ42a〜42fはペン先端部8と被筆記面との摩擦力により生じる加速度センサ2a,2b,2c及びジャイロ3a,3b,3cからの信号の高周波成分を遮断する。ハイパスフィルタ43a〜43fは、例えば10Hzを境にして加速度センサ2a,2b,2c及びジャイロ3a,3b,3cからの信号の摩擦力による高周波数成分を抽出する。静止判断部44はハイパスフィルタ43a〜43fを経由した3個の加速度センサ2a,2b,2c及び3個のジャイロ3a,3b,3cからの信号のうちいずれか最初に高周波成分を含んだ信号を基に筆記開始を判断し、ハイパスフィルタ43a〜43fを経由した3個の加速度センサ2a,2b,2c及び3個のジャイロ3a,3b,3cからの信号のうちいずれか最後まで高周波成分を含んだ信号を基に筆記終了を判断する。例えばペン先端部8を鉛筆の芯で構成し、紙に対して筆記した場合の加速度信号の波形を図3に示す。図3に示すように筆記加速度成分は中心周波数10Hz以下の比較的に周波数が低い部分に表れ、ペン先端部8と被筆記面との摩擦による成分は100Hz以上の比較的周波数が高い部分に表れる。そこで、10Hz以上の周波数成分をハイパスフィルタ43a〜43fで抽出し、静止判断部44はハイパスフィルタ43a〜43fが抽出した信号を予め定めた閾値と比較することにより、筆記中か否かを判断する。ここで、筆記の方向により、各加速度センサ2a,2b,2c及びジャイロ3a,3b,3cで検出するペン先端部8と被筆記面との摩擦による成分に違いが表れることから、静止判断部44はいずれか最初に高周波成分を含んだ信号を基に筆記開始を判断し、いずれか最後まで高周波成分を含んだ信号を基に筆記終了を判断する。
【0028】
初期傾斜角演算部45は無筆記状態で3個の加速度センサ2a,2b,2cが検出したペン軸座標系(Xs,Ys,Zs)での加速度を基にペン軸7の重力座標系(Xg,Yg,Zg)おける傾斜角の初期値φ0,θ0及びψ0を演算する。
傾斜角変化演算部46は筆記状態で3個のジャイロ3a,3b,3cが検出した回転角速度を基にペン軸7の重力座標系(Xg,Yg,Zg)における傾斜角の変化Δφ,Δθ及びΔψを演算する。筆記中傾斜角演算部47は初期傾斜角演算部45が演算したペン軸7の重力座標系(Xg,Yg,Zg)における傾斜角の初期値φ0,θ0及びψ0と傾斜角変化演算部46が演算したペン軸7の重力座標系(Xg,Yg,Zg)における傾斜角の変化Δφ,Δθ及びΔψを基に、筆記中のペン軸8の重力座標系(Xg,Yg,Zg)における傾斜角φ,θ及びψを求める。加速度補正部48は3個の加速度センサ2a,2b,2cの取り付け位置、3個のジャイロ3a,3b,3cが検出した回転角速度、傾斜角変化演算部46が演算したペン軸7の傾斜角の変化及び筆記中傾斜角演算部47が演算した筆記中のペン軸7の傾斜角を基にペン軸座標系(Xs,Ys,Zs)における3個の加速度センサ2a,2b,2cの取り付け位置での加速度をペン先端部8での加速度に補正する。座標変換演算部49は筆記中傾斜角演算部47が検出した筆記中のペン軸7の重力座標系(Xg,Yg,Zg)における傾斜角φ,θ及びψを基に加速度補正部48が補正したペン軸座標系(Xs,Ys,Zs)による加速度を重力座標系(Xg,Yg,Zg)による加速度に変換する。重力加速度除去部50は座標変換演算部49が変換した加速度から重力加速度成分を除去する。移動量演算部51は重力加速度除去部50が重力加速度成分を除去した加速度を基にペン先端部8の移動方向及び移動距離を算出する。筆記軌跡抽出部52は移動量演算部51が算出したペン先端部8の移動方向及び移動距離から筆記開始から終了までのペン先端部8の軌跡を抽出し、記憶部5に記憶する。フィティング部53は筆記軌跡抽出部52が抽出して記憶部5に記憶したペン先端部8の軌跡を被筆記面に写像する。
【0029】
ここで、演算部4の演算について説明する。重力座標系(Xg,Yg,Zg)からペン軸座標系(Xs,Ys,Zs)への座標変換式は次式のようになる。
【0030】
【数1】

Figure 0004033929
【0031】
この式をペン軸座標系(Xs,Ys,Zs)から重力座標系(Xg,Yg,Zg)への座標変換式に変形すると、次式のようになる。
【0032】
【数2】
Figure 0004033929
【0033】
ここで、図4に示す点Aの重力座標系(Xg,Yg,Zg)での座標(Xga,Yga,Zga)は、ペン先端部8の重力座標系(Xg,Yg,Zg)での座標(Xgo,Ygo,Zgo)と点Aのペン軸座標系(Xs,Ys,Zs)での座標(Lx,Ly,Lz)と傾斜角φ,θ,ψから次式のようになる。
【0034】
【数3】
Figure 0004033929
【0035】
上式を時間で2回微分したものが点A(Xga,Yga,Zga)の重力座標系(Xg,Yg,Zg)での加速度(Axg,Ayg,Azg)である。ここで、傾斜角φ,θ,ψも時間の関数であるので、次式を得ることができる。
【0036】
【数4】
Figure 0004033929
【0037】
また、ペン先端部8の移動に関係無く重力座標系(Xg,Yg,Zg)のZg軸方向には重力が働く。そこで、上式に重力加速度gを加えると、次式のようになる。
【0038】
【数5】
Figure 0004033929
【0039】
加速度センサ2a,2b,2cを点Aに設けたとすると、これらの式から加速度センサ2a,2b,2cが検出する加速度(Axsa,Aysa,Azsa)は、次式で表わすことができる。
【0040】
【数6】
Figure 0004033929
【0041】
次に、加速度センサ2a、2b,2cがそれぞれ点B,C,Dに設けられているとし、点B,C,Dのペン軸座標系(Xs,Ys,Zs)での座標をそれぞれB(Lxx,Lxy,Lxz),C(Lyx,Lyy,Lyz),D(Lzx,Lzy,Lzz)とし、前式の第2項を次式で置き換える。
【0042】
【数7】
Figure 0004033929
【0043】
上式より、各加速度センサ2a,2b,2cが検出する加速度(Axs,Ays,Azs)は次式のようになる。
【0044】
【数8】
Figure 0004033929
【0045】
加速度補正部48は上式の第2項を演算して、各加速度センサ2a,2b,2cが検出した加速度(Axs,Ays,Azs)を補正する。さらに、補正した加速度を座標変換演算部49が座標変換した後に、重力加速度除去部50が重力加速度成分を除去してペン先端部8の加速度(Axgo,Aygo,Azgo)を得る。ここで、ペン先端部8の重力座標系(Xg,Yg,Zg)での加速度(Axgo,Aygo,Azgo)は、重力座標系(Xg,Yg,Zg)での移動距離(Xgo,Ygo,Zgo)を2回微分した式で表わすことができ、次式のようになる。
【0046】
【数9】
Figure 0004033929
【0047】
移動量演算部51は、このように算出したペン先部8の重力座標系(Xg,Yg,Zg)での加速度(Axgo,Aygo,Azgo)を2回積分してペン先端部8の軌跡を求める。
【0048】
次に傾斜角の初期値(φ0,θ0,ψ0)について説明する。静止状態においては重力加速度による影響だけなので、加速度センサ2a,2b,2cが検出するペン軸座標系(Xs,Ys,Zs)における加速度(Axs,Ays,Azs)は移動距離(Xs,Ys,Zs)を2回微分した式で求めることができ、次式のようになる。
【0049】
【数10】
Figure 0004033929
【0050】
上記のように静止状態においては加速度センサ2a,2b,2cが検出するペン軸座標系(Xs,Ys,Zs)における加速度(Axs,Ays,Azs)は、加速度センサの取り付け位置に影響されない。ここで、2つの未知数φ0,θ0に対して3つの方程式が立てられるので、重力加速度gも未知数として取り扱うことができる。また、重力加速度gの値を演算し、監視する機能を付け演算した値の変動を基に演算の良否を判定することもできる。また、ペン軸座標系(Xs,Ys,Zs)の角軸の回転各速度(P,Q,R)と傾斜角速度(ψ,θ,φ)の変化との関係は次式で表わすことができる。
【0051】
【数11】
Figure 0004033929
【0052】
ここで、ペン先端部8の重力座標系(Xg,Yg,Zg)における移動距離(Xgo,Ygo,Zgo)を微分した式で求めることができるペン先端部8の加速度(Axgo,Aygo,Azgo)は次式で表わすこともできる。
【0053】
【数12】
Figure 0004033929
【0054】
上記構成のペン型入力装置1の動作を、図5のフローチャートを参照して説明する。
【0055】
加速度センサ2a,2b,2cはそれぞれXs方向,Ys方向,Zs方向の加速度を検出する。ハイパスフィルタ43a〜43fはA/D変換器41a〜41fを介して入力した加速度センサ2a,2b,2c及びジャイロ3a,3b,3cからの信号を10Hzを境に高周波成分を抽出して、静止判断部44はハイパスフィルタ43a〜43fからの信号を基に筆記中であるか否かを示す信号を出力する。このように、ペン先端部8と被筆記面との摩擦力により生じる高周波信号を検出して筆記中か否かを判断するので、容易かつ正確に筆記中であるか否かを検出できる。
【0056】
初期傾斜角演算部45は静止判断部44から筆記中を示す信号を受けていないときに、Xs軸に対する加速度センサ2a、Ys軸に対する加速度センサ2b及びZs軸に対する加速度センサ2cからの信号を入力し、ペン軸7の重力座標系における傾斜角の初期値φ0,θ0及びψ0を算出する(ステップS1)。
【0057】
傾斜角変化演算部46は静止判断部44から筆記中であることを示す信号を受けると(ステップS2)、3個のジャイロ3a,3b,3cが検出した回転角速度を基にペン軸7の重力座標系(Xg,Yg,Zg)における傾斜角の変化Δφ,Δθ及びΔψを演算する(ステップS3)。筆記中傾斜角演算部47は、上記のように初期傾斜角演算部45が演算したペン軸7の傾斜角の初期値φ0,θ 0 ,ψ 0と傾斜角変化演算部45が演算したペン軸8の傾斜角(φ,θ,ψ)の変化を基に、筆記中のペン軸7の傾斜角(φ,θ,ψ)を求める(ステップS4)。加速度補正部48は3個の加速度センサ2a,2b,2cの取り付け位置の座標(Lxx,Lxy,Lxz),(Lyx,Lyy,Lyz),(Lzx,Lzy,Lzz)、傾斜角変化演算部46が演算したペン軸7の傾斜角(φ,θ,ψ)の変化及び筆記中傾斜角演算部47が演算した筆記中のペン軸7の傾斜角(φ,θ,ψ)を基に3個の加速度センサ2a,2b,2cが検出したペン軸座標系(Xs,Ys,Zs)の加速度(Axs,Ays,Azs)をペン先端部8における加速度(Axso,Ayso,Azso)に補正する(ステップS5)。座標変換演算部49は筆記中傾斜角演算部47が検出した筆記中の傾斜角(φ,θ,ψ)を基に加速度補正部48が補正した加速度(Axso,Ayso,Azso)を重力座標系(Xg,Yg,Zg)による加速度(Axgo,Aygo,Azgo)に変換する(ステップS6)。このように、加速度センサ2a,2b,2cの取り付け位置及び傾斜による影響を補正するので、ペン先端部8における重力座標系(Xg,Yg,Zg)による正確な加速度(Axgo,Aygo,Azgo)を検出することができる。
【0058】
重力加速度除去部50は座標変換演算部49が変換した加速度(Axgo,Aygo,Azgo)から重力加速度成分を除去する(ステップS7)。移動量演算部51は重力加速度除去部50が重力加速度成分を除去したペン先端部8における加速度(Axgo,Aygo,Azgo)を2回積分してペン先端部8の移動方向及び移動距離を算出する(ステップS8)。このように、加速度センサ2a,2b,2cが検出した加速度(Axs,Ays,Azs)を補正した後に積分するので、積分結果に発生する誤差を少なくすることができる。
【0059】
筆記軌跡抽出部52は移動量演算部51が算出したペン先端部8の移動方向及び移動距離から筆記開始から終了までのペン先端部8の軌跡を抽出して記憶部5に記憶する(ステップS9、S10)。フィティング部53は、例えば最小二乗法を用いて筆記軌跡抽出部52が抽出したペン先端部8の軌跡から被筆記面を特定し、ペン先端部8の軌跡を被筆記面に写像する(ステップS11)。例えば図6(a)に示す筆記軌跡の3次元データ(Xi,Yi,Zi)を被筆記面の表わす式aX+bY+cZ+d=0に代入し、aXi+bYi+cZi+d=δiとし、この誤差の二乗和Σ(δi)2が最小になるように被筆記面(a,b,c,d)を特定する。ここで、図6(b)に示すようにこの誤差δiは座標(Xi,Yi,Zi)と被筆記面との最短距離となる。このように、ペン先端部8の軌跡を被筆記面に写像することにより、被筆記面が傾いていた場合であっても正確にペン先端部8の被筆記面上の移動距離を入力することができる。ペン型入力装置1は上記動作(ステップS3〜S11)を静止判断部44が加速度センサ2a,2b,2c又はジャイロ3a,3b,3cからの高周波数成分を検出しなくなるまで繰り返し(ステップs12)、文字及び図形等を正確に入力する。
【0060】
なお、上記実施例においては加速度センサ2a,2b,2cの座標を(Lxx,Lxy,Lxz),(Lyx,Lyy,Lyz),(Lzx,Lzy,Lzz)としたが、Xs軸方向の加速度センサ2aをYs=0となる位置、Ys方向の加速度センサ2bをXs=0となる位置、Zs方向の加速度センサ2cをZs軸上に設けると、加速度センサ2a,2b,2cの座標は(Lxx,0,Lxz),(0,Lyy,Lyz),(0,0,Lzz)となり、ペン先端部8の重力座標系(Xg,Yg,Zg)における移動距離(Xg,Yg,Zg)を2回微分した式で求めることができる加速度(Axgo,Aygo,Azgo)は次式のようになり、加速度センサ2a,2b,2cga検出した加速度の補正演算量を少なくすることができる。
【0061】
【数13】
Figure 0004033929
【0062】
ここで、Xs軸方向の加速度センサ2aをXs=0となる位置、Ys方向の加速度センサ2bをYs=0となる位置、Zs方向の加速度センサ2cをZs軸上に設けると、加速度センサ2a,2b,2cの座標は(0,Lxy,Lxz),(Lyx,0,Lyz),(0,0,Lzz)となり、ペン先端部8の重力座標系(Xg,Yg,Zg)における移動距離(Xg,Yg,Zg)を2回微分した式で求めることができる加速度(Axgo,Aygo,Azgo)は次式のようになる。
【0063】
【数14】
Figure 0004033929
【0064】
また、各加速度センサ2a,2b,2cをZs軸上に設けたとすると、Lxx,Lxy,Lyx,Lyy,Lzx,Lzyは0となるので、加速度センサ2a,2b,2cの座標は(0,0,Lxz),(0,0,Lyz),(0,0,Lzz)となり、ペン先端部8の重力座標系(Xg,Yg,Zg)における移動距離(Xg,Yg,Zg)を2回微分した式で求めることができる加速度(Axgo,Aygo,Azgo)は次式のようになり、さらに加速度の補正演算量を少なくすることができる。
【0065】
【数15】
Figure 0004033929
【0066】
また、図7〜図9に示すように補正項の特定の要素が大きな加速度成分を持っているので、その特定の要素のみを用いて、ペン先端部8の重力座標系における加速度(Axgo,Aygo,Azgo)を次式で計算しても良い。これにより、さらに計算時間を短縮することができる。例えば、Xs軸方向の加速度の補正要素としてLxx(d2θ/dt2)cosφ、Ys軸方向の加速度の補正要素としてLyz{(d2ψ/dt2)sinθ−φ}、Zs軸方向の加速度の補正要素として−Lzz{(dφ/dt)2+(dθ/dt)2cos2φ}を用いた。
【0067】
【数16】
Figure 0004033929
【0068】
さらに、前記実施例においてはフィティング部53は座標(Xi,Yi,Zi)と被筆記面との最短距離となるようにしてペン先端部8の軌跡を被筆記面に写像したが、例えば図10に示すように座標(Xi,Yi,Zi)と被筆記面とのZg軸方向の距離が最短になるようにしても良い。例えば被筆記面を表わす式(a1)X+(b1)Y+Z+d1=0とし、筆記軌跡の3次元データ(Xi,Yi,Zi)を上式に代入し、(a1)×(Xi)+(b1)×(Yi)+(Zi)+(d1)=δiとし、この誤差の二乗和Σ(δi)2が最小になるように被筆記面(a1,b1,d1)を特定する。このように、パラメータを一つ減らすことにより演算時間を短縮することができる。この場合、被筆記面が垂直の場合に誤差が生じるが通常のペン型入力装置1の使用状況において被筆記面を垂直にすることはほとんど無い。
【0069】
さらに、移動量演算部51は座標変換演算部49が変換した加速度を基にペン先端部のXg方向及びYg方向の移動距離のみをを算出し、筆記軌跡抽出部52は移動量演算部51が算出したペン先端部8のXg方向及びYg方向の移動距離から筆記開始から終了までのペン先端部の軌跡を抽出して、簡単な構成で被筆記面の傾斜による影響を補正するようにしても良い。この場合、重力加速度除去部50及びフィティング部53が不要になり、これらの部分による演算時間を短縮することができるとともに、移動量演算部51によるZg方向の移動量演算処理を行う必要が無いので、演算時間を大幅に短縮することができる。
【0070】
【発明の効果】
この発明は以上説明したように、ペン軸の傾斜角の初期値とペン軸の傾斜角の変化を基に筆記中のペン軸の傾斜角を演算し、3個の加速度センサの取り付け位置、ペン軸の傾斜角の変化及び筆記中のペン軸の傾斜角を基に3個の加速度センサが検出した加速度をペン先端部における加速度に補正し、補正したペン軸座標系による加速度を筆記中のペン軸の傾斜角を基に重力座標系による加速度に変換し、変換した加速度を基にペン先端部の移動方向及び移動距離を算出するので、小型の装置で被筆記面上を移動するペン先端部の移動方向及び移動距離を正確に検出することができる。
【0071】
さらに、Xs軸方向の加速度センサをYs=0となる位置、Ys方向の加速度センサをXs=0となる位置、Zs方向の加速度センサをZs軸上に設けたので、演算処理を簡単にし、演算時間を短縮することができる。
【0072】
さらに、各加速度センサをZs軸近傍に設けたので、さらに演算量を少なくし演算時間を短縮することができる。
【0073】
さらに、加速度センサ及びジャイロからの信号のペン先端部と被筆記面との摩擦による高周波成分を基に筆記の開始及び終了を判断するので、簡単な構成で正確に筆記開始及び筆記終了を検出することができる。
【0074】
さらに、筆記開始から終了までのペン先端部の軌跡を抽出し、抽出したペン先端部の軌跡を被筆記面に写像するので、被筆記面の傾斜による影響を補正することができる。
【0075】
また、筆記開始から終了までのペン先端部のXg方向及びYg方向の移動距離を抽出するので、算出簡単な構成で短時間に被筆記面の傾斜による影響を補正することができる。
【図面の簡単な説明】
【図1】この発明の実施例を示す構成図である。
【図2】演算部の構成図である。
【図3】加速度信号の波形図である。
【図4】ペン型入力装置上の一点を表わすペン型入力装置の側面図である。
【図5】ペン型入力装置の動作を示すフローチャートである。
【図6】被筆記面の斜視図である。
【図7】f13成分の説明図である。
【図8】f23成分の説明図である。
【図9】f33成分の説明図である。
【図10】被筆記面とのZg軸方向の距離を最短にした場合の被筆記面の斜視図である。
【符号の説明】
1 ペン型入力装置
2 加速度センサ
3 ジャイロ
4 演算部
43 ハイパスフィルタ
44 静止判断部
45 初期回転角演算部
46 回転角変化演算部
47 筆記中回転角演算部
48 加速度補正部
49 座標変換演算部
50 重力加速度除去部
51 移動量演算部
52 筆記軌跡抽出部
53 フィティング部
5 記憶部
7 ペン軸
8 ペン先端部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pen-type input device for inputting figures and characters.
[0002]
[Prior art]
As an input device such as a computer device, a keyboard, a mouse, a digitizer, a light pen, a tablet, and the like are used. With the downsizing of computer devices, needs for portable terminal devices are increasing and users are increasing year by year. Therefore, a small input device has been demanded.
[0003]
There is a limit to the miniaturization of the keyboard in terms of a human interface, and it is not practical as an input device for a portable terminal device. Although the mouse can be miniaturized as a pointing device, it is not suitable for inputting figures and characters.
[0004]
For this reason, many pen-type input devices using a tablet and a pen are employed as input devices for portable terminal devices. When the pen-type input device using the tablet is further reduced in size, the size of the tablet becomes a problem. Therefore, for example, a pen-type computer input device disclosed in Japanese Patent Application Laid-Open No. 6-67799, a data input device disclosed in Japanese Patent Application Laid-Open No. 7-84716, and a handwriting input device disclosed in Japanese Patent Application Laid-Open No. 7-200127. In addition, a tabletless input device such as a pencil type input device described in JP-A-6-230886 has been developed.
[0005]
A pen-type computer input device disclosed in Japanese Patent Application Laid-Open No. 6-67799 is a pen-type computer input device having a movement direction and a movement distance detected by an acceleration sensor using a piezoelectric vibration gyro. The effect of rotation is corrected. Furthermore, the data input device disclosed in Japanese Patent Application Laid-Open No. 7-84716 detects the moving direction and moving distance of the device based on signals indicating the polarity and amplitude from vibration gyros arranged at right angles to each other. Furthermore, the handwriting input device disclosed in Japanese Patent Laid-Open No. 7-200127 obtains the moving direction and moving distance of the device based on signals from two acceleration sensors. Further, the pencil type input device disclosed in Japanese Patent Laid-Open No. 6-230886 has two sets of acceleration sensors at different positions on the pen shaft, and the acceleration sensors are attached based on the outputs from the two sets of acceleration sensors. The movement direction and the movement distance of the pen tip portion corrected for the influence due to the different value are obtained.
[0006]
Further, it is not related to a pen-type input device, but is used, for example, in a game machine to detect the moving speed, position, posture, etc. of a human head. A position sensor described in Japanese Patent Laid-Open No. 7-294240 Is equipped with an acceleration sensor that detects acceleration in the X-axis direction, Y-axis direction, and Z-axis direction, and a gyro that detects angular velocities around the X-axis, Y-axis, and Z-axis. A strapdown calculation is performed to detect the moving speed, position, posture, and orientation of the head.
[0007]
[Problems to be solved by the invention]
However, the pen-type computer input device disclosed in Japanese Patent Laid-Open No. 6-67799 corrects the influence of the rotation of the device, and cannot correct it when the device has a dynamic inclination. Since the normal writing operation involves dynamic tilting of the apparatus, the detection result may be inaccurate.
[0008]
Furthermore, the data input device disclosed in Japanese Patent Application Laid-Open No. 7-84716 is not suitable for inputting figures and the like because it detects the rotational movement of the wrist and inputs the moving direction and moving distance.
[0009]
Furthermore, in the handwriting input device disclosed in Japanese Patent Application Laid-Open No. 7-200127, there is no means for correcting the tilt and rotation of the device, so the detection result may be inaccurate.
[0010]
Further, the pencil type input device described in Japanese Patent Laid-Open No. 6-230886 does not take into account that the acceleration detected by the acceleration sensor includes a component with respect to the rotation angle of the device, so that the detection error of the moving distance is large. There is a case.
[0011]
The position sensor described in Japanese Patent Application Laid-Open No. 7-294240 spatially detects the moving speed, position, posture, and orientation of the head, and thus employs a complicated calculation process. Since the input device is required to be downsized, it is necessary to accurately detect the moving direction and the moving distance on the writing surface with a simple arithmetic processing.
[0012]
Further, the pen type input device cannot provide three acceleration sensors at the pen tip, and the position sensor disclosed in Japanese Patent Laid-Open No. 7-294240 depends on the difference between the pen tip and the acceleration sensor mounting position. Since the error is not corrected, the written input may not be detected accurately.
[0013]
The present invention has been made to eliminate such disadvantages, and an object of the present invention is to obtain a small pen-type input device that can accurately detect writing input with a simple configuration.
[0014]
[Means for Solving the Problems]
  The pen-type input device according to the present invention includes three acceleration sensors, three gyros, and an arithmetic unit, and each of the three acceleration sensors has a pen axis coordinate system (Xs, Ys, Zs) outputs signals indicating acceleration in the Xs-axis direction, Ys-axis direction and Zs-axis direction, and the three gyros output signals indicating rotational angular velocities around the Xs-axis, Ys-axis and Zs-axis, respectively. The calculation unit includes an initial tilt angle calculation unit, a tilt angle change calculation unit, and a writing tilt angle calculation unit., Acceleration correction unit, coordinate transformation calculation unit and movement amount calculation unitThe initial tilt angle calculator is in an unwritten state3Based on the acceleration detected by each acceleration sensorThe axis extending in the direction of gravitational acceleration is the Zg axisPen axis in gravity coordinate system (Xg, Yg, Zg)Inclination ofThe initial value of the oblique angle is calculated, and the inclination angle change calculation unit calculates the change in inclination angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis based on the rotational angular velocity detected by the three gyros in the written state. The writing tilt angle calculator is the initial tilt angle calculator.PerformedBased on the calculated initial value of the tilt angle and the tilt angle change calculated by the tilt angle change calculation unit, the tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis being written is calculated, and the acceleration correction unit is Mounting position of three acceleration sensors, rotational angular velocity detected by three gyros, change in tilt angle of pen axis calculated by tilt angle change calculation unit, and change of pen axis in writing calculated by tilt angle calculation unit during writing Based on the tilt angle, the acceleration at the mounting position of the three acceleration sensors in the pen axis coordinate system (Xs, Ys, Zs) is corrected to the acceleration at the pen tip.AndThe coordinate transformation calculation unit is a pen axis coordinate system (Xs, Ys) corrected by the acceleration correction unit based on the tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis being written, detected by the tilt angle calculation unit during writing. , Zs) is converted into acceleration by the gravity coordinate system (Xg, Yg, Zg), and the movement amount calculation unit calculates the movement direction and movement distance of the pen tip based on the acceleration converted by the coordinate conversion calculation unit.do it,Accurate handwriting input that corrects the effects of the tilt angle of the device and the mounting position of the acceleration sensor is performed.
[0015]
The Xs-axis direction acceleration sensor is provided at the position where Ys = 0, the Ys-direction acceleration sensor is provided at the position where Xs = 0, and the Zs-direction acceleration sensor is provided on the Zs axis, thereby simplifying the calculation of the calculation unit.
[0016]
Further, each acceleration sensor is provided in the vicinity of the Zs axis to reduce the amount of calculation and shorten the calculation time.
[0017]
Further, the three acceleration sensors and three gyroscopes have high-pass filters that transmit high-frequency components due to friction between the pen tip portion and the writing surface, and the three acceleration sensors and 3 through the high-pass filters. The start of writing is determined based on a signal including a high-frequency component first among the signals from the three gyros, and the last of the signals from the three acceleration sensors and the three gyros that have passed through the high-pass filter. The end of writing is determined based on the signal including the high-frequency component until the start of writing and the end of writing are detected with a simple configuration.
[0018]
In addition, it has a writing trajectory extraction unit and a fitting unit, and the writing trajectory extraction unit extracts the trajectory of the pen tip from the start to the end of writing from the movement direction and distance of the pen tip calculated by the movement amount calculation unit. The fitting unit maps the trajectory of the pen tip extracted by the writing trajectory extraction unit onto the writing surface and corrects the influence of the inclination of the writing surface.
[0019]
The movement amount calculation unit calculates the movement distance of the pen tip in the Xg direction and the Yg direction based on the acceleration converted by the coordinate conversion calculation unit, and the writing trajectory extraction unit calculates the pen tip of the pen tip calculated by the movement amount calculation unit. The trajectory of the pen tip from the start to the end of writing is extracted from the movement distances in the Xg direction and the Yg direction, and the influence of the writing surface inclination is corrected with a simple configuration.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  The pen-type input device of the present invention inputs characters, symbols, figures, etc. to a computer device or the like. The pen-type input device of the present invention detects acceleration in the Xs axis direction, the Ys axis direction, and the Zs axis direction of the pen axis coordinate system (Xs, Ys, Zs) with the pen axis as the Zs axis by three acceleration sensors. The movement direction and movement distance of the pen tip are detected based on the detected accelerations in the Xs axis direction, the Ys axis direction, and the Zs axis direction. The acceleration detected by the acceleration sensor includes an error due to the mounting position of the acceleration sensor and an error due to the inclination of the apparatus. Therefore, the pen-type input device of the present invention detects acceleration in the Xs-axis direction, Ys-axis direction, and Zs-axis direction of the pen-axis coordinate system (Xs, Ys, Zs) in the unwritten state, and gravity is detected from the detected acceleration. Pen axis in gravity coordinate system (Xg, Yg, Zg) with Zg axis as the axis extending in the acceleration directionInclination ofFind the initial value of the bevel. The pen-type input device detects rotational angular velocities around the Xs axis, the Ys axis, and the Zs axis of the pen axis coordinate system (Xs, Ys, Zs) during writing, and the pen axis gravity coordinate system (Xg, Yg). , Zg) to detect a change in tilt angle. Thereby, the inclination angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis at the time of writing is obtained. The acceleration of the acceleration sensor is determined based on the position of the acceleration sensor, the rotational angular velocity detected by the three gyros, the initial value of the tilt angle of the pen axis in the gravity coordinate system, and the change in the tilt angle of the pen axis in the gravity coordinate system. It corrects to the acceleration in the part. The corrected acceleration in the pen axis coordinate system (Xs, Ys, Zs) is converted into the acceleration in the gravity coordinate system, and the moving direction and moving distance are accurately detected.
[0021]
  The pen-type input device includes, for example, three acceleration sensors, three gyros, and a calculation unit. The three acceleration sensors detect accelerations in the Xs axis direction, the Ys axis direction, and the Zs axis direction, respectively, in the vicinity of the Zs axis of the pen axis coordinate system (Xs, Ys, Zs), for example, and signals indicating the detected accelerations. Output. The three gyros respectively detect rotational angular velocities around the Xs axis, the Ys axis, and the Zs axis, and output signals indicating the detected rotational angular velocities. The calculation unit includes an initial tilt angle calculation unit, a tilt angle change calculation unit, a writing tilt angle calculation unit, an acceleration correction unit, a coordinate conversion calculation unit, and a movement amount calculation unit. Initial tilt angle calculator is in blank state3Acceleration sensors detectedOf the pen axis coordinate system (Xs, Ys, Zs)Based on accelerationPen shaftIn the gravity coordinate system (Xg, Yg, Zg)LeanCalculate the initial value of the bevel. The tilt angle change calculation unit calculates the change of the tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis based on the rotational angular velocity detected by the three gyros in the writing state. During writing, the tilt angle calculator is the initial tilt angle calculator.PerformedBased on the calculated initial value of the tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis and the change in the tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis calculated by the tilt angle change calculation unit. Next, the inclination angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis in writing is obtained. The acceleration correction unit includes the mounting position of the three acceleration sensors with respect to the pen tip, the rotational angular velocity detected by the three gyros, the change in the tilt angle of the pen axis calculated by the tilt angle change calculation unit, and the tilt angle calculation unit during writing. Based on the calculated tilt angle of the pen axis in writing, the acceleration of the pen axis coordinate system (Xs, Ys, Zs) detected by the three acceleration sensors is corrected to the acceleration at the pen tip. The coordinate transformation calculation unit is a pen axis coordinate system (Xs, Ys) corrected by the acceleration correction unit based on the tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis being written, detected by the tilt angle calculation unit during writing. , Zs) is converted into acceleration by the gravity coordinate system (Xg, Yg, Zg). The movement amount calculation unit calculates the movement direction and movement distance of the pen tip based on the acceleration converted by the coordinate conversion calculation unit, and correct writing input that corrects the influence of the inclination angle of the device and the mounting position of the acceleration sensor. Do.
[0022]
Note that an enable switch or the like may be used for the determination of the writing state by the pen-type input device, or the determination may be made based on the frequency components of the signals from the acceleration sensor and the gyro. For example, a pen-type input device has a high-pass filter that transmits high-frequency components of signals from an acceleration sensor and a gyro, for example, at a frequency near 10 Hz. The high-frequency component of the signal from the acceleration sensor etc. is due to the friction between the pen tip and the writing surface, and this is around 10 Hz, so the signals from the three acceleration sensors and the three gyros It is determined that writing is in progress while the high-frequency component is detected from any of the above. Thereby, operation mistakes can be prevented and the start and end of writing can be accurately detected.
[0023]
Furthermore, if an acceleration sensor in the Xs axis direction is provided at a position where Ys = 0, an acceleration sensor in the Ys direction is provided at a position where Xs = 0, and an acceleration sensor in the Zs direction is provided on the Zs axis, acceleration correction is simplified. Since the calculation of the calculation unit is simplified, the calculation time can be shortened.
[0024]
Further, since the writing surface may not be horizontal, for example, a writing locus extraction unit and a fitting unit may be provided. The writing trajectory extraction unit extracts the trajectory of the pen tip from the start to the end of writing from the movement direction and distance of the pen tip calculated by the movement amount calculation unit. A fitting part maps the locus | trajectory of the pen front-end | tip part extracted by the writing locus | trajectory extraction part on a writing surface, and correct | amends the influence by the inclination of a writing surface.
[0025]
The movement amount calculation unit calculates the movement distance of the pen tip in the Xg direction and the Yg direction based on the acceleration converted by the coordinate conversion calculation unit, and the writing trajectory extraction unit calculates the pen tip of the pen tip calculated by the movement amount calculation unit. The trajectory of the pen tip from the start to the end of writing may be extracted from the movement distance in the Xg direction and the Yg direction, and the influence of the inclination of the writing surface may be corrected with a simple configuration.
[0026]
【Example】
FIG. 1 is a block diagram of a pen-type input device according to an embodiment of the present invention. As shown in the figure, the pen-type input device 1 includes acceleration sensors 2 a, 2 b, 2 c, gyros 3 a, 3 b, 3 c, a calculation unit 4, a storage unit 5, and a power supply unit 6. The acceleration sensors 2a, 2b, and 2c are provided in the vicinity of the Zs axis toward the Xs axis direction, the Ys axis direction, and the Zs axis direction orthogonal to the Zs axis when the pen shaft 7 is the Zs axis, respectively. The acceleration in the Ys axis direction and the Zs axis direction is detected, and a signal indicating the detected acceleration is output. The acceleration sensors 2a, 2b, and 2c may be of a piezoelectric type or a capacitance type other than the piezoresistive type. The gyros 3a, 3b, and 3c detect rotational angular velocities around the Xs axis, the Ys axis, and the Zs axis, respectively, and output signals indicating the detected rotational angular velocities. In the following description, unless otherwise specified, a coordinate system in which the pen axis 7 is the Zs axis is referred to as a pen axis coordinate system (Xs, Ys, Zs), and two axes orthogonal to the pen axis 7 are described as an Xs axis and a Ys axis. To do. A coordinate system in which the axis extending in the direction of gravitational acceleration is the Zg axis is called a gravity coordinate system (Xg, Yg, Zg), and two axes orthogonal to the Zg axis are called an Xg axis and a Yg axis. Further, the angles formed by the Xs axis, Ys axis, and Zs axis and the Xg axis, Yg axis, and Zg axis are φ, θ, and ψ, respectively.
[0027]
As shown in FIG. 2, the calculation unit 4 includes A / D converters 41a to 41f, low-pass filters 42a to 42f, high-pass filters 43a to 43f, a stationary determination unit 44, an initial inclination angle calculation unit 45, and an inclination angle change calculation unit 46. , A writing inclination angle calculation unit 47, an acceleration correction unit 48, a coordinate conversion calculation unit 49, a gravitational acceleration removal unit 50, a movement amount calculation unit 51, a writing locus extraction unit 52, and a fitting unit 53. The A / D converters 41a to 41f convert analog signals from the acceleration sensors 2a, 2b, and 2c and the gyros 3a, 3b, and 3c into digital signals, respectively. The low-pass filters 42a to 42f block high-frequency components of signals from the acceleration sensors 2a, 2b, 2c and the gyros 3a, 3b, 3c generated by the frictional force between the pen tip 8 and the writing surface. The high-pass filters 43a to 43f extract high-frequency components due to the frictional force of signals from the acceleration sensors 2a, 2b, 2c and the gyros 3a, 3b, 3c, for example, at 10 Hz. The stationary determination unit 44 is based on one of the signals from the three acceleration sensors 2a, 2b, and 2c and the three gyros 3a, 3b, and 3c that has passed through the high-pass filters 43a to 43f. A signal including a high-frequency component up to the end of the signals from the three acceleration sensors 2a, 2b, 2c and the three gyros 3a, 3b, 3c via the high-pass filters 43a-43f. Determine the end of writing based on. For example, FIG. 3 shows the waveform of the acceleration signal when the pen tip 8 is formed of a pencil lead and written on paper. As shown in FIG. 3, the writing acceleration component appears in a relatively low frequency portion with a center frequency of 10 Hz or less, and the component due to friction between the pen tip 8 and the writing surface appears in a relatively high frequency portion of 100 Hz or more. . Therefore, frequency components of 10 Hz or higher are extracted by the high-pass filters 43a to 43f, and the stationary determination unit 44 determines whether or not writing is being performed by comparing the signals extracted by the high-pass filters 43a to 43f with a predetermined threshold value. . Here, since the component due to the friction between the pen tip 8 detected by each acceleration sensor 2a, 2b, 2c and the gyro 3a, 3b, 3c and the writing surface varies depending on the direction of writing, the stationary determination unit 44 Determines the start of writing based on a signal including a high-frequency component first, and determines the end of writing based on a signal including a high-frequency component until either end.
[0028]
  The initial tilt angle calculation unit 45 is based on the acceleration in the pen axis coordinate system (Xs, Ys, Zs) detected by the three acceleration sensors 2a, 2b, 2c in the unwritten state. , Yg, Zg) Initial values of inclination angles in φ0, θ0as well asψ0CalculationTo do.
The inclination angle change calculation unit 46 changes the inclination angles Δφ, Δθ in the gravity coordinate system (Xg, Yg, Zg) of the pen shaft 7 based on the rotational angular velocities detected by the three gyros 3a, 3b, 3c in the writing state. Δψ is calculated. During writing, the inclination angle calculation unit 47 is operated by the initial inclination angle calculation unit 45.CalculationThe initial values φ0, θ0 and ψ0 of the tilt angles in the gravity coordinate system (Xg, Yg, Zg) of the pen shaft 7 and the gravity coordinate system (Xg, Yg, Zg) of the pen shaft 7 calculated by the tilt angle change calculation unit 46 Are obtained in the gravitational coordinate system (Xg, Yg, Zg) of the pen shaft 8 being written. The acceleration correction unit 48 is used to determine the mounting position of the three acceleration sensors 2a, 2b, 2c, the rotational angular velocity detected by the three gyros 3a, 3b, 3c, and the inclination angle of the pen shaft 7 calculated by the inclination angle change calculation unit 46. Based on the tilt angle of the pen shaft 7 being written, which is calculated by the change and tilt angle calculator 47 during writing, at the mounting position of the three acceleration sensors 2a, 2b, 2c in the pen axis coordinate system (Xs, Ys, Zs). Is corrected to the acceleration at the pen tip 8. The coordinate conversion calculation unit 49 is corrected by the acceleration correction unit 48 based on the inclination angles φ, θ and ψ in the gravity coordinate system (Xg, Yg, Zg) of the pen shaft 7 being written, which is detected by the writing inclination angle calculation unit 47. The acceleration by the pen axis coordinate system (Xs, Ys, Zs) is converted into the acceleration by the gravity coordinate system (Xg, Yg, Zg). The gravitational acceleration removing unit 50 removes the gravitational acceleration component from the acceleration converted by the coordinate conversion calculating unit 49. The movement amount calculation unit 51 calculates the movement direction and movement distance of the pen tip 8 based on the acceleration from which the gravitational acceleration removal unit 50 has removed the gravitational acceleration component. The writing trajectory extraction unit 52 extracts the trajectory of the pen tip 8 from the start to the end of writing from the movement direction and distance of the pen tip 8 calculated by the movement amount calculation unit 51, and stores it in the storage unit 5. The fitting unit 53 maps the locus of the pen tip 8 extracted by the writing locus extraction unit 52 and stored in the storage unit 5 onto the writing surface.
[0029]
Here, the calculation of the calculation unit 4 will be described. A coordinate conversion formula from the gravity coordinate system (Xg, Yg, Zg) to the pen axis coordinate system (Xs, Ys, Zs) is as follows.
[0030]
[Expression 1]
Figure 0004033929
[0031]
When this equation is transformed into a coordinate conversion equation from the pen axis coordinate system (Xs, Ys, Zs) to the gravity coordinate system (Xg, Yg, Zg), the following equation is obtained.
[0032]
[Expression 2]
Figure 0004033929
[0033]
Here, the coordinates (Xga, Yga, Zga) of the point A shown in FIG. 4 in the gravity coordinate system (Xg, Yg, Zg) are the coordinates in the gravity coordinate system (Xg, Yg, Zg) of the pen tip 8. From (Xgo, Ygo, Zgo) and the coordinates (Lx, Ly, Lz) of the point A in the pen axis coordinate system (Xs, Ys, Zs) and the inclination angles φ, θ, ψ, the following equation is obtained.
[0034]
[Equation 3]
Figure 0004033929
[0035]
What differentiated the above equation twice over time is the acceleration (Axg, Ayg, Azg) of the point A (Xga, Yga, Zga) in the gravity coordinate system (Xg, Yg, Zg). Here, since the inclination angles φ, θ, and ψ are also functions of time, the following equation can be obtained.
[0036]
[Expression 4]
Figure 0004033929
[0037]
Further, gravity works in the Zg axis direction of the gravity coordinate system (Xg, Yg, Zg) regardless of the movement of the pen tip 8. Therefore, when gravity acceleration g is added to the above equation, the following equation is obtained.
[0038]
[Equation 5]
Figure 0004033929
[0039]
If the acceleration sensors 2a, 2b and 2c are provided at the point A, the accelerations (Axsa, Aysa and Azsa) detected by the acceleration sensors 2a, 2b and 2c from these equations can be expressed by the following equations.
[0040]
[Formula 6]
Figure 0004033929
[0041]
Next, it is assumed that acceleration sensors 2a, 2b, and 2c are provided at points B, C, and D, respectively, and the coordinates of the points B, C, and D in the pen axis coordinate system (Xs, Ys, Zs) are set to B ( Lxx, Lxy, Lxz), C (Lyx, Lyy, Lyz), and D (Lzx, Lzy, Lzz), and the second term of the previous expression is replaced with the following expression.
[0042]
[Expression 7]
Figure 0004033929
[0043]
From the above equation, the accelerations (Axs, Ays, Azs) detected by the respective acceleration sensors 2a, 2b, 2c are as follows.
[0044]
[Equation 8]
Figure 0004033929
[0045]
The acceleration correction unit 48 calculates the second term of the above equation and corrects the acceleration (Axs, Ays, Azs) detected by each acceleration sensor 2a, 2b, 2c. Further, after the coordinate conversion calculation unit 49 performs coordinate conversion of the corrected acceleration, the gravitational acceleration removing unit 50 removes the gravitational acceleration component and obtains the acceleration (Axgo, Aygo, Azgo) of the pen tip 8. Here, the acceleration (Axgo, Aygo, Azgo) of the pen tip 8 in the gravity coordinate system (Xg, Yg, Zg) is the movement distance (Xgo, Ygo, Zgo) in the gravity coordinate system (Xg, Yg, Zg). ) Can be expressed by the following differential expression.
[0046]
[Equation 9]
Figure 0004033929
[0047]
The movement amount calculation unit 51 integrates the acceleration (Axgo, Aygo, Azgo) in the gravitational coordinate system (Xg, Yg, Zg) of the pen tip 8 calculated in this way twice to obtain the locus of the pen tip 8. Ask.
[0048]
Next, the initial values (φ0, θ0, ψ0) of the tilt angle will be described. Since it is only the influence of gravitational acceleration in the stationary state, the acceleration (Axs, Ays, Azs) in the pen axis coordinate system (Xs, Ys, Zs) detected by the acceleration sensors 2a, 2b, 2c is the movement distance (Xs, Ys, Zs). ) Is differentiated twice, and the following equation is obtained.
[0049]
[Expression 10]
Figure 0004033929
[0050]
As described above, in the stationary state, the acceleration (Axs, Ays, Azs) in the pen axis coordinate system (Xs, Ys, Zs) detected by the acceleration sensors 2a, 2b, 2c is not affected by the mounting position of the acceleration sensor. Here, since three equations are established for the two unknowns φ0 and θ0, the gravitational acceleration g can also be handled as an unknown. It is also possible to determine the quality of the calculation based on the fluctuation of the calculated value by calculating the value of the gravitational acceleration g and adding a monitoring function. Further, the relationship between the rotation speeds (P, Q, R) of the angular axes of the pen axis coordinate system (Xs, Ys, Zs) and the changes in the tilt angular velocities (ψ, θ, φ) can be expressed by the following equations. .
[0051]
## EQU11 ##
Figure 0004033929
[0052]
Here, the acceleration (Axgo, Aygo, Azgo) of the pen tip 8 can be obtained by an expression obtained by differentiating the moving distance (Xgo, Ygo, Zgo) in the gravity coordinate system (Xg, Yg, Zg) of the pen tip 8. Can also be expressed as:
[0053]
[Expression 12]
Figure 0004033929
[0054]
The operation of the pen-type input device 1 having the above configuration will be described with reference to the flowchart of FIG.
[0055]
The acceleration sensors 2a, 2b, and 2c detect accelerations in the Xs direction, the Ys direction, and the Zs direction, respectively. The high-pass filters 43a to 43f extract high-frequency components from the signals from the acceleration sensors 2a, 2b, and 2c and the gyros 3a, 3b, and 3c inputted through the A / D converters 41a to 41f, and determine whether they are stationary. The unit 44 outputs a signal indicating whether writing is in progress based on the signals from the high-pass filters 43a to 43f. In this way, since it is determined whether or not writing is performed by detecting a high-frequency signal generated by the frictional force between the pen tip 8 and the writing surface, it is possible to detect whether or not writing is being performed easily and accurately.
[0056]
  The initial tilt angle calculator 45 receives signals from the acceleration sensor 2a for the Xs axis, the acceleration sensor 2b for the Ys axis, and the acceleration sensor 2c for the Zs axis when the signal indicating that writing is in progress is not received from the stationary determination unit 44. , Initial values φ0 and θ0 of the tilt angle of the pen axis 7 in the gravity coordinate systemas well asψ0Calculation(Step S1).
[0057]
  When the inclination angle change calculation unit 46 receives a signal indicating that writing is in progress from the stationary determination unit 44 (step S2), the gravity of the pen shaft 7 is determined based on the rotational angular velocities detected by the three gyros 3a, 3b, 3c. Changes in tilt angles Δφ, Δθ, and Δψ in the coordinate system (Xg, Yg, Zg) are calculated (step S3). The writing tilt angle calculation unit 47 has an initial value φ0 of the tilt angle of the pen shaft 7 calculated by the initial tilt angle calculation unit 45 as described above.θ 0 , Ψ 0Change of the tilt angle (φ, θ, ψ) of the pen shaft 8 calculated by the tilt angle change calculation unit 45.ChangeBased on this, the inclination angles (φ, θ, ψ) of the pen shaft 7 during writing are obtained (step S4). The acceleration correction unit 48 includes coordinates (Lxx, Lxy, Lxz), (Lyx, Lyy, Lyz), (Lzx, Lzy, Lzz) of the three acceleration sensors 2a, 2b, 2c, and an inclination angle change calculation unit 46. 3 based on the change in the tilt angle (φ, θ, ψ) of the pen shaft 7 calculated by the above and the tilt angle (φ, θ, ψ) of the pen shaft 7 in writing calculated by the tilt angle calculating unit 47 in writing. The acceleration (Axs, Ays, Azs) of the pen axis coordinate system (Xs, Ys, Zs) detected by the acceleration sensors 2a, 2b, 2c of the pen8The acceleration is corrected to the acceleration (Axso, Ayso, Azso) (step S5). The coordinate conversion calculation unit 49 calculates the acceleration (Axso, Ayso, Azso) corrected by the acceleration correction unit 48 based on the inclination angle (φ, θ, ψ) in writing detected by the inclination angle calculation unit 47 in writing. Conversion into acceleration (Axgo, Aygo, Azgo) by (Xg, Yg, Zg) is performed (step S6). As described above, the influence of the attachment positions and inclinations of the acceleration sensors 2a, 2b, and 2c is corrected, so that accurate acceleration (Axgo, Aygo, Azgo) by the gravity coordinate system (Xg, Yg, Zg) at the pen tip 8 is obtained. Can be detected.
[0058]
The gravitational acceleration removing unit 50 removes the gravitational acceleration component from the acceleration (Axgo, Aygo, Azgo) converted by the coordinate conversion calculating unit 49 (step S7). The movement amount calculation unit 51 integrates the acceleration (Axgo, Aygo, Azgo) at the pen tip 8 from which the gravitational acceleration removal unit 50 has removed the gravitational acceleration component twice to calculate the movement direction and the movement distance of the pen tip 8. (Step S8). As described above, since the acceleration (Axs, Ays, Azs) detected by the acceleration sensors 2a, 2b, and 2c is integrated after the integration, errors occurring in the integration result can be reduced.
[0059]
The writing trajectory extraction unit 52 extracts the trajectory of the pen tip 8 from the start to the end of writing from the movement direction and distance of the pen tip 8 calculated by the movement amount calculation unit 51, and stores it in the storage unit 5 (step S9). , S10). The fitting unit 53 specifies the writing surface from the locus of the pen tip 8 extracted by the writing locus extraction unit 52 using, for example, the least square method, and maps the locus of the pen tip 8 on the writing surface (step). S11). For example, the three-dimensional data (Xi, Yi, Zi) of the writing trajectory shown in FIG.2The writing surface (a, b, c, d) is specified so that is minimized. Here, as shown in FIG. 6B, the error δi is the shortest distance between the coordinates (Xi, Yi, Zi) and the writing surface. In this way, by mapping the locus of the pen tip 8 on the writing surface, the movement distance of the pen tip 8 on the writing surface can be accurately input even when the writing surface is tilted. Can do. The pen-type input device 1 repeats the above operation (steps S3 to S11) until the stationary determination unit 44 does not detect high frequency components from the acceleration sensors 2a, 2b, 2c or the gyro 3a, 3b, 3c (step s12). Enter characters and figures accurately.
[0060]
In the above embodiment, the coordinates of the acceleration sensors 2a, 2b, 2c are (Lxx, Lxy, Lxz), (Lyx, Lyy, Lyz), (Lzx, Lzy, Lzz). When 2a is provided at a position where Ys = 0, an acceleration sensor 2b in the Ys direction is provided at a position where Xs = 0, and an acceleration sensor 2c in the Zs direction is provided on the Zs axis, the coordinates of the acceleration sensors 2a, 2b, 2c are (Lxx, 0, Lxz), (0, Lyy, Lyz), (0, 0, Lzz), and the movement distance (Xg, Yg, Zg) of the pen tip 8 in the gravity coordinate system (Xg, Yg, Zg) is twice. The acceleration (Axgo, Aygo, Azgo) that can be obtained by the differentiated expression is as shown in the following expression, and the correction calculation amount of the acceleration detected by the acceleration sensors 2a, 2b, 2cga can be reduced.
[0061]
[Formula 13]
Figure 0004033929
[0062]
Here, if the acceleration sensor 2a in the Xs axis direction is provided on the position where Xs = 0, the acceleration sensor 2b in the Ys direction is provided on the position where Ys = 0, and the acceleration sensor 2c in the Zs direction is provided on the Zs axis, the acceleration sensor 2a, The coordinates of 2b and 2c are (0, Lxy, Lxz), (Lyx, 0, Lyz), (0, 0, Lzz), and the movement distance (Xg, Yg, Zg) of the pen tip 8 in the gravity coordinate system (Xg, Yg, Zg) The acceleration (Axgo, Aygo, Azgo) that can be obtained by an expression obtained by differentiating twice (Xg, Yg, Zg) is as follows.
[0063]
[Expression 14]
Figure 0004033929
[0064]
If each acceleration sensor 2a, 2b, 2c is provided on the Zs axis, Lxx, Lxy, Lyx, Lyy, Lzx, Lzy are 0, so the coordinates of the acceleration sensors 2a, 2b, 2c are (0, 0 , Lxz), (0, 0, Lyz), (0, 0, Lzz), and the movement distance (Xg, Yg, Zg) of the pen tip 8 in the gravity coordinate system (Xg, Yg, Zg) is differentiated twice. The acceleration (Axgo, Aygo, Azgo) that can be obtained by the above equation is as shown in the following equation, and the amount of acceleration calculation can be further reduced.
[0065]
[Expression 15]
Figure 0004033929
[0066]
Further, as shown in FIGS. 7 to 9, since a specific element of the correction term has a large acceleration component, the acceleration (Axgo, Aygo) in the gravity coordinate system of the pen tip 8 is used only by using the specific element. , Azgo) may be calculated by the following equation. Thereby, the calculation time can be further shortened. For example, as an acceleration correction element in the Xs-axis direction, Lxx (d2θ / dt2) Lyz {(d2ψ / dt2) Sinθ−φ}, −Lzz {(dφ / dt) as a correction factor for acceleration in the Zs axis direction2+ (Dθ / dt)2cos2φ} was used.
[0067]
[Expression 16]
Figure 0004033929
[0068]
Further, in the above embodiment, the fitting unit 53 maps the locus of the pen tip 8 onto the writing surface so as to be the shortest distance between the coordinates (Xi, Yi, Zi) and the writing surface. As shown in FIG. 10, the distance in the Zg axis direction between the coordinates (Xi, Yi, Zi) and the writing surface may be minimized. For example, an expression (a1) X + (b1) Y + Z + d1= 0, substituting the three-dimensional data (Xi, Yi, Zi) of the writing trajectory into the above equation (a1) × (Xi) + (b1) × (Yi) + (Zi) + (d1) = Δi, and sum of squares of this error Σ (δi)2The writing surface (a1, B1, D1). Thus, the calculation time can be shortened by reducing one parameter. In this case, an error occurs when the writing surface is vertical, but the writing surface is rarely made vertical in a normal use state of the pen-type input device 1.
[0069]
Furthermore, the movement amount calculation unit 51 calculates only the movement distance of the pen tip in the Xg direction and the Yg direction based on the acceleration converted by the coordinate conversion calculation unit 49, and the writing locus extraction unit 52 The locus of the pen tip from the start to the end of writing is extracted from the calculated movement distance of the pen tip 8 in the Xg direction and the Yg direction, and the influence of the writing surface inclination is corrected with a simple configuration. good. In this case, the gravitational acceleration removing unit 50 and the fitting unit 53 are not required, the calculation time by these portions can be shortened, and there is no need to perform the movement amount calculation process in the Zg direction by the movement amount calculation unit 51. Therefore, the calculation time can be greatly shortened.
[0070]
【The invention's effect】
As described above, according to the present invention, the inclination angle of the pen axis being written is calculated based on the initial value of the inclination angle of the pen axis and the change in the inclination angle of the pen axis. Based on the change in the tilt angle of the shaft and the tilt angle of the pen shaft being written, the acceleration detected by the three acceleration sensors is corrected to the acceleration at the tip of the pen, and the acceleration based on the corrected pen shaft coordinate system is corrected. The tip of the pen moves on the writing surface with a small device because it converts the acceleration into the gravity coordinate system based on the tilt angle of the axis and calculates the movement direction and distance of the pen tip based on the converted acceleration. It is possible to accurately detect the moving direction and the moving distance.
[0071]
Furthermore, the Xs-axis direction acceleration sensor is located on the Ys = 0 position, the Ys-direction acceleration sensor is located on the Xs = 0 position, and the Zs-direction acceleration sensor is located on the Zs-axis. Time can be shortened.
[0072]
Furthermore, since each acceleration sensor is provided in the vicinity of the Zs axis, the amount of calculation can be further reduced and the calculation time can be shortened.
[0073]
Furthermore, since the start and end of writing is determined based on the high frequency component due to friction between the pen tip of the acceleration sensor and the gyro and the writing surface, the start and end of writing can be accurately detected with a simple configuration. be able to.
[0074]
Further, since the locus of the pen tip from the start to the end of writing is extracted and the extracted locus of the pen tip is mapped onto the writing surface, the influence of the inclination of the writing surface can be corrected.
[0075]
In addition, since the movement distance in the Xg direction and the Yg direction of the pen tip from the start to the end of writing is extracted, the influence of the inclination of the writing surface can be corrected in a short time with a simple calculation configuration.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a configuration diagram of a calculation unit.
FIG. 3 is a waveform diagram of an acceleration signal.
FIG. 4 is a side view of a pen-type input device that represents a point on the pen-type input device.
FIG. 5 is a flowchart showing the operation of the pen-type input device.
FIG. 6 is a perspective view of a writing surface.
FIG. 7 f13It is explanatory drawing of a component.
FIG. 8 ftwenty threeIt is explanatory drawing of a component.
FIG. 9 f33It is explanatory drawing of a component.
FIG. 10 is a perspective view of the writing surface when the distance from the writing surface in the Zg-axis direction is minimized.
[Explanation of symbols]
1 Pen-type input device
2 Acceleration sensor
3 Gyro
4 Calculation unit
43 High-pass filter
44 Stationary judgment part
45 Initial rotation angle calculator
46 Rotation angle change calculation unit
47 Rotation angle calculator during writing
48 Acceleration correction unit
49 Coordinate transformation calculation unit
50 Gravity acceleration removal part
51 Travel distance calculator
52 Written locus extraction part
53 Fitting Club
5 storage unit
7 Pen axis
8 Pen tip

Claims (6)

3個の加速度センサと3個のジャイロと演算部を有し、
3個の加速度センサはそれぞれペン軸をZs軸としたペン軸座標系(Xs,Ys,Zs)のXs軸方向,Ys軸方向及びZs軸方向の加速度を示す信号を出力し、
3個のジャイロはそれぞれXs軸周り,Ys軸周り及びZs軸周りの回転角速度を示す信号を出力し、
演算部は初期傾斜角演算部と傾斜角変化演算部と筆記中傾斜角演算部と加速度補正部と座標変換演算部と移動量演算部を備え、
初期傾斜角演算部は無筆記状態で3個の加速度センサが検出した加速度を基に重力加速度方向に伸びる軸をZg軸にした重力座標系(Xg,Yg,Zg)におけるペン軸の傾斜角の初期値を演算し、
傾斜角変化演算部は筆記状態で3個のジャイロが検出した回転角速度を基にペン軸の重力座標系(Xg,Yg,Zg)における傾斜角の変化を演算し、
筆記中傾斜角演算部は初期傾斜角演算部が演算した傾斜角の初期値と傾斜角変化演算部が演算した傾斜角の変化を基に筆記中のペン軸の重力座標系(Xg,Yg,Zg)における傾斜角を演算し、
速度補正部は3個の加速度センサの取り付け位置、3個のジャイロが検出した回転角速度、傾斜角変化演算部が演算したペン軸の傾斜角の変化及び筆記中傾斜角演算部が演算した筆記中のペン軸の傾斜角を基にペン軸座標系(Xs,Ys,Zs)における3個の加速度センサの取り付け位置での加速度をペン先端部での加速度に補正し、
座標変換演算部は筆記中傾斜角演算部が検出した筆記中のペン軸の重力座標系(Xg,Yg,Zg)における傾斜角を基に加速度補正部が補正したペン軸座標系(Xs,Ys,Zs)における加速度を重力座標系(Xg,Yg,Zg)による加速度に変換し、
移動量演算部は座標変換演算部が変換した加速度を基にペン先端部の移動方向及び移動距離を算出することを特徴とするペン型入力装置。
It has three acceleration sensors, three gyros and a calculation unit,
Each of the three acceleration sensors outputs a signal indicating acceleration in the Xs axis direction, the Ys axis direction, and the Zs axis direction of the pen axis coordinate system (Xs, Ys, Zs) with the pen axis as the Zs axis,
Each of the three gyros outputs signals indicating rotational angular velocities around the Xs axis, the Ys axis, and the Zs axis.
The calculation unit includes an initial tilt angle calculation unit, a tilt angle change calculation unit, a writing tilt angle calculation unit , an acceleration correction unit, a coordinate conversion calculation unit, and a movement amount calculation unit .
Initial inclination angle calculation section three of gravity coordinate system acceleration sensor has the Zg axis an axis extending in the direction of gravitational acceleration based on the acceleration detected by non-writing state (Xg, Yg, Zg) inclined bevel penholder in The initial value of
The tilt angle change calculation unit calculates the change in tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis based on the rotational angular velocity detected by the three gyros in the writing state.
During inclination angle calculation unit writing the initial inclination angle calculation unit arithmetic the inclination angle initial value the inclination angle change computing unit gravity coordinates of the pen shaft in the writing on the basis of the change in the tilt angle calculated in (Xg, Yg , Zg) is calculated,
Acceleration correction unit mounting position of three acceleration sensors, three rotational angular velocity gyro detects, writing the tilt angle change computing portion is calculated inclination angle calculating section during the change and writing of the tilt angle of the pen axis computed Based on the tilt angle of the pen axis inside, the acceleration at the mounting position of the three acceleration sensors in the pen axis coordinate system (Xs, Ys, Zs) is corrected to the acceleration at the pen tip,
The coordinate transformation calculation unit is a pen axis coordinate system (Xs, Ys) corrected by the acceleration correction unit based on the tilt angle in the gravity coordinate system (Xg, Yg, Zg) of the pen axis being written, detected by the tilt angle calculation unit during writing. , Zs) is converted into acceleration by the gravity coordinate system (Xg, Yg, Zg),
The pen-type input device, wherein the movement amount calculation unit calculates a movement direction and a movement distance of the pen tip based on the acceleration converted by the coordinate conversion calculation unit.
Xs軸方向の加速度センサをYs=0となる位置、Ys方向の加速度センサをXs=0となる位置、Zs方向の加速度センサをZs軸上に設けたことを特徴とする請求項1記載のペン型入力装置。  2. The pen according to claim 1, wherein an Xs-axis direction acceleration sensor is provided at a position where Ys = 0, a Ys-direction acceleration sensor is provided at a position where Xs = 0, and a Zs-direction acceleration sensor is provided on the Zs axis. Type input device. 各加速度センサをZs軸近傍に設けた請求項1記載のペン型入力装置。  The pen-type input device according to claim 1, wherein each acceleration sensor is provided near the Zs axis. 3個の加速度センサ及び3個のジャイロからの信号のペン先端部と被筆記面との摩擦による高周波成分を透過するハイパスフィルタを有し、ハイパスフィルタを経由した3個の加速度センサ及び3個のジャイロからの信号のうちいずれか最初に高周波成分を含んだ信号を基に筆記開始を判断し、ハイパスフィルタを経由した3個の加速度センサ及び3個のジャイロからの信号のうちいずれか最後まで高周波成分を含んだ信号を基に筆記終了を判断する請求項1記載のペン型入力装置。  The three acceleration sensors and the three gyroscopes have a high-pass filter that transmits high-frequency components caused by friction between the pen tip and the writing surface, and the three acceleration sensors and three The start of writing is determined based on the signal containing the high-frequency component at the beginning of the signal from the gyro, and the high-frequency until the last of the signals from the three accelerometers and the three gyros via the high-pass filter. The pen-type input device according to claim 1, wherein the end of writing is determined based on a signal including a component. 筆記軌跡抽出部とフィティング部を有し、筆記軌跡抽出部は移動量演算部が算出したペン先端部の移動方向及び移動距離から筆記開始から終了までのペン先端部の軌跡を抽出し、フィティング部は筆記軌跡抽出部が抽出したペン先端部の軌跡を被筆記面に写像する請求項4記載のペン型入力装置。  A writing locus extraction unit and a fitting unit.The writing locus extraction unit extracts the locus of the pen tip from the start to the end of writing from the movement direction and distance of the pen tip calculated by the movement amount calculation unit. 5. The pen-type input device according to claim 4, wherein the ting unit maps the trajectory of the pen tip extracted by the writing trajectory extraction unit onto the writing surface. 移動量演算部は座標変換演算部が変換した加速度を基にペン先端部のXg方向及びYg方向の移動距離を算出し、移動量演算部が算出したペン先端部のXg方向及びYg方向の移動距離から筆記開始から終了までのペン先端部の軌跡を抽出する筆記軌跡抽出部を有する請求項4記載のペン型入力装置。  The movement amount calculation unit calculates the movement distance in the Xg direction and the Yg direction of the pen tip based on the acceleration converted by the coordinate conversion calculation unit, and the movement in the Xg direction and Yg direction of the pen tip calculated by the movement amount calculation unit The pen-type input device according to claim 4, further comprising a writing trajectory extraction unit that extracts a trajectory of a pen tip from a distance to a writing start to an end.
JP15286896A 1996-02-20 1996-05-27 Pen-type input device Expired - Fee Related JP4033929B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15286896A JP4033929B2 (en) 1996-05-27 1996-05-27 Pen-type input device
US08/803,395 US5902968A (en) 1996-02-20 1997-02-20 Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement
US09/141,903 US6229102B1 (en) 1996-02-20 1998-08-28 Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement
US09/219,603 US6084577A (en) 1996-02-20 1998-12-23 Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement
US09/219,765 US5981884A (en) 1996-02-20 1998-12-23 Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15286896A JP4033929B2 (en) 1996-05-27 1996-05-27 Pen-type input device

Publications (2)

Publication Number Publication Date
JPH09319510A JPH09319510A (en) 1997-12-12
JP4033929B2 true JP4033929B2 (en) 2008-01-16

Family

ID=15549882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15286896A Expired - Fee Related JP4033929B2 (en) 1996-02-20 1996-05-27 Pen-type input device

Country Status (1)

Country Link
JP (1) JP4033929B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7066781B2 (en) 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
US20070066396A1 (en) 2002-04-05 2007-03-22 Denise Chapman Weston Retail methods for providing an interactive product to a consumer
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US8629836B2 (en) 2004-04-30 2014-01-14 Hillcrest Laboratories, Inc. 3D pointing devices with orientation compensation and improved usability
CN102566751B (en) 2004-04-30 2016-08-03 希尔克瑞斯特实验室公司 Free space pointing devices and method
WO2006058129A2 (en) 2004-11-23 2006-06-01 Hillcrest Laboratories, Inc. Semantic gaming and application transformation
US7864159B2 (en) 2005-01-12 2011-01-04 Thinkoptics, Inc. Handheld vision based absolute pointing system
JP4805633B2 (en) 2005-08-22 2011-11-02 任天堂株式会社 Game operation device
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP4262726B2 (en) 2005-08-24 2009-05-13 任天堂株式会社 Game controller and game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8913003B2 (en) 2006-07-17 2014-12-16 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer using a projection marker system
US9176598B2 (en) 2007-05-08 2015-11-03 Thinkoptics, Inc. Free-space multi-dimensional absolute pointer with improved performance
CN101627281B (en) * 2007-07-06 2012-12-12 索尼株式会社 Input device, controller, control system, control method, and hand-held device
DE102014106837B4 (en) * 2014-05-15 2018-12-27 Stabilo International Gmbh Drift compensation / parallel minimization

Also Published As

Publication number Publication date
JPH09319510A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP4033929B2 (en) Pen-type input device
US6229102B1 (en) Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement
US20210208180A1 (en) Correction of accumulated errors in inertial measurement units attached to a user
TWI474265B (en) Moving trajectory calibration method and moving trajectory generation method
CN101872259B (en) Natural interaction pen capable of automatically inputting written contents and handwriting detection method
JPH09230997A (en) Pen type input device
JPH09274534A (en) Pen type input device
JP6434133B2 (en) Method for recognizing and evaluating pen position of electronic pen, and system for electronic recognition of electronic pen and pen position
JP2009223839A (en) Pen type input device and handwriting input method
JP3696365B2 (en) Pen-type input device
JP3560418B2 (en) Pen-type input device
JP3678386B2 (en) Pen-type input device
JP3505057B2 (en) Pen-type input device
JP3776206B2 (en) Pen-type input device
JP3710603B2 (en) Pen-type input device
JPH10124245A (en) Pen-type input device
JP2001100908A (en) Pen tip trace generating method, pen type input device, and pen mounting unit
JP3655021B2 (en) Pen-type input device
JPH0667799A (en) Pen type computer input device
JP3506878B2 (en) Pen-type input device
JP3841953B2 (en) Pen-type input device and character recognition method
JP3841952B2 (en) Pen-type input device
JPH1195915A (en) Pen type input device
JPH09190281A (en) Pen type coordinate input device
JPH10240437A (en) Pen type input system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees