JP4033118B2 - Test method for springy specimens - Google Patents

Test method for springy specimens Download PDF

Info

Publication number
JP4033118B2
JP4033118B2 JP2003410454A JP2003410454A JP4033118B2 JP 4033118 B2 JP4033118 B2 JP 4033118B2 JP 2003410454 A JP2003410454 A JP 2003410454A JP 2003410454 A JP2003410454 A JP 2003410454A JP 4033118 B2 JP4033118 B2 JP 4033118B2
Authority
JP
Japan
Prior art keywords
spring
load
specimen
distance
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003410454A
Other languages
Japanese (ja)
Other versions
JP2005172508A (en
Inventor
武彦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003410454A priority Critical patent/JP4033118B2/en
Publication of JP2005172508A publication Critical patent/JP2005172508A/en
Application granted granted Critical
Publication of JP4033118B2 publication Critical patent/JP4033118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は材料試験機を用いたばね性ある供試体の試験方法に関するものである。   The present invention relates to a method for testing a springy specimen using a material testing machine.

供試体の負荷−変位特性を測定する材料試験機を用いて、たとえば圧縮コイルばねを圧縮してばね試験を行うことは、従来より行われている(例えば、特許文献1)。また、ばね試験を行うことができる材料試験機として、負荷枠のたわみ補正を行い、供試体の負荷−変位特性を正確に測定するものがある(例えば、特許文献2)。   Using a material testing machine that measures the load-displacement characteristics of a specimen, for example, compressing a compression coil spring and performing a spring test has been conventionally performed (for example, Patent Document 1). Further, as a material testing machine capable of performing a spring test, there is one that corrects a load frame deflection and accurately measures a load-displacement characteristic of a specimen (for example, Patent Document 2).

特開平11−2595号公報Japanese Patent Laid-Open No. 11-2595 特開平3−33637号公報JP-A-3-33637

従来の材料試験機を用いたばね試験では、クロスヘッドの移動量からばね変形量を測定している。すなわち、試験開始時のクロスヘッド移動量はゼロに設定表示され、ばねを変形する際のクロスヘッド移動量がばね変形量として表示される。このため、ばね供試体の高さを直接表示することができず、ばねを初期高さより所定量(%)まで圧縮する過程において、ばね長さを表示しながらばね試験を行うことができない。   In a spring test using a conventional material testing machine, the amount of spring deformation is measured from the amount of movement of the crosshead. That is, the crosshead movement amount at the start of the test is set and displayed as zero, and the crosshead movement amount when the spring is deformed is displayed as the spring deformation amount. For this reason, the height of the spring specimen cannot be directly displayed, and the spring test cannot be performed while displaying the spring length in the process of compressing the spring from the initial height to a predetermined amount (%).

すなわち、従来から知られている材料試験機では、初期ばね高さを検出できないので、初期ばね高さから最大ばね変形高さまで、ばね高さを検出しながらばね高さ(ばね変形量)と荷重の特性を計測するようなばね試験を行うことができない。   That is, since the conventional material testing machine cannot detect the initial spring height, the spring height (spring deformation amount) and the load are detected while detecting the spring height from the initial spring height to the maximum spring deformation height. It is not possible to perform a spring test that measures the characteristics of

なお、ダンベル型供試体や丸棒型供試体では、レバー式変位計等を供試体に装着してその変形量を直接測定できるが、圧縮コイルばねや引張コイルばねには変位計を装着することができないから、変形量を直接測定することができない。   For dumbbell type specimens and round bar type specimens, a lever-type displacement meter can be attached to the specimen and the amount of deformation can be measured directly. However, a displacement gauge should be attached to the compression coil spring or tension coil spring. Therefore, the amount of deformation cannot be measured directly.

請求項1の発明は、一対の対向部材の間にばね性を有する供試体(以下、ばね性供試体)を設置して負荷する負荷枠と、ばね性供試体を負荷するアクチュエータと、供試体の負荷荷重を検出する荷重検出手段と、一対の対向部材間の離接距離を検出する距離検出手段と、一対の対向部材間にセットされたばね性供試体をアクチュエータで負荷しながら荷重検出手段で検出した負荷荷重と距離検出手段で検出した離接距離を取得するデータ取得手段とを備えた材料試験機を用いたばね性供試体の試験方法に適用される。そして、このばね性供試体の試験方法は、ばね性供試体の初期寸法と、初期寸法に対する割合とを入力し、一対の対向部材を互いに当接させた位置を距離検出手段のゼロ点位置とし、距離検出手段の検出値がばね性供試体の初期寸法となるように一対の対向部材間の距離を調節し、一対の対向部材間にばね性供試体をセットし、距離検出手段の検出値が初期寸法を示す状態と、初期寸法に割合を乗じて得られる量だけ変形する変形状態との間で、ばね性供試体にアクチュエータで負荷を与えながら、荷重検出手段と距離検出手段の検出値をデータ取得手段により採取することを特徴とする。
According to the first aspect of the present invention, there is provided a load frame in which a specimen having spring properties (hereinafter referred to as a spring specimen) is loaded between a pair of opposing members, an actuator for loading the spring specimen, and a specimen. Load detecting means for detecting the load of the load, distance detecting means for detecting the separation / contact distance between the pair of opposing members, and load detecting means while loading the spring specimen set between the pair of opposing members with the actuator It is applied to a test method for a spring specimen using a material testing machine equipped with a load acquiring unit detected in step 1 and a data acquiring unit that acquires a separation / contact distance detected by a distance detecting unit. Then, the test method for the spring specimen is inputted with an initial dimension of the spring specimen and a ratio to the initial dimension, and a position where the pair of opposing members are brought into contact with each other is set as a zero point position of the distance detecting means. The distance between the pair of opposing members is adjusted so that the detection value of the distance detection means becomes the initial dimension of the spring-like specimen, the spring-like specimen is set between the pair of opposing members, and the detection value of the distance detection means Between the state indicating the initial dimension and the deformed state deformed by the amount obtained by multiplying the initial dimension by the ratio, while the load is applied to the spring specimen by the actuator, the detected value of the load detecting means and the distance detecting means Is collected by a data acquisition means.

請求項2の発明は、請求項1記載のばね性供試体の試験方法において、変形状態を検出した後は、距離検出手段が初期寸法を示すまでばね性供試体への負荷を低減しながら荷重検出手段と距離検出手段の検出値を採取することを特徴とする。  According to a second aspect of the present invention, in the method for testing a spring specimen according to the first aspect, after detecting the deformation state, the load is applied while reducing the load on the spring specimen until the distance detecting means indicates the initial dimension. The detection values of the detection means and the distance detection means are collected.

請求項3の発明は、請求項1または2記載のばね性供試体の試験方法において、一対の対向部材を互いに当接させ、その状態でアクチュエータで負荷枠に負荷をかけながら荷重検出手段と距離検出手段の検出値を採取することにより負荷枠たわみ特性を取得して記憶し、記憶した負荷枠たわみ特性に従って距離検出手段の検出値より負荷枠たわみ量をキャンセルする補正を行い、真の供試体寸法を検出することを特徴とする。  According to a third aspect of the present invention, in the test method for a spring specimen according to the first or second aspect, the pair of opposing members are brought into contact with each other, and the load detection means and the distance are applied while applying a load to the load frame with the actuator in that state. By collecting the detection value of the detection means, the load frame deflection characteristic is acquired and stored, and according to the stored load frame deflection characteristic, correction is performed to cancel the load frame deflection amount from the detection value of the distance detection means, and the true specimen It is characterized by detecting dimensions.

本願発明によれば、ばね高さの何%まで圧縮すると云うような試験を行うことができる。  According to the present invention, it is possible to perform a test such as compressing to what percentage of the spring height.

図1は、この発明によるばね性供試体の試験方法によりばね試験を行う材料試験機を示している。固定テーブル11の上には左右一対のねじ棹12,13が立設され、このねじ棹12,13の上部にはヨーク14が横架されている。各ねじ棹12,13とクロスヘッド15の左右両側に設けられた一対のナット(不図示)とは螺合しており、これによりクロスヘッド15がねじ棹12,13で昇降可能に支持される。固定テーブル11内に配設されたサーボモータ16は、材料試験機の作動を制御する制御装置30に接続される。モータ16の出力軸は、伝達装置17を介してねじ棹12,13に結合される。モータ16の出力軸にはパルスエンコーダ18が接続され、このパルスエンコーダ18は制御装置30に接続される。制御装置30は、マイクロコンピュータやその周辺回路などで構成される。   FIG. 1 shows a material testing machine for performing a spring test by the method for testing a spring specimen according to the present invention. A pair of left and right screw rods 12 and 13 are erected on the fixed table 11, and a yoke 14 is horizontally mounted on the upper portions of the screw rods 12 and 13. The screw rods 12 and 13 and a pair of nuts (not shown) provided on the left and right sides of the cross head 15 are screwed together, whereby the cross head 15 is supported by the screw rods 12 and 13 so as to be movable up and down. . The servo motor 16 disposed in the fixed table 11 is connected to a control device 30 that controls the operation of the material testing machine. The output shaft of the motor 16 is coupled to the screw rods 12 and 13 via the transmission device 17. A pulse encoder 18 is connected to the output shaft of the motor 16, and the pulse encoder 18 is connected to the control device 30. The control device 30 includes a microcomputer and its peripheral circuits.

クロスヘッド15の下面にはロードセル19を介して上保持具21が、固定テーブル11の上面には下保持具22がそれぞれ相対向して取り付けられており、これら上保持具21および下保持具22の間でばね供試体TPが保持される。なお、基台11、ねじ棹12,13、クロスヘッド15により負荷枠LFが構成される。   An upper holder 21 is attached to the lower surface of the crosshead 15 via a load cell 19, and a lower holder 22 is attached to the upper surface of the fixed table 11. The upper holder 21 and the lower holder 22 are opposed to each other. The spring specimen TP is held between the two. The base 11, the screw rods 12 and 13, and the crosshead 15 constitute a load frame LF.

そして、制御装置30からの制御信号に基づき、モータ16が所定方向に回転するのにともない、伝達装置17を介してねじ棹12,13が同一方向に回転し、これらねじ棹12,13に螺合されたクロスヘッド15が昇降する。これにより、上保持具21および下保持具22により保持されたばね供試体TPに負荷、ここでは圧縮荷重が加えられる。このとき、クロスヘッド15に取り付けられたロードセル19により検知された圧縮荷重は、パルスエンコーダ18で検知されたサーボモータ16の回転量、すなわち、ばね供試体TPの変形量とともに制御装置30に入力される。後述するように、ばね変形量に基づいてばね高さが算出される。   Then, based on the control signal from the control device 30, as the motor 16 rotates in a predetermined direction, the screw rods 12 and 13 rotate in the same direction via the transmission device 17, and the screw rods 12 and 13 are screwed. The combined cross head 15 moves up and down. As a result, a load, here a compressive load, is applied to the spring specimen TP held by the upper holder 21 and the lower holder 22. At this time, the compression load detected by the load cell 19 attached to the crosshead 15 is input to the control device 30 together with the rotation amount of the servo motor 16 detected by the pulse encoder 18, that is, the deformation amount of the spring specimen TP. The As will be described later, the spring height is calculated based on the amount of spring deformation.

なお、ばね供試体TPは、圧縮ばね、引張ばねの何れでもよく、下保持具22、上保持具21は、図示の圧縮ばねの場合にはばね巻端を受け持つばね座部材のようなものになり、引張ばねの場合にはばねフックを係止される止め具のようなものになる。   The spring specimen TP may be either a compression spring or a tension spring. In the case of the illustrated compression spring, the lower holder 22 and the upper holder 21 are like spring seat members that handle the spring winding end. Thus, in the case of a tension spring, it becomes like a stopper for locking the spring hook.

制御装置30には、オペレーションに関する指示内容や測定結果である荷重値や各種解析内容などを表示する表示装置32、オペレータからの指示などを入力する入力装置31が接続される。   Connected to the control device 30 are a display device 32 that displays instruction contents related to operations, load values as measurement results, various analysis contents, and the like, and an input device 31 that inputs instructions from an operator.

制御装置30は、ロードセル19およびパルスエンコーダ18からの検出信号を入力し、サーボモータ16へ操作量信号を出力する全体的な制御を行う。そのため制御装置30は、試験条件に応じた負荷パターン波形を発生する試験波形発生部33と、ロードセル19によって検出された負荷荷重とパルスエンコーダ18によって検出されたクロスヘッド15の位置を取得する測定データ取得部34と、サーボモータ16の駆動信号を出力する負荷指令出力部35とを備えている。   The control device 30 performs overall control of inputting detection signals from the load cell 19 and the pulse encoder 18 and outputting an operation amount signal to the servo motor 16. Therefore, the control device 30 obtains the load waveform detected by the load cell 19 and the position of the crosshead 15 detected by the pulse encoder 18 by the test waveform generator 33 that generates a load pattern waveform according to the test conditions. The acquisition part 34 and the load command output part 35 which outputs the drive signal of the servomotor 16 are provided.

負荷指令出力部35は、試験波形発生部33から発生する負荷パターン波形が示す負荷指令値とロードセル19が検出した負荷検出値との偏差を算出したり、試験波形発生部33から発生するばね高さ変位パターン波形が示す変位指令値とパルスエンコーダ18が検出したばね変形量に基づくばね高さとの偏差を算出して、サーボモータ16へ駆動信号を出力する。   The load command output unit 35 calculates the deviation between the load command value indicated by the load pattern waveform generated from the test waveform generation unit 33 and the load detection value detected by the load cell 19, or the spring height generated from the test waveform generation unit 33. The deviation between the displacement command value indicated by the displacement pattern waveform and the spring height based on the spring deformation detected by the pulse encoder 18 is calculated, and a drive signal is output to the servo motor 16.

制御装置30は、ばね高さカウンタ38、初期ばね高さ設定部39、最大ばね変形量設定部40を有する。ばね高さカウンタ38のカウント値はばね高さを表し、後述するように、下保持具22と上保持具21とが互いに当接した位置をばね高さゼロとする。初期ばね高さ設定部39には、入力装置31より入力されるばね試験条件に応じた初期ばね高さHiが設定され、最大ばね変形量設定部40には、入力装置31より入力されるばね試験条件に応じた最大ばね変形量Hmが設定される。   The control device 30 includes a spring height counter 38, an initial spring height setting unit 39, and a maximum spring deformation amount setting unit 40. The count value of the spring height counter 38 represents the spring height, and as will be described later, the position where the lower holder 22 and the upper holder 21 are in contact with each other is set to zero spring height. An initial spring height Hi corresponding to the spring test condition input from the input device 31 is set in the initial spring height setting unit 39, and a spring input from the input device 31 is set in the maximum spring deformation amount setting unit 40. A maximum spring deformation amount Hm is set according to the test conditions.

制御装置30はさらに、たわみデータ記憶部41とたわみ補正部36とを備えている。たわみデータ記憶部41には、試験に先立ってあらかじめ記憶した負荷枠LFのたわみ特性データが記憶されている。たわみ特性データの作成手法は後述する。データたわみ補正部36は、たわみデータ記憶部41に記憶されている負荷枠LFの負荷枠たわみ特性データに従ってパルスエンコーダ18により検出されたばね高さに含まれる負荷枠たわみ量をキャンセルして真のばね高さを検出する。   The control device 30 further includes a deflection data storage unit 41 and a deflection correction unit 36. The deflection data storage unit 41 stores deflection characteristic data of the load frame LF stored in advance prior to the test. A method of creating the deflection characteristic data will be described later. The data deflection correction unit 36 cancels the load frame deflection amount included in the spring height detected by the pulse encoder 18 in accordance with the load frame deflection characteristic data of the load frame LF stored in the deflection data storage unit 41, and the true spring Detect height.

すなわち、制御装置30は、測定データ取得部34で所定のサンプリング間隔で取得したロードセル19による負荷検出値と、たわみ補正部36によってリアルタイムにたわみ補正された真のばね高さとをリアルタイムでモニタ32に数値表示、グラフ表示する出力処理を行う。また、制御装置30は、負荷検出値とたわみ補正した真のばね高さとを、負荷−変位特性として試験結果記憶部37に格納する。   That is, the control device 30 provides the monitor 32 with the load detection value obtained by the load cell 19 acquired at a predetermined sampling interval by the measurement data acquisition unit 34 and the true spring height corrected by the deflection correction unit 36 in real time. Performs output processing for numerical display and graph display. In addition, the control device 30 stores the load detection value and the true spring height corrected for deflection in the test result storage unit 37 as load-displacement characteristics.

たわみ補正部36のたわみ補正は次のように行われる。上述したように、ばね供試体TPを負荷したときにパルスエンコーダ18から出力されるばね高さの検出値、すなわちばね高さカウンタ38のカウント値は負荷枠LFのたわみを含んでいる。そこで、カウント値であるばね高さが取得されたときの荷重を求め、この荷重を引数としてたわみデータ記憶部41のたわみデータからたわみ量を算出する。そして、ばね高さカウンタ38のばね高さからたわみ量を減算した値を真のばね高さとする。   The deflection correction of the deflection correction unit 36 is performed as follows. As described above, the spring height detection value output from the pulse encoder 18 when the spring specimen TP is loaded, that is, the count value of the spring height counter 38 includes the deflection of the load frame LF. Therefore, the load when the spring height as the count value is acquired is obtained, and the deflection amount is calculated from the deflection data in the deflection data storage unit 41 using this load as an argument. Then, a value obtained by subtracting the deflection amount from the spring height of the spring height counter 38 is set as a true spring height.

ばね試験に先立って負荷枠たわみ特性を作成するには、入力装置31によりばね試験モードを選択する。たわみ補正モードを選択した後、スタートボタンを操作すると、サーボモータ16によって上保持具21が降下し、上保持具21が下保持具22に当接したことをロードセル19の出力信号より判断する。たとえば、ロードセル19の出力値が0.01Nを示すときを上下保持具21および22が接触したものとする。このときのパルスエンコーダ18の検出値がゼロとなるようばね高さカウンタ38をゼロリセットする。このとき、表示装置32の高さ表示部32aには0.0mmを表示し、負荷枠LFの変形量をゼロと認識する。   To create the load frame deflection characteristic prior to the spring test, the input device 31 selects the spring test mode. When the start button is operated after the deflection correction mode is selected, it is determined from the output signal of the load cell 19 that the upper holder 21 is lowered by the servo motor 16 and the upper holder 21 is in contact with the lower holder 22. For example, it is assumed that the upper and lower holders 21 and 22 are in contact with each other when the output value of the load cell 19 indicates 0.01 N. At this time, the spring height counter 38 is reset to zero so that the detection value of the pulse encoder 18 becomes zero. At this time, 0.0 mm is displayed on the height display portion 32a of the display device 32, and the deformation amount of the load frame LF is recognized as zero.

つぎに、サーボモータ16によって負荷枠LFに所定荷重まで負荷をかけ、その後、除荷する。たとえば、表示装置32の荷重表示部32bの表示値を目視しながら、ロードセル19の最大容量の95%程度まで負荷をかけ、その後、ばね高さ表示部32aの表示値がゼロを示すまで除荷する。この間、所定のサンプリング間隔で荷重データと変形量データ読み込んでたわみデータ記憶部41に格納する。これにより、図2に符号Aで示すような負荷枠LFのたわみ特性が作成される。図2の横軸は負荷枠のたわみ(変形量とも呼ぶ)を、縦軸は負荷枠に作用する荷重(試験力、負荷などとも呼ぶ)を示す。なお、図2では負荷枠のたわみ量をαで示す。   Next, a load is applied to the load frame LF up to a predetermined load by the servo motor 16, and then the load is unloaded. For example, while visually observing the display value of the load display unit 32b of the display device 32, a load is applied to about 95% of the maximum capacity of the load cell 19, and then unloading is performed until the display value of the spring height display unit 32a indicates zero. To do. During this time, load data and deformation amount data are read at a predetermined sampling interval and stored in the deflection data storage unit 41. As a result, a deflection characteristic of the load frame LF as indicated by a symbol A in FIG. 2 is created. The horizontal axis in FIG. 2 indicates the deflection (also referred to as deformation amount) of the load frame, and the vertical axis indicates the load (also referred to as test force, load, etc.) acting on the load frame. In FIG. 2, the deflection amount of the load frame is indicated by α.

ばね試験の手順について説明する。入力装置31のモード選択ボタンによりばね試験モードを選択し、同じく入力装置31に設けられているスタートボタンを操作するとばね試験が開始される。ばね試験では、初期ばね高さと最大ばね変形高さを予め入力しておく。そして、ばね高さカウンタ38のばね高さが初期ばね高さ設定部39に設定されている初期ばね高さHiになるまで、サーボモータ16によって上保持具21を上昇させる。これにより、上保持具21と下保持具22との間隔(離間距離)が初期ばね高さHiに設定される。このとき、表示装置32のばね高さ表示部32aにはばね初期高さHiが表示される。   The procedure of the spring test will be described. When the spring test mode is selected by the mode selection button of the input device 31 and the start button provided in the input device 31 is operated, the spring test is started. In the spring test, an initial spring height and a maximum spring deformation height are input in advance. Then, the upper holder 21 is raised by the servo motor 16 until the spring height of the spring height counter 38 reaches the initial spring height Hi set in the initial spring height setting unit 39. Thereby, the space | interval (separation distance) of the upper holder 21 and the lower holder 22 is set to the initial stage spring height Hi. At this time, the spring initial height Hi is displayed on the spring height display portion 32a of the display device 32.

この状態で、上保持具21と下保持具22との間にばね供試体TPをセットし、再びスタートボタンを押すとばね試験が開始される。ばね試験が開始されると、たわみ補正された真のばね高さが、最大ばね変形量設定部40に予め定められている最大ばね変形量Hmと一致するまで、ばね高さ変位パターン波形にしたがってばね供試体TPが圧縮される。この間、測定データ取得部34は、ロードセル19とパルスエンコーダ18の検出値を所定のサンプリング間隔で採取する。このとき、たわみ補正部36で真のばね高さを算出してばね高さカウンタ38を更新する。   In this state, when the spring specimen TP is set between the upper holder 21 and the lower holder 22, and the start button is pressed again, the spring test is started. When the spring test is started, according to the spring height displacement pattern waveform, the true spring height whose deflection has been corrected matches the maximum spring deformation amount Hm predetermined in the maximum spring deformation amount setting unit 40. The spring specimen TP is compressed. During this time, the measurement data acquisition unit 34 collects detection values of the load cell 19 and the pulse encoder 18 at a predetermined sampling interval. At this time, the deflection correction unit 36 calculates the true spring height and updates the spring height counter 38.

真のばね高さが最大ばね変形量Hmに到達した後は、真のばね高さが再び初期ばね高さHiを示すまでサーボモータ16によって上保持具21を上昇移動させてばね供試体TPへの負荷を低減させる。すなわち、除荷する。この間も、ロードセル19とパルスエンコーダ18の検出値を所定のサンプリング間隔で測定データ取得部34で採取し、上述したようにばね高さカウンタ38を更新する。   After the true spring height reaches the maximum spring deformation amount Hm, the upper holder 21 is moved up by the servo motor 16 until the true spring height again indicates the initial spring height Hi, and the spring specimen TP is moved. Reduce the load. That is, unloading. Also during this time, the detection values of the load cell 19 and the pulse encoder 18 are collected by the measurement data acquisition unit 34 at a predetermined sampling interval, and the spring height counter 38 is updated as described above.

このようにばね試験のデータ採取の間、たわみ補正部36により算出された真のばね高さは、負荷枠たわみ特性にしたがってリアルタイムでたわみ補正され、たわみ補正後の実際のばね高さと試験荷重とが、リアルタイムでモニタ32に数値表示、グラフ表示される。   Thus, during the spring test data collection, the true spring height calculated by the deflection correction unit 36 is corrected in real time according to the load frame deflection characteristics, and the actual spring height and test load after deflection correction are calculated. Are displayed numerically and graphically on the monitor 32 in real time.

なお、図2において、符号Bはたわみ補正前の検出値による負荷−ばね変形量特性を、符号Cはたわみ補正後の負荷−ばね変形量特性を示している。   In FIG. 2, symbol B indicates a load-spring deformation amount characteristic based on a detected value before deflection correction, and symbol C indicates a load-spring deformation amount characteristic after deflection correction.

上述したように、この実施の形態によるばね試験法では次のような作用効果を奏することができる。   As described above, the spring test method according to this embodiment can provide the following operational effects.

(1)ばね試験条件としてばね初期高さおよびばね最大変形高さを指定することが可能になる。
(2)ばね高さの何%まで圧縮すると云うような試験を行うことができる。
(3)試験中、表示装置32にばね高さを表示できる。
(4)予め負荷枠LFのたわみデータを測定し、検出されるばね高さデータから負荷枠のたわみ分をリアルタイムで補正した真のばね高さを求めることができ、正確なばね試験を行うことができる。とくに、ばね圧縮から除荷する切替点が真のばね高さにより正確となる。
(1) The spring initial height and the maximum spring deformation height can be specified as the spring test conditions.
(2) It is possible to perform a test such as compressing to what percentage of the spring height.
(3) The spring height can be displayed on the display device 32 during the test.
(4) The deflection data of the load frame LF is measured in advance, and the true spring height obtained by correcting the deflection of the load frame in real time can be obtained from the detected spring height data, and an accurate spring test is performed. Can do. In particular, the switching point for unloading from spring compression is more accurate due to the true spring height.

以上の説明はあくまでも一例であり、本発明の特徴を損なわない限り種々の変形が可能である。たとえば、サーボモータで一対のねじ棹を駆動して負荷を加える試験機について説明したが、油圧シリンダ、油圧ラムあるいは電磁アクチュエータで負荷を加える試験機にも本発明を適用できる。さらに、ばね試験に限らず、弾性マットなどの評価試験にも本発明を適用できる。   The above description is merely an example, and various modifications can be made without impairing the characteristics of the present invention. For example, a testing machine that applies a load by driving a pair of screw rods with a servo motor has been described, but the present invention can also be applied to a testing machine that applies a load with a hydraulic cylinder, a hydraulic ram, or an electromagnetic actuator. Furthermore, the present invention can be applied not only to the spring test but also to an evaluation test of an elastic mat or the like.

この発明によるばね性供試体の試験方法で試験を行う材料試験機の一例を示す図である。It is a figure which shows an example of the material testing machine which tests with the testing method of the spring test piece by this invention. ばね試験における負荷−ばね変形量特性を示すグラフである。It is a graph which shows the load-spring deformation amount characteristic in a spring test.

符号の説明Explanation of symbols

15 クロスヘッド
16 サーボモータ
18 パルスエンコーダ
19 ロードセル
21 上保持具
22 下保持具
30 制御装置
31 入力装置
32 表示装置
33 試験波形発生部
34 測定データ取得部
35 負荷指令出力部
36 たわみ補正部
37 試験結果記憶部
38 ばね高さカウンタ
39 初期ばね高さ設定部
40 最大ばね変形量設定部
41 たわみデータ記憶部
DESCRIPTION OF SYMBOLS 15 Crosshead 16 Servo motor 18 Pulse encoder 19 Load cell 21 Upper holder 22 Lower holder 30 Control apparatus 31 Input apparatus 32 Display apparatus 33 Test waveform generation part 34 Measurement data acquisition part 35 Load command output part 36 Deflection correction part 37 Test result Storage unit 38 Spring height counter 39 Initial spring height setting unit 40 Maximum spring deformation setting unit 41 Deflection data storage unit

Claims (3)

一対の対向部材の間にばね性を有する供試体(以下、ばね性供試体)を設置して負荷する負荷枠と、
前記ばね性供試体を負荷するアクチュエータと、
前記ばね性供試体の負荷荷重を検出する荷重検出手段と、
前記一対の対向部材間の離接距離を検出する距離検出手段と、
前記一対の対向部材間にセットされた前記ばね性供試体を前記アクチュエータで負荷しながら前記荷重検出手段で検出した負荷荷重と前記距離検出手段で検出した離接距離を取得するデータ取得手段とを備えた材料試験機を用いたばね性供試体の試験方法において、
前記ばね性供試体の初期寸法と、前記初期寸法に対する割合とを入力し、
前記一対の対向部材を互いに当接させた位置を前記距離検出手段のゼロ点位置とし、
前記距離検出手段の検出値が前記ばね性供試体の初期寸法となるように前記一対の対向部材間の距離を調節し、
前記一対の対向部材間に前記ばね性供試体をセットし、
前記距離検出手段の検出値が前記初期寸法を示す状態と、前記初期寸法に前記割合を乗じて得られる量だけ変形する変形状態との間で、前記ばね性供試体に前記アクチュエータで負荷を与えながら、前記荷重検出手段と前記距離検出手段の検出値を前記データ取得手段により採取することを特徴とするばね性供試体の試験方法。
A load frame in which a specimen having spring properties (hereinafter referred to as a spring specimen) is installed and loaded between a pair of opposing members;
An actuator for loading the spring specimen;
Load detecting means for detecting a load load of the spring specimen;
Distance detecting means for detecting a separation distance between the pair of opposing members;
A data acquisition means for acquiring a load load detected by the load detection means and a separation / contact distance detected by the distance detection means while loading the spring specimen set between the pair of opposing members with the actuator. In the test method of the spring specimen using the equipped material testing machine,
Enter the initial dimension of the spring specimen and the ratio to the initial dimension,
The position where the pair of opposing members are brought into contact with each other is set as the zero point position of the distance detecting means,
Adjusting the distance between the pair of opposing members so that the detection value of the distance detection means is the initial size of the spring specimen;
Set the spring specimen between the pair of opposing members,
A load is applied to the spring specimen by the actuator between a state where the detection value of the distance detecting means indicates the initial dimension and a deformed state in which the initial dimension is deformed by an amount obtained by multiplying the ratio. On the other hand, the spring test specimen testing method is characterized in that detection values of the load detection means and the distance detection means are collected by the data acquisition means.
請求項1記載のばね性供試体の試験方法において、
前記変形状態を検出した後は、前記距離検出手段が前記初期寸法を示すまで前記ばね性供試体への負荷を低減しながら前記荷重検出手段と前記距離検出手段の検出値を採取することを特徴とするばね性供試体の試験方法。
In the test method of the spring test piece according to claim 1,
After detecting the deformation state , the detection values of the load detection means and the distance detection means are collected while reducing the load on the spring test specimen until the distance detection means indicates the initial dimension. Test method for springy specimens.
請求項1または2記載のばね性供試体の試験方法において、
前記一対の対向部材を互いに当接させ、その状態で前記アクチュエータで前記負荷枠に負荷をかけながら前記荷重検出手段と前記距離検出手段の検出値を採取することにより前記負荷枠たわみ特性を取得して記憶し、
前記記憶した負荷枠たわみ特性に従って前記距離検出手段の検出値より負荷枠たわみ量をキャンセルする補正を行い、真の供試体寸法を検出することを特徴とするばね性供試体の試験方法。
In the test method of the springy specimen according to claim 1 or 2,
Is brought into contact with each other the pair of opposed members, to obtain the load frame deflection characteristics by taking the detection value of said distance detecting means and said load detecting means while applying a load to the load frame by the actuator in the state Remember,
A test method for a springy specimen, wherein a true specimen size is detected by performing correction for canceling the amount of deflection of the load frame from a detection value of the distance detecting means according to the stored load frame deflection characteristics.
JP2003410454A 2003-12-09 2003-12-09 Test method for springy specimens Expired - Lifetime JP4033118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410454A JP4033118B2 (en) 2003-12-09 2003-12-09 Test method for springy specimens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410454A JP4033118B2 (en) 2003-12-09 2003-12-09 Test method for springy specimens

Publications (2)

Publication Number Publication Date
JP2005172508A JP2005172508A (en) 2005-06-30
JP4033118B2 true JP4033118B2 (en) 2008-01-16

Family

ID=34731548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410454A Expired - Lifetime JP4033118B2 (en) 2003-12-09 2003-12-09 Test method for springy specimens

Country Status (1)

Country Link
JP (1) JP4033118B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807387B1 (en) 2006-12-22 2008-02-28 한국철도기술연구원 Jig for testing a hydraulic spring
CN102944511B (en) * 2012-11-20 2015-03-25 成都宁兴汽车弹簧有限公司 Spring salt mist fatigue test device
JP6720431B2 (en) * 2018-04-25 2020-07-08 株式会社東海理機 Wave spring shape adjustment device
KR102173706B1 (en) * 2018-07-05 2020-11-03 정호균 Endurance tester for spring

Also Published As

Publication number Publication date
JP2005172508A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP2075566B1 (en) Indentation testing instrument and indentation testing method
JP4793445B2 (en) Indentation type material testing machine, test method, and test program product
EP3521801A1 (en) Test result evaluating method and material tester
JP2007304057A (en) Method and device for failure diagnosis
CN110108554B (en) Test result evaluation method and material testing machine
US20170102305A1 (en) Hardness testing apparatus and indenter of hardness testing apparatus
JP2017090071A (en) Hardness tester and hardness testing method
CN106644687A (en) Small-punch and continuous indentation integrated tester system
US7021155B2 (en) Universal material testing method and device therefor
JP4033118B2 (en) Test method for springy specimens
JP2016206094A (en) Hardness measurement device
JP6885276B2 (en) Material tester
US5724257A (en) Foundry sand testing apparatus and system
US11167378B1 (en) Techniques for determining weld quality
JP7044177B2 (en) Material tester and control method of material tester
JP2681913B2 (en) Indentation hardness test method and device
CN111386455B (en) Material testing machine
JP2014185949A (en) Hardness tester, and hardness testing method
JPH09159589A (en) Material testing machine
JP4206614B2 (en) Material testing machine
JP3378780B2 (en) Material testing machine
JP2004069659A (en) Thermal fatigue testing machine
Mancero Automation of a Universal Testing Machine for Measuring Mechanical Properties in Textile Fibers
JPWO2008081505A1 (en) Material testing machine
JP3519917B2 (en) Material testing machine with warm-up function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4033118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

EXPY Cancellation because of completion of term