JP4031798B2 - Vacuum chamber of charged particle accelerator - Google Patents

Vacuum chamber of charged particle accelerator Download PDF

Info

Publication number
JP4031798B2
JP4031798B2 JP2005065548A JP2005065548A JP4031798B2 JP 4031798 B2 JP4031798 B2 JP 4031798B2 JP 2005065548 A JP2005065548 A JP 2005065548A JP 2005065548 A JP2005065548 A JP 2005065548A JP 4031798 B2 JP4031798 B2 JP 4031798B2
Authority
JP
Japan
Prior art keywords
vacuum chamber
charged particle
particle accelerator
channel
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005065548A
Other languages
Japanese (ja)
Other versions
JP2006252871A (en
Inventor
克也 仙入
博史 原
清之 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Materials Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005065548A priority Critical patent/JP4031798B2/en
Publication of JP2006252871A publication Critical patent/JP2006252871A/en
Application granted granted Critical
Publication of JP4031798B2 publication Critical patent/JP4031798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

本発明は、電子、陽電子、イオン等の荷電粒子を高エネルギー状態に加速させる荷電粒子加速器の真空チェンバに関する。   The present invention relates to a vacuum chamber of a charged particle accelerator that accelerates charged particles such as electrons, positrons, and ions to a high energy state.

荷電粒子加速器は、内部を超高真空とした直線状あるいは環状の真空チェンバ内で電子、陽電子、イオン等の荷電粒子を磁場により偏向周回させて電場により光速近くまで加速させることにより、荷電粒子に高エネルギーを付与する装置である。   Charged particle accelerators are charged particles by accelerating the charged particles such as electrons, positrons, and ions in a linear or annular vacuum chamber with an ultra-high vacuum inside by a magnetic field and accelerating to near the speed of light by an electric field. It is a device that imparts high energy.

このような荷電粒子加速器においては、光速に近い高エネルギーの荷電粒子が磁場中を通過し、軌道が曲がるときに、荷電粒子の軌道の接線方向に放射光を生じ、この放射光が真空チェンバの径方向外側の内壁面に照射される。この結果、内壁面が過熱されて真空チェンバに多大な熱負荷が加わるばかりでなく、放射光の照射に伴う光電効果により、内壁面から光電子が放出され、周回する荷電粒子の障害となる等の問題があった。   In such a charged particle accelerator, when high-energy charged particles close to the speed of light pass through the magnetic field and the orbit bends, radiated light is generated in the tangential direction of the charged particle's orbit, and this radiated light is emitted from the vacuum chamber. Irradiate the radially inner wall surface. As a result, the inner wall surface is overheated and not only a great heat load is applied to the vacuum chamber, but also a photoelectron is emitted from the inner wall surface due to the photoelectric effect associated with the irradiation of the radiated light, which becomes an obstacle to the surrounding charged particles. There was a problem.

このため、真空チェンバの荷電粒子が周回する円形断面のビームチャンネルの真空チェンバの径方向外側に、荷電粒子の周回軌道(ビームチャンネルの軸心周辺)から離反させるようにアンテ部を形成させると共に、アンテ部の放射光が照射される真空チェンバの径方向外側の内壁面に隣接するように冷却水を流通させる冷却チャンネルを形成させたものが、種々提供されている。   For this reason, an ante portion is formed on the outer side in the radial direction of the vacuum chamber of the circular channel beam channel around which the charged particles of the vacuum chamber circulate so as to be separated from the orbit of the charged particles (around the axis of the beam channel), Various types of cooling channels are provided in which cooling water is circulated so as to be adjacent to the radially inner wall surface of the vacuum chamber irradiated with the radiation light of the antenna portion.

このような構成をなすことにより、荷電粒子の周回軌道からアンテ部の内壁面までの距離が長くなり、その分、この内壁面から放出される光電子と周回する荷電粒子との距離も遠くなる。この結果、放射光の照射に伴って真空チェンバに加わる熱負荷を抑制すると共に、放射光の照射に伴って放出される光電子が走行する荷電粒子の周回軌道まで容易に到達できないようにしている。   With such a configuration, the distance from the orbit of the charged particle to the inner wall surface of the antenna portion is increased, and accordingly, the distance between the photoelectrons emitted from the inner wall surface and the surrounding charged particle is also increased. As a result, the thermal load applied to the vacuum chamber with the irradiation of the radiated light is suppressed, and the circular orbit of the charged particles on which the photoelectrons emitted with the irradiation of the radiated light travel cannot be easily reached.

上述した従来の電荷粒子加速器の真空チェンバは、例えば、非特許文献1に開示されている。   The vacuum chamber of the conventional charged particle accelerator described above is disclosed in Non-Patent Document 1, for example.

Y.Suetsugu,外11名、“R&D OF COPPER BEAM DUCT WITH ANTECHAMBER SCHEME FOR CURRENT ACCELERATORS”、インターネット<http://www-lib.kek.jp/cgi-bin/kiss prepri?KN=200427053&0F=8.>Y.Suetsugu, 11 others, “R & D OF COPPER BEAM DUCT WITH ANTECHAMBER SCHEME FOR CURRENT ACCELERATORS”, Internet <http://www-lib.kek.jp/cgi-bin/kiss prepri? KN = 200427053 & 0F = 8.>

しかしながら、従来の荷電粒子加速器の真空チェンバにおいては、チェンバ本体内を真空にするためのポンプ室を形成するために溝形(コ字形)のポンプチャンネルが接合されており、このポンプチャンネルは引き抜き加工等により製造されるので、機械加工の比率が大きくなり製造コストの増加に繋がっていた。   However, in the conventional charged particle accelerator vacuum chamber, a groove-shaped (U-shaped) pump channel is joined to form a pump chamber for evacuating the chamber body, and this pump channel is drawn. Therefore, the ratio of machining is increased, leading to an increase in manufacturing cost.

また、近年の荷電粒子加速では、荷電粒子の更なる高エネルギー化が進められており、その分、放射光の照射による真空チェンバに加わる熱負荷も大きくなってきている。真空チェンバが高温に保持されると、真空度の低下を招くだけでなく、材料が延びて真空チェンバが熱変形してしまうおそれがある。このため、真空チェンバの耐熱性、つまり、冷却性能の向上が求められているが、従来の荷電粒子加速器の真空チェンバにおいては、冷却性能が十分ではなかった。このように、冷却性能が十分でない真空チェンバの中には、ビームチャンネルの外周面に新たに冷却チャンネルを設けるようにしたものもあるが、構造が複雑になると共に、機械加工の比率が大きくなり製造コストの増加に繋がっていた。   Further, in charged particle acceleration in recent years, the energy of charged particles has been further increased, and the heat load applied to the vacuum chamber due to the irradiation of radiation is increased accordingly. If the vacuum chamber is held at a high temperature, not only will the degree of vacuum be reduced, but the material may extend and the vacuum chamber may be thermally deformed. For this reason, although the heat resistance of a vacuum chamber, ie, the improvement of cooling performance, is calculated | required, in the vacuum chamber of the conventional charged particle accelerator, cooling performance was not enough. As described above, some vacuum chambers with insufficient cooling performance are provided with a new cooling channel on the outer peripheral surface of the beam channel, but the structure becomes complicated and the machining ratio increases. This led to an increase in manufacturing costs.

従って、本願発明は上記課題を解決するものであって、簡素な構成にすることで機械加工の比率を低減させ、製造コストの低減を図ると共に、高い冷却性能を有することができる荷電粒子加速器の真空チェンバを提供することを目的とする。   Therefore, the present invention solves the above-mentioned problem, and a charged particle accelerator capable of reducing the machining ratio and reducing the manufacturing cost with a simple configuration and having high cooling performance. An object is to provide a vacuum chamber.

上記課題を解決する第1の発明に係る荷電粒子加速器の真空チェンバは、
荷電粒子を周回させるビームチャンネルと、
前記ビームチャンネルとその外側において連通し、荷電粒子の周回に伴いその接線方向に放射される放射光が通過するアンテ部と、
前記アンテ部とその外側において連通し、且つ、放射光の放射方向に対して略直交するように延設すると共に、前記アンテ部を通過した放射光がその内壁に照射したときに発生する光電子を内部に滞留させるポケット部と、
前記ポケット部の外面との間で冷却水を流通させる冷却チャンネルと、
板状に形成され、前記ビームチャンネル、前記アンテ部、及び前記ポケット部の外面との間おいてこれらを真空にするポンプを収納するポンプ室を形成するポンププレートとを備え、
前記ポンププレートの一端を前記ビームチャンネルに接合する一方、前記ポンププレートの他端を前記ポケット部に接合させる
ことを特徴とする。
The vacuum chamber of the charged particle accelerator according to the first invention for solving the above-described problem is
A beam channel that circulates charged particles;
Ante portion that communicates with the beam channel on the outside thereof, and through which the radiated light radiated in the tangential direction with the circulation of the charged particles passes ,
Photoelectrons generated when the inner wall is irradiated with the radiated light passing through the ante portion and extending to be substantially perpendicular to the radiation direction of the radiated light and communicating with the ante portion on the outside thereof. A pocket to stay inside ,
A cooling channel for circulating cooling water between the outer surface of the pocket portion , and
A pump plate that is formed in a plate shape and forms a pump chamber that houses a pump for evacuating the beam channel, the antenna portion, and the outer surface of the pocket portion ;
One end of the pump plate is joined to the beam channel, and the other end of the pump plate is joined to the pocket portion.

上記課題を解決する第2の発明に係る荷電粒子加速器の真空チェンバは、
第1の発明に係る荷電粒子加速器の真空チェンバにおいて、
前記ポンププレートの一端を前記ビームチャンネルに形成させた取付座に接合させる一方、前記ポンププレートの他端を前記ポケット部に形成させた取付座に接合させる
ことを特徴とする。
The vacuum chamber of the charged particle accelerator according to the second invention for solving the above-mentioned problems is as follows.
In the vacuum chamber of the charged particle accelerator according to the first invention,
One end of the pump plate is joined to a mounting seat formed on the beam channel, and the other end of the pump plate is joined to a mounting seat formed on the pocket portion.

上記課題を解決する第3の発明に係る荷電粒子加速器の真空チェンバは、
第1または2の発明に係る荷電粒子加速器の真空チェンバにおいて、
前記冷却チャンネルを内側に開口部を有する溝形に形成させ、前記ポケット部に形成させた段部に前記冷却チャンネルの開口部を嵌め込むように接合させる
ことを特徴とする。
A vacuum chamber of a charged particle accelerator according to a third invention for solving the above-described problem is
In the vacuum chamber of the charged particle accelerator according to the first or second invention,
The cooling channel is formed in a groove shape having an opening on the inside, and is joined so that the opening of the cooling channel is fitted into a step formed in the pocket.

上記課題を解決する第4の発明に係る荷電粒子加速器の真空チェンバは、
第1乃至3のいずれかの発明に係る荷電粒子加速器の真空チェンバにおいて、
前記ビームチャンネル、前記アンテ部、前記ポケット部、前記冷却チャンネル及び前記ポンププレートを無酸素銅で形成させる
ことを特徴とする。
A vacuum chamber of a charged particle accelerator according to a fourth invention for solving the above-described problem is
In the vacuum chamber of the charged particle accelerator according to any one of the first to third inventions,
The beam channel, the antenna portion, the pocket portion, the cooling channel, and the pump plate are made of oxygen-free copper.

第1の発明に係る荷電粒子加速器の真空チェンバによれば、荷電粒子を周回させるビームチャンネルと、前記ビームチャンネルとその外側において連通し、荷電粒子の周回に伴いその接線方向に放射される放射光が通過するアンテ部と、前記アンテ部とその外側において連通し、且つ、放射光の放射方向に対して略直交するように延設すると共に、前記アンテ部を通過した放射光がその内壁に照射したときに発生する光電子を内部に滞留させるポケット部と、前記ポケット部の外面との間で冷却水を流通させる冷却チャンネルと、板状に形成され、前記ビームチャンネル、前記アンテ部、及び前記ポケット部の外面との間おいてこれらを真空にするポンプを収納するポンプ室を形成するポンププレートとを備え、前記ポンププレートの一端を前記ビームチャンネルに接合する一方、前記ポンププレートの他端を前記ポケット部に接合させることにより、真空チェンバが簡素な構成になり、引き抜き加工等の機械加工の比率が低減され、製造コストの低減を図ると共に、高い冷却性能を有することができる。 According to the vacuum chamber of the charged particle accelerator according to the first aspect of the invention, the beam channel for circulating the charged particles, the beam channel communicated with the outside of the beam channel, and the emitted light radiated in the tangential direction as the charged particles circulate The ante part through which the antenna passes and the antenna part communicate with the outside of the ante part and extend so as to be substantially orthogonal to the radiation direction of the emitted light, and the inner wall is irradiated with the emitted light that has passed through the ante part. A pocket portion that retains photoelectrons generated when the inside, a cooling channel that circulates cooling water between the outer surface of the pocket portion, a plate-like shape, the beam channel, the antenna portion, and the pocket keep between the outer parts and a pump plate which forms a pump chamber for housing the pump to these vacuum, one end of said pump plate By joining the beam channel and the other end of the pump plate to the pocket portion, the vacuum chamber has a simple configuration, the ratio of machining such as drawing is reduced, and the manufacturing cost is reduced. And can have high cooling performance.

第2の発明に係る荷電粒子加速器の真空チェンバによれば、第1の発明に係る荷電粒子加速器の真空チェンバにおいて、前記ポンププレートの一端を前記ビームチャンネルに形成させた取付座に接合させる一方、前記ポンププレートの他端を前記ポケット部に形成させた取付座に接合させることにより、前記ポンププレートの両端が固定されるので、接合時の作業性を向上させることができる。   According to the vacuum chamber of the charged particle accelerator according to the second invention, in the vacuum chamber of the charged particle accelerator according to the first invention, one end of the pump plate is joined to the mounting seat formed in the beam channel, Since both ends of the pump plate are fixed by joining the other end of the pump plate to a mounting seat formed in the pocket portion, workability at the time of joining can be improved.

第3の発明に係る荷電粒子加速器の真空チェンバによれば、第1または2の発明に係る荷電粒子加速器の真空チェンバにおいて、前記冷却チャンネルを内側に開口部を有する溝形に形成させ、前記ポケット部に形成させた段部に前記冷却チャンネルの開口部を嵌め込むように接合させることにより、前記冷却チャンネルを容易に接合させることができる。 According to the vacuum chamber of the charged particle accelerator according to the third invention, in the vacuum chamber of the charged particle accelerator according to the first or second invention, the cooling channel is formed in a groove shape having an opening inside, and the pocket The cooling channel can be easily joined by joining so as to fit the opening of the cooling channel into the step formed in the part.

第4の発明に係る荷電粒子加速器の真空チェンバによれば、第1乃至3のいずれかの発明に係る荷電粒子加速器の真空チェンバにおいて、前記ビームチャンネル、前記アンテ部、前記ポケット部、前記冷却チャンネル及び前記ポンププレートを無酸素銅で形成させることにより、熱伝導性が向上され、冷却効果を十分に得ることができる。   According to the vacuum chamber of the charged particle accelerator according to the fourth invention, in the vacuum chamber of the charged particle accelerator according to any one of the first to third inventions, the beam channel, the antenna portion, the pocket portion, and the cooling channel. In addition, by forming the pump plate with oxygen-free copper, the thermal conductivity is improved, and a sufficient cooling effect can be obtained.

以下、本発明の実施例を図面に基づき詳細に説明する。図1は本発明の一実施例に係る真空チェンバを備えた荷電粒子加速器の平面図、図2は図1のA−A矢視断面図である。なお、図2に示す矢印は、荷電粒子加速器1及び真空チェンバ3の上下方向及び径方向を示している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view of a charged particle accelerator including a vacuum chamber according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. The arrows shown in FIG. 2 indicate the vertical direction and radial direction of the charged particle accelerator 1 and the vacuum chamber 3.

図1に示すように、荷電粒子加速器1は、直線状の真空チェンバ2と円弧状の真空チェンバ3とを多数連結させることで全体として環状に構成されている。真空チェンバ2と隣接する真空チェンバ3との間には、後述する真空チェンバ2の横断面に適合するベローズ4が介装されており、真空チェンバ3と隣接する他の真空チェンバ3との間には、後述する真空チェンバ3の横断面に適合するベローズ5が介装されている。つまり、真空チェンバ2,3の両端にはフランジ2a,3aが設けられる一方、ベローズ4,5の両端にはフランジ4a,5aが設けられ、真空チェンバ2,3はこのフランジ2a,3aとベローズ4,5のフランジ4a,5aと接合されることで連結されている。このように構成されることにより、荷電粒子加速器1は、内部を超高真空とした真空チェンバ2,3内で電子、陽電子、イオン等の荷電粒子を磁場により周回させて光速近くまで加速させ、当該荷電粒子に高エネルギーを付与することができる。   As shown in FIG. 1, the charged particle accelerator 1 is configured in a ring shape as a whole by connecting a large number of linear vacuum chambers 2 and arcuate vacuum chambers 3. Between the vacuum chamber 2 and the adjacent vacuum chamber 3, a bellows 4 conforming to a cross section of the vacuum chamber 2 described later is interposed, and between the vacuum chamber 3 and another adjacent vacuum chamber 3. Is provided with a bellows 5 adapted to a transverse section of a vacuum chamber 3 to be described later. That is, flanges 2a and 3a are provided at both ends of vacuum chambers 2 and 3, while flanges 4a and 5a are provided at both ends of bellows 4 and 5, and vacuum chambers 2 and 3 are connected to flanges 2a and 3a and bellows 4 respectively. , 5 are connected by being joined to the flanges 4a, 5a. By being configured in this way, the charged particle accelerator 1 circulates charged particles such as electrons, positrons, ions, etc. by a magnetic field in the vacuum chambers 2 and 3 having an ultrahigh vacuum inside, and accelerates them to near the speed of light. High energy can be imparted to the charged particles.

ここで、真空チェンバ2には、荷電粒子の軌道に沿って周期磁場を与えることにより、荷電粒子を偏向させて蛇行させ、それによって特定の波長の光を取り出すための挿入光源と称されるウィグラー(図示省略)が設けられている。ウィグラーは、真空チェンバ2の上下(図2に示す矢印方向)に、上下で対をなすと共に極性が交互に変化している多数の磁石(図示省略)を真空チェンバ2の長手方向に沿って設けており、この磁石によって真空チェンバ2を上下に貫通し、かつ方向が交互に反転するような磁束を発生させる構成となっている。従って、ウィグラーを備えた真空チェンバ2内では、通過する荷電粒子に対して周期磁場が与えられて磁束と直角な方向、即ち水平方向(荷電粒子加速器1の径方向:図2に示す矢印方向)に荷電粒子が蛇行することになり、その蛇行の際に接線方向に放射光が放射される。   Here, by applying a periodic magnetic field along the trajectory of the charged particles to the vacuum chamber 2, the charged particles are deflected and meandered, and thereby a wiggler called an insertion light source for taking out light of a specific wavelength. (Not shown) is provided. The wiggler is provided along the longitudinal direction of the vacuum chamber 2 on the top and bottom of the vacuum chamber 2 (in the direction of the arrow shown in FIG. 2). The magnet is configured to generate a magnetic flux that vertically penetrates the vacuum chamber 2 and reverses its direction alternately. Therefore, in the vacuum chamber 2 equipped with a wiggler, a periodic magnetic field is applied to the charged particles passing therethrough, that is, in a direction perpendicular to the magnetic flux, that is, in the horizontal direction (the radial direction of the charged particle accelerator 1: the arrow direction shown in FIG. 2). The charged particles meander, and radiant light is emitted in the tangential direction during the meandering.

一方、真空チェンバ3には上記のようなウィグラーは設けられてはおらず、従って、真空チェンバ3内では、真空チェンバ3の軸線方向に沿うように荷電粒子が周回することになり、その周回の際に接線方向に放射光が放射される。   On the other hand, the wiggler as described above is not provided in the vacuum chamber 3, and therefore, charged particles circulate along the axial direction of the vacuum chamber 3 in the vacuum chamber 3. Radiated light is emitted in the tangential direction.

つまり、荷電粒子加速器1では、真空チェンバ2内においては荷電粒子加速器1の径方向の内側及び外側の内壁面に放射光が放射されると共に、真空チェンバ3内においては荷電粒子加速器1(真空チェンバ3)の径方向外側の内壁面に放射光が放射される。   That is, in the charged particle accelerator 1, the radiated light is radiated to the inner wall surfaces inside and outside in the radial direction of the charged particle accelerator 1 in the vacuum chamber 2, and the charged particle accelerator 1 (vacuum chamber 1) in the vacuum chamber 3. Radiation light is radiated to the radially inner wall surface of 3).

次に、図2を用いて真空チェンバ3の構成について説明する。   Next, the configuration of the vacuum chamber 3 will be described with reference to FIG.

図2に示すように、真空チェンバ3は、真空チェンバ3の軸線方向に延設すると共に無酸素銅で形成されるチェンバ本体11、冷却チャンネル12及びNEGプレート13,14から構成されている。   As shown in FIG. 2, the vacuum chamber 3 includes a chamber body 11, a cooling channel 12, and NEG plates 13 and 14 that extend in the axial direction of the vacuum chamber 3 and are formed of oxygen-free copper.

チェンバ本体11は、ビームチャンネル15、アンテ部16及びポケット部17を一体的に成形したものである。ビームチャンネル15は断面が略円形に形成され、その軸心周辺が荷電粒子の周回軌道になっている。アンテ部16は、その荷電粒子の周回に伴いその接線方向に放射される放射光の放射方向(荷電粒子加速器1の径方向あるいは真空チェンバ3の径方向)に延設し、その断面は矩形に形成されている。ポケット部17は、アンテ部16の外側に設けられると共に、放射光の放射方向に対して略鉛直方向に延設されている。   The chamber body 11 is formed by integrally forming the beam channel 15, the antenna portion 16 and the pocket portion 17. The cross section of the beam channel 15 is formed in a substantially circular shape, and the periphery of the axis is a circular orbit of charged particles. The ante portion 16 extends in the radiation direction (radial direction of the charged particle accelerator 1 or radial direction of the vacuum chamber 3) of the radiated light radiated in the tangential direction as the charged particles circulate, and has a rectangular cross section. Is formed. The pocket portion 17 is provided outside the antenna portion 16 and extends in a substantially vertical direction with respect to the radiation direction of the emitted light.

また、ビームチャンネル15には取付座18,19が形成され、アンテ部16には排気スリット20,21が開口されている。そして、ポケット部17の内側には取付座22,23が形成される一方、外側には段部24が形成されている。   Further, mounting seats 18 and 19 are formed in the beam channel 15, and exhaust slits 20 and 21 are opened in the antenna portion 16. And the mounting seats 22 and 23 are formed inside the pocket part 17, and the step part 24 is formed outside.

冷却チャンネル12は断面が溝形(コ字形)に形成されており、ポケット部17に形成された段部24に冷却チャンネル12の開口部を嵌め込むように接合されている。これにより、ポケット部17の外面と冷却チャンネル12の内面とにより冷却水路25が形成される。   The cooling channel 12 is formed in a groove shape (U shape) in cross section, and is joined to a step portion 24 formed in the pocket portion 17 so as to fit the opening of the cooling channel 12. Thereby, the cooling water channel 25 is formed by the outer surface of the pocket portion 17 and the inner surface of the cooling channel 12.

NEGプレート13,14は板状に形成されており、その一端はビームチャンネル15の取付座18,19に接合される一方、他端はポケット部17の取付座22,23に接合されている。これにより、チェンバ本体11とNEGプレート13,14とによりポンプ室26,27が形成される。そして、ポンプ室26,27には、排気スリット20,21上にNEG(Non Evaporable Getter:非蒸着型ゲッター)ポンプ28が設けられている。   The NEG plates 13 and 14 are formed in a plate shape, and one end thereof is joined to the mounting seats 18 and 19 of the beam channel 15, and the other end is joined to the mounting seats 22 and 23 of the pocket portion 17. Thus, pump chambers 26 and 27 are formed by the chamber body 11 and the NEG plates 13 and 14. The pump chambers 26 and 27 are provided with NEG (Non Evaporable Getter) pumps 28 on the exhaust slits 20 and 21.

即ち、NEGポンプ28を駆動させることにより、ビームチャンネル15内、アンテ部16内及びポケット部17内を超高真空にさせ、ビームチャンネル15の軸心周辺で荷電粒子が周回すると、その荷電粒子の周回に伴い接線方向に放射光が放射される。そして、放射光はアンテ部16を通過した後、ポケット部17の外側の内壁面に照射する。このとき、前記内壁面は加熱されるが、冷却水路25内を流れる冷却水により冷却される。   That is, by driving the NEG pump 28, the inside of the beam channel 15, the antenna portion 16 and the pocket portion 17 are brought into an ultrahigh vacuum, and when charged particles circulate around the axis of the beam channel 15, Synchrotron radiation is emitted in the tangential direction as it goes around. The radiated light passes through the antenna portion 16 and then irradiates the inner wall surface outside the pocket portion 17. At this time, the inner wall surface is heated, but is cooled by the cooling water flowing in the cooling water passage 25.

従って、上述した構成をなすことにより、NEGプレート13,14を板状に形成したことにより、引き抜き加工が容易に行うことができ、又は板材をそのまま使用することができる。また、NEGプレート13,14の一端をビームチャンネル15の取付座18,19に接合させると共に、他端をポケット部17の取付座22,23に接合させることにより、チェンバ本体11への接合を容易に行うことができ、作業効率が向上される。また、ポケット部17をアンテ部16の外側に放射光の放射方向に対して略鉛直方向に延設するように形成させることにより、放射光がポケット部17の外側の内壁面に照射する際に発生する光電子をポケット部17内に滞留させることができ、ビームチャンネル15の軸心周辺で周回する荷電粒子に悪影響を及ぼさなくなる。更に、冷却チャンネル12をポケット部17の段部24に嵌め込むように接合させることにより、容易に接合させることができる。   Accordingly, by forming the NEG plates 13 and 14 in a plate shape by the above-described configuration, the drawing process can be easily performed, or the plate material can be used as it is. Further, by joining one end of the NEG plates 13 and 14 to the mounting seats 18 and 19 of the beam channel 15 and joining the other end to the mounting seats 22 and 23 of the pocket portion 17, it is easy to join the chamber body 11. Work efficiency can be improved. Further, when the pocket portion 17 is formed outside the antenna portion 16 so as to extend in a direction substantially perpendicular to the radiation direction of the radiated light, when the radiated light irradiates the inner wall surface outside the pocket portion 17. The generated photoelectrons can be retained in the pocket portion 17, and the charged particles circulating around the axis of the beam channel 15 are not adversely affected. Further, the cooling channel 12 can be easily joined by being joined so as to be fitted into the stepped portion 24 of the pocket portion 17.

そして、ポケット部17を放射光の放射方向に対して略鉛直方向に延設させているので、冷却水路25との接触長さを長くすることができ、チェンバ本体11を効率良く冷却することができる。これにより、冷却チャンネル12だけを設けるだけでよく、従来の真空チェンバのようにビームチャンネルに冷却チャンネルを新たに設ける必要がなく、真空チェンバ3の構成を簡素にすることができる。また、チェンバ本体11、冷却チャンネル12及びNEGアングル13,14を無酸素銅で形成させることにより、熱伝導性が向上され、冷却効果を十分に得ることができる。   And since the pocket part 17 is extended in the substantially perpendicular | vertical direction with respect to the radiation direction of radiated light, the contact length with the cooling water channel 25 can be lengthened, and the chamber main body 11 can be cooled efficiently. it can. Thereby, it is only necessary to provide the cooling channel 12, and it is not necessary to newly provide a cooling channel in the beam channel as in the conventional vacuum chamber, and the configuration of the vacuum chamber 3 can be simplified. Further, by forming the chamber main body 11, the cooling channel 12, and the NEG angles 13, 14 with oxygen-free copper, the thermal conductivity is improved and a sufficient cooling effect can be obtained.

なお、上述した真空チェンバ3の構成及び接合方法を、従来のウィグラーを備えた真空チェンバのようにビームチャンネルの両側にアンテ部を備える真空チェンバ2に適用することも可能である。   Note that the above-described configuration and joining method of the vacuum chamber 3 can also be applied to the vacuum chamber 2 having the antenna portions on both sides of the beam channel, like a conventional vacuum chamber having a wiggler.

従って、本発明の荷電粒子加速器の真空チェンバによれば、荷電粒子を周回させるビームチャンネル15と、ビームチャンネル15とその外側において連通し、荷電粒子の周回に伴いその接線方向に放射される放射光が通過するアンテ部16と、アンテ部16とその外側において連通し、且つ、放射光の放射方向に対して略直交するように延設すると共に、該アンテ部16を通過した放射光がその内壁に照射したときに発生する光電子を内部に滞留させるポケット部17と、ポケット部17の外面との間で冷却水を流通させる冷却チャンネル12と、板状に形成され、ビームチャンネル15、アンテ部16、及びポケット部17の外面との間おいてこれらを真空にするNEGポンプ28を収納するポンプ室26,27を形成するNEGプレート13,14とを備え、NEGプレート13,14の一端をビームチャンネル15に接合する一方、NEGプレート13,14の他端をポケット部17に接合させることにより、真空チェンバ3が簡素な構成になり、NEGプレート13,14の機械加工(引き抜き加工)の比率が低減され、製造コストの低減を図ることができる。しかも、冷却水路25の接触面積が拡大されるので、高い冷却性能を有することができる Therefore, according to the vacuum chamber of the charged particle accelerator of the present invention, the beam channel 15 that circulates the charged particles, the beam channel 15 communicates with the outside of the beam channel, and the radiated light radiated in the tangential direction as the charged particles circulate. The ante part 16 through which the antenna passes, and the antenna part 16 communicate with the outside thereof and extend so as to be substantially orthogonal to the radiation direction of the radiated light, and the radiated light that has passed through the ante part 16 has its inner wall Are formed in the shape of a plate , a cooling channel 12 for circulating cooling water between the outer surface of the pocket 17 and the beam channel 15 and the antenna 16. and NEG play to form a pump chamber 26, 27 for accommodating the NEG pump 28 for them to vacuum keep between the outer surface of the pocket portion 17 13 and 14, one end of the NEG plates 13, 14 is joined to the beam channel 15, and the other end of the NEG plates 13, 14 is joined to the pocket portion 17, whereby the vacuum chamber 3 has a simple configuration. The ratio of machining (drawing) of the NEG plates 13 and 14 is reduced, and the manufacturing cost can be reduced. And since the contact area of the cooling water channel 25 is expanded, it can have high cooling performance.

また、NEGプレート13,14の一端をビームチャンネル15に形成させた取付座18,19に接合させる一方、NEGプレート13,14の他端をポケット部17に形成させた取付座23,24に接合させることにより、NEGプレート13,14の両端が固定されるので、NEGプレート13,14の接合時の作業性を向上させることができる。   Further, one end of the NEG plates 13 and 14 is joined to mounting seats 18 and 19 formed on the beam channel 15, while the other end of the NEG plates 13 and 14 is joined to mounting seats 23 and 24 formed on the pocket portion 17. By doing so, both ends of the NEG plates 13 and 14 are fixed, so that workability at the time of joining the NEG plates 13 and 14 can be improved.

また、冷却チャンネル12を内側に開口部を有する溝形に形成させ、ポケット部17に形成させた段部24に冷却チャンネル12の開口部を嵌め込むように接合させることにより、冷却チャンネル12を容易に接合させることができる。 In addition, the cooling channel 12 can be easily formed by forming the cooling channel 12 into a groove shape having an opening on the inside and joining the step 24 formed in the pocket portion 17 so that the opening of the cooling channel 12 is fitted. Can be joined.

更に、チェンバ本体11、冷却チャンネル12及びNEGアングル13,14を無酸素銅で形成させることにより、熱伝導性が向上され、冷却効果を十分に得ることができる。   Furthermore, by forming the chamber body 11, the cooling channel 12, and the NEG angles 13 and 14 with oxygen-free copper, the thermal conductivity is improved, and a sufficient cooling effect can be obtained.

荷電粒子を周回させて加速する荷電粒子加速器に適用可能である。   The present invention can be applied to a charged particle accelerator that circulates and accelerates charged particles.

本発明の一実施例に係る真空チェンバを備えた荷電粒子加速器の平面図である。It is a top view of the charged particle accelerator provided with the vacuum chamber which concerns on one Example of this invention. 図1のA−A矢視断面図である。It is AA arrow sectional drawing of FIG.

符号の説明Explanation of symbols

1 荷電粒子加速器
2,3 真空チェンバ
2a,3a フランジ
4,5 ベローズ
4a,5a フランジ
11 チェンバ本体
12 冷却チャンネル
13,14 NEGプレート
15 ビームチャンネル
16 アンテ部
17 ポケット部
18,19,22,23 取付座
20,21 排気スリット
24 段部
25 冷却水路
26,27 ポンプ室
28 NEGポンプ
DESCRIPTION OF SYMBOLS 1 Charged particle accelerator 2, 3 Vacuum chamber 2a, 3a Flange 4, 5 Bellows 4a, 5a Flange 11 Chamber main body 12 Cooling channel 13, 14 NEG plate 15 Beam channel 16 Ante part 17 Pocket part 18, 19, 22, 23 Mounting seat 20, 21 Exhaust slit 24 Step 25 Cooling channel 26, 27 Pump chamber 28 NEG pump

Claims (4)

荷電粒子を周回させるビームチャンネルと、
前記ビームチャンネルとその外側において連通し、荷電粒子の周回に伴いその接線方向に放射される放射光が通過するアンテ部と、
前記アンテ部とその外側において連通し、且つ、放射光の放射方向に対して略直交するように延設すると共に、前記アンテ部を通過した放射光がその内壁に照射したときに発生する光電子を内部に滞留させるポケット部と、
前記ポケット部の外面との間で冷却水を流通させる冷却チャンネルと、
板状に形成され、前記ビームチャンネル、前記アンテ部、及び前記ポケット部の外面との間おいてこれらを真空にするポンプを収納するポンプ室を形成するポンププレートとを備え、
前記ポンププレートの一端を前記ビームチャンネルに接合する一方、前記ポンププレートの他端を前記ポケット部に接合させる
ことを特徴とする荷電粒子加速器の真空チェンバ。
A beam channel that circulates charged particles;
Ante portion that communicates with the beam channel on the outside thereof, and through which the radiated light radiated in the tangential direction with the circulation of the charged particles passes ,
Photoelectrons generated when the inner wall is irradiated with the radiated light passing through the ante portion and extending to be substantially perpendicular to the radiation direction of the radiated light and communicating with the ante portion on the outside thereof. A pocket to stay inside ,
A cooling channel for circulating cooling water between the outer surface of the pocket portion , and
A pump plate that is formed in a plate shape and forms a pump chamber that houses a pump for evacuating the beam channel, the antenna portion, and the outer surface of the pocket portion ;
One end of the pump plate is joined to the beam channel, and the other end of the pump plate is joined to the pocket portion. A vacuum chamber for a charged particle accelerator, wherein:
請求項1に記載の荷電粒子加速器の真空チェンバにおいて、
前記ポンププレートの一端を前記ビームチャンネルに形成させた取付座に接合させる一方、前記ポンププレートの他端を前記ポケット部に形成させた取付座に接合させる
ことを特徴とする荷電粒子加速器の真空チェンバ。
In the vacuum chamber of the charged particle accelerator according to claim 1,
One end of the pump plate is joined to a mounting seat formed in the beam channel, and the other end of the pump plate is joined to a mounting seat formed in the pocket portion. .
請求項1または2に記載の荷電粒子加速器の真空チェンバにおいて、
前記冷却チャンネルを内側に開口部を有する溝形に形成させ、前記ポケット部に形成させた段部に前記冷却チャンネルの前記開口部を嵌め込むように接合させる
ことを特徴とする荷電粒子加速器の真空チェンバ。
In the vacuum chamber of the charged particle accelerator according to claim 1 or 2,
A vacuum for a charged particle accelerator, wherein the cooling channel is formed in a groove shape having an opening on the inside, and is joined so as to fit the opening of the cooling channel into a step formed in the pocket. Chamber.
請求項1乃至3のいずれかに記載の荷電粒子加速器の真空チェンバにおいて、
前記ビームチャンネル、前記アンテ部、前記ポケット部、前記冷却チャンネル及び前記ポンププレートを無酸素銅で形成させる
ことを特徴とする荷電粒子加速器の真空チェンバ。
In the vacuum chamber of the charged particle accelerator according to any one of claims 1 to 3,
The beam channel, the antenna portion, the pocket portion, the cooling channel , and the pump plate are made of oxygen-free copper.
JP2005065548A 2005-03-09 2005-03-09 Vacuum chamber of charged particle accelerator Active JP4031798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065548A JP4031798B2 (en) 2005-03-09 2005-03-09 Vacuum chamber of charged particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065548A JP4031798B2 (en) 2005-03-09 2005-03-09 Vacuum chamber of charged particle accelerator

Publications (2)

Publication Number Publication Date
JP2006252871A JP2006252871A (en) 2006-09-21
JP4031798B2 true JP4031798B2 (en) 2008-01-09

Family

ID=37093143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065548A Active JP4031798B2 (en) 2005-03-09 2005-03-09 Vacuum chamber of charged particle accelerator

Country Status (1)

Country Link
JP (1) JP4031798B2 (en)

Also Published As

Publication number Publication date
JP2006252871A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US7653178B2 (en) X-ray generating method, and X-ray generating apparatus
EP3222122A1 (en) Target body for an isotope production system and method of using the same
KR102161231B1 (en) Magnet for use with ion apparatus and ion apparatus
JP4808387B2 (en) X-ray tube anode target driven by an axial magnetic flux motor
JP2019185941A (en) High-frequency linear accelerator, particle acceleration system, and high-frequency linear accelerator manufacturing method
JP4937196B2 (en) Superconducting coil device
JP4031798B2 (en) Vacuum chamber of charged particle accelerator
KR20100082781A (en) Device for dissipating lost heat, and ion accelerator arrangement comprising such a device
JP3905905B2 (en) Vacuum chamber of charged particle accelerator
US8054945B2 (en) Evacuated enclosure window cooling
US9029796B2 (en) Drift tube manufacturing method and drift tube
JP2007123184A (en) Multi-beam klystron device
GB2089562A (en) Permanent magnet structure for linearbeam electron tubes
JP7070980B2 (en) Klystron
JP2006236729A (en) Bellows for charged particle accelerator
JP7449899B2 (en) radiation shield
JP2007232609A (en) Electron beam irradiation device
JP5797037B2 (en) Electron beam irradiation device
JP7382183B2 (en) Cavity and ground plate
KR102535443B1 (en) X-ray generator
JPH0894798A (en) Fixed masking device
KR0139348Y1 (en) Klystron
JP4691169B2 (en) Mounting method of electromagnetic noise shielding partition plate in vacuum chamber for charged particle accelerator
WO2018066403A1 (en) Particle accelerator
US20070053496A1 (en) X-ray generating method and X-ray generating apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071019

R150 Certificate of patent or registration of utility model

Ref document number: 4031798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250