JP4031066B2 - Static eliminator - Google Patents

Static eliminator Download PDF

Info

Publication number
JP4031066B2
JP4031066B2 JP10260196A JP10260196A JP4031066B2 JP 4031066 B2 JP4031066 B2 JP 4031066B2 JP 10260196 A JP10260196 A JP 10260196A JP 10260196 A JP10260196 A JP 10260196A JP 4031066 B2 JP4031066 B2 JP 4031066B2
Authority
JP
Japan
Prior art keywords
electric field
field forming
electrode portion
self
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10260196A
Other languages
Japanese (ja)
Other versions
JPH0963788A (en
Inventor
健吉 和泉
建敏 司
功 菅野
秀海 永田
茂 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shishido Electrostatic Ltd
Original Assignee
Shishido Electrostatic Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishido Electrostatic Ltd filed Critical Shishido Electrostatic Ltd
Priority to JP10260196A priority Critical patent/JP4031066B2/en
Publication of JPH0963788A publication Critical patent/JPH0963788A/en
Application granted granted Critical
Publication of JP4031066B2 publication Critical patent/JP4031066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、空気中でコロナ放電を発生させて生成した空気イオンを用いて帯電体の静電気を除去する除電装置に関する。
【0002】
【従来の技術】
従来、帯電体の静電気を除去する除電装置として電圧印加式除電装置が知られている。
【0003】
該電圧印加式除電装置は、例えば図10に示すように、除電電極部aと交流高圧電源bと両者を接続する高圧ケーブルcとからなる。前記除電電極部aは、多数の針状の放電電極dが棒状の絶縁体の柄部eの長手方向に配設され、前記放電電極dと間隔を存して対向する接地電極fが絶縁体の柄部eの両端部に絶縁材を介して支持されている。
【0004】
そして前記交流高圧電源bからの交流高電圧を高圧ケーブルcを介して前記放電電極dに印加することにより、該放電電極dと前記接地電極fとの間に高電界が形成され、前記放電電極dの先端に電界が集中してコロナ放電が発生し、空気イオンが生成される。該空気イオンにより帯電体xの電荷を中和して除電する。
【0005】
このとき、前記放電電極dに印加した電圧が交流であるため、正の空気イオンと負の空気イオンが交互に生成される。帯電体xが負に帯電している場合には正の空気イオンによって中和され、帯電体xが正に帯電している場合には負の空気イオンによって中和される。
【0006】
しかし、電圧印加式除電装置は、除電時には常に放電電極dに高電圧が印加されている状態にあるため、該放電電極dに帯電体x以外の接地体等が接触したときには前記柄部eの表面を伝わって高電圧が漏洩し、柄部eの絶縁劣化や、その焼損を招くおそれがある。
【0007】
また、帯電体の静電気を除去する除電装置として自己放電式除電装置が知られている。
【0008】
該自己放電式除電装置は、例えば図11に示すように、アルミニウム等の導電体の柄部gに放電電極として複数の導電性繊維hが保持されており、該柄部gから延びる導線iを介して接地されている。該自己放電式除電装置は、帯電体xの静電気エネルギーを利用して空気イオンを生成するもので、帯電体xからの電界を、接地した放電電極の導電性繊維hに集めて、その電界によってコロナ放電を発生させ、空気イオンを生成する。帯電体xが負に帯電している場合は、正の空気イオンが放電電極により生成されて帯電体xの負電荷が中和される。帯電体xが正に帯電している場合は、負の空気イオンが放電電極により生成されて帯電体xの正電荷が中和される。このように、自己放電式除電装置は、帯電体xの静電気エネルギーを利用して空気イオンを生成するので、前述した電圧印加式除電装置に見られる交流高圧電源を必要としない。
【0009】
しかし、自己放電式除電装置による除電の効果は帯電体xの帯電電圧の大小に左右され、帯電電圧が低い場合、具体的には帯電電圧が正・負共に絶対値が約3.0kV以下の場合には、コロナ放電が発生せず除電が全く行われない不都合がある。
【0010】
【発明が解決しようとする課題】
かかる不都合を解消して、本発明は、帯電体の帯電電圧の大小に左右されることなく確実に除電することができる除電装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
かかる目的を達成するために、本発明は、支持体に電気的に接続され且つ接地された状態で互いに間隔を存して配設された複数の導電性繊維を放電電極とする自己放電電極部と、絶縁体により被覆された導電性芯材を電界を形成する電極として設けた電界形成電極部と、絶縁体によって形成され両電極部を一体に支持する支持柄部と、前記電界形成電極部の芯材に交流高電圧を印加する電圧印加手段とを備えてなり、前記自己放電電極部は、交流高電圧が印加された前記電界形成電極部の芯材から生じる電界が前記導電性繊維の先端に集中する位置に設けられている除電装置であって、前記自己放電電極部は前記支持柄部の長手方向に沿って設けられており、該支持柄部を介して自己放電電極部の両側位置に沿って一対の前記電界形成電極部が設けられていることを特徴とする。
【0012】
本発明においては、前記除電電極を、帯電した帯電体に接近させると、帯電体の電圧が高い場合には、帯電体からの電界が自己放電電極部の接地された導電性繊維の先端に集中し、コロナ放電が該導電性繊維の先端に発生する。帯電体の電圧が低い場合には、前記電圧印加手段によって電界形成電極部の芯材に交流高電圧が印加されていることにより、電界形成電極部から形成される電界によって帯電体からの電界の不足分が補われて導電性繊維の先端にコロナ放電が発生する。従って、帯電体の帯電電圧が高い場合、低い場合の何れにおいても帯電体の除電が十分可能となる。このように、本発明によれば、前記電圧印加手段によって電界形成電極部の芯材に交流高電圧が印加されていることにより、電界形成電極部から形成される電界によって帯電体の帯電電圧の絶対値が小さくても帯電体からの電界の不足分を補うことができる。そして更に、前記除電電極を帯電体に接近させたとき、帯電体の電圧の高低に左右されることなく電界を自己放電電極部の導電性繊維の先端に集中させてコロナ放電を発生させることができ、コロナ放電により生成された空気イオンにより帯電体の電荷を中和して良好に除電を行うことができる。
【0013】
更に、一対の電界形成電極部が自己放電電極部の両側に沿って位置するようにしたことにより、両電界形成電極部の芯材から生じる電界はその中央部に位置する自己放電電極部の導電性繊維の両側から均等にその先端に集中させることができる。
【0014】
また、本発明において、両電界形成電極部は、互いに平行に前記支持柄部に支持されており、該支持柄部は、両電界形成電極部間に沿って形成された溝部を備え、該溝部に前記自己放電電極部が装着されていることを特徴とする。
【0015】
該溝部によって、自己放電電極部の導電性繊維を導電性芯材の直径方向に沿って延びる位置に設けることができ、電界形成電極部の芯材から生じる電界を導電性繊維の両側から均等にその先端に集中させることができる。
【0024】
また、本発明の他の態様は、絶縁体により被覆された導電性芯材が絶縁体の支持柄部に支持されてなる電界形成電極部と、該電界形成電極部に少なくとも両端部が支持体を介して支持され且つ接地された状態で前記導電性芯材に平行に設けられた導電性繊維を放電電極として備える自己放電電極部と、絶縁体によって形成され両電極部を一体に支持する支持柄部と、前記電界形成電極部の芯材に交流高電圧を印加する電圧印加手段とを備えてなり、前記電界形成電極部の支持柄部は、導電性芯材の長手方向に沿って該支持柄部の外方に突出する平板状の凸条を備え、前記自己放電電極部は、該凸条の先端であって且つ交流高電圧が印加された前記電界形成電極部の芯材から生じる電界が前記導電性繊維に沿って集中する位置に前記支持体を介して支持されていることを特徴とする。
【0026】
本発明においては、導電性繊維が導電性芯材に対して平行に設けられている。これにより、導電性繊維は、その先端ではなく外周面が帯電体に対向するが、その外周面は微視的には粗面状になっているため、前記電界形成電極部の芯材から生じる電界を導電性繊維の外周面の突端に集中させることができる。しかも、導電性繊維を前記凸条の先端に設けることにより、前記電界形成電極部の芯材から生じる電界が前記導電性繊維の両側から均等に集中し、高い除電効果を得ることができる。
【0027】
このとき、前記電圧印加手段は、高周波高電圧を前記電界形成電極部の芯材に印加することを特徴とする。
【0028】
更に、このとき、前記電圧印加手段は、前記自己放電電極部と前記電界形成電極部とを支持する支持柄部に一体に設けられていることを特徴とする。
【0029】
本発明においては、前記電圧印加手段より前記電界形成電極部の芯材に印加される電圧は交流であれば、商用周波数(50Hz〜60Hz)だけでなく高周波(10kHz 〜100kHz )であっても高い除電効果を得ることができる。前記電圧印加手段を高周波高電圧を発生させる装置とすることにより、商用周波数により交流高電圧を発生させる装置に比して小型・軽量となるため、該電圧印加手段を支持柄部に一体に設けて除電装置をコンパクトに形成することができる。
【0030】
【発明の実施の形態】
本発明の実施形態を図面に基づいて説明する。図1は本発明の除電装置と共通の構成を一部に有する除電装置を模式的に示す説明図、図2は図1のII−II線断面説明図、図3は各除電装置による除電効果を確認するための試験装置の概略図、図4は図3の装置による試験結果を示す線図、図5は図1の除電装置における他の要部を断面視して示す説明図、図6は本発明の第1の実施形態の除電装置の要部を断面視して示す説明図、図7は本発明の第2の実施形態の除電電極を示す説明図、図8は図7の VIII VIII 線断面図、図9は本発明の実施形態の変形例の除電装置を示す説明図である。
【0031】
図1に示すように、本発明の除電装置と共通の構成を一部に有する除電装置1は、除電電極2、電圧印加手段である交流高圧電源3、除電電極2と交流高圧電源3とを接続する高圧ケーブル4とによって構成されている。
【0032】
前記除電電極2は、自己放電電極部5と、電界形成電極部6と、両電極部5,6を支持する絶縁体の支持柄部7とによって構成されている。図2に示すように、自己放電電極部5は、アルミニウム製板材を折り曲げ重合して形成された支持体8に、互いに間隔を存して一端部が挟持された複数の導電性繊維9を備えており、該支持体8は支持柄部7の一側面に固着されて支持されている。電界形成電極部6は、支持柄部7の長手方向に穿設された支持穴10に絶縁被覆材11を介して支持された導電性芯材12を備えている。該芯材12は、前記高圧ケーブル4に電気的に接続されている。なお、高圧ケーブル4そのものを、支持穴10に挿入して芯材12としてもよい。また、図1に示すように、自己放電電極部5の支持体8は、接地リード線13を介して大地14に接地され、前記交流高圧電源3は、電源入力リード線15を介して図示しない電源コンセントに接続されると共に接地リード線16を介して大地14に接地される。
【0033】
以上の構成からなる除電装置によって帯電体Xの除電を行う場合には、帯電体Xに一定の距離を隔てて前記除電電極2を対峙させ、該除電電極2の自己放電電極部5を接地し、交流高圧電源3によって電界形成電極部6に交流高電圧を印加する。
【0034】
次に、帯電体Xの帯電状態に応じて除電の行われる過程を説明する。
【0035】
帯電体Xが正に帯電しており、その帯電電圧が+3kV以上である場合には、帯電体Xが形成する電界が自己放電電極部5の導電性繊維9の先端に集中してコロナ放電が発生する。このコロナ放電によって空気イオンが生成されるが、正の空気イオンは導電性繊維9に移動して電荷を与え、負の空気イオンは帯電体Xに移動して該帯電体Xの正の電荷を中和する。これによって、帯電体Xは除電される。
【0036】
帯電体Xが負に帯電しており、その帯電電圧が−3kV以下である場合には、帯電体Xが形成する電界が自己放電電極部5の導電性繊維9の先端に集中してコロナ放電が発生する。このとき生成された空気イオンは、負の空気イオンが導電性繊維9に移動して電荷を与え、正の空気イオンが帯電体Xに移動して該帯電体Xの負の電荷を中和する。これによって、帯電体Xは除電される。
【0037】
また、帯電体Xの帯電電圧の絶対値が3kV以下である場合には、交流高圧電源3によって交流高電圧が印加された電界形成電極部6に電界が発生し、帯電体Xの比較的小さな電界に重畳されるように電界形成電極部6の電界が作用する。これにより、帯電体Xの帯電電圧の絶対値が3kV以下であっても、帯電体Xの電界と電界形成電極部6の電界とによって自己放電電極部5の導電性繊維9の先端に集中する電界は比較的大きなものとなり、そこにコロナ放電が発生する。そして、正負の空気イオンが生成されることにより、帯電体Xの電荷が中和されて除電される。
【0038】
図1の除電装置1について、図3に示す試験装置によって第1の試験を行った。該試験装置jは、帯電したフィルムkに前記除電電極2を対峙させてその除電効果を調べるためのものである。本装置jに帯電体として設けられるフィルムkは、ポリエチレン製フィルムであり、厚さ0.1mm、幅100mmの無端帯状に形成されている。該フィルムkは、駆動ロールr、従動ロールm、伸長ロールnに掛けわたされて無端回動される。駆動ロールrから従動ロールnまでが試験セクションであり、この試験セクションにおけるフィルムkの走行速度vは適宜設定可能とされている。試験セクションのフィルムkの上方位置には、その上流側から、静電気付与電極o、初期帯電電圧測定器p、除電電極2、残留電圧測定器qが配設されている。このように構成された試験装置jによって、先ず、初期帯電電圧測定器pの電圧値Vinを確認しながら静電気付与電極oへの印加電圧を高めて、フィルムkの初期帯電電圧Vinを所望の値に調節する。そして、帯電したフィルムkが除電電極2の下を通過した後の残留電圧Voutを残留電圧測定器qによって測定し、除電電極2による除電効果を確認する。表1に第1の試験結果を示す。本試験は、除電電極2の導電性繊維9の先端とフィルムkとの設置間隔Dを10mm、フィルム走行速度vを50m/minとし、電界形成電極部6への印加電圧Vを0,±3,±4,±5kV(試験No.1〜4)とした夫々の場合において、初期帯電電圧Vinを±15,±10,±5,±3,0kVとしたときの残留電圧Voutを調べたものである。
【0039】
【表1】

Figure 0004031066
【0040】
表1の試験結果を図4に線図として示す。図4において、横軸は初期帯電電圧Vin、縦軸は残留電圧Voutであり、パラメータは電界形成電極部6への印加電圧Vである。表1及び図4に示すように、電界形成電極部6への印加電圧Vが0kVの場合(試験No.1)は従来の自己放電式除電装置と同様の状態を示すものであり、フィルムkの初期帯電電圧Vinが−3.0kVから+3.0kVの領域ではコロナ放電が発生せず、全く除電できない。なお、電界形成電極部6への印加電圧Vが0kVであっても、フィルムkの初期帯電電圧Vinの絶対値が大きければコロナ放電が発生して空気イオンによる除電が行われる。
【0041】
電界形成電極部6への印加電圧Vが±3kVの場合、フィルムkの初期帯電電圧Vinの全領域で良好に除電が行われている。特に、フィルムkの初期帯電電圧Vinが−3.0kVから+3.0kVの領域でも良好に除電が行われることが明らかとなった。更に、電界形成電極部6への印加電圧Vを±4kV,±5kVと高めていくと、除電効果がより良好となる。
【0042】
図2に示した除電電極2以外に、図5に支持柄部7を断面視して示す除電電極16が挙げられる。なお、既に説明した構成は図5において図1及び図2と同一の符号を附してその説明を省略する。支持柄部7には、前記電界形成電極部6の両側に沿って一対の前記自己放電電極部5,5が支持されている。これにより、図5に示すように電界形成電極部6の芯材12を介して左右対象に一対の自己放電電極部5,5の各導電性繊維9,9が位置し、例えば、図3を参照して、帯電体Xが移動する際に帯電体Xの進行方向が正逆何れであっても、各電極部5,6,5下の通過順が同一となる。従って、帯電体Xに除電電極16を対峙させる際にも、除電電極16の設置方向に影響されない除電を行うことが可能となる。
【0043】
次に、本発明の第1の実施形態について説明する。図6は支持柄部7を断面視して第1の実施形態の除電電極17を示すものである。なお、既に説明した構成は図6において図1及び図2と同一の符号を附してその説明を省略する。図6に示すように、支持柄部7には、前記自己放電電極部5の両側に沿って一対の前記電界形成電極部6,6が設けられている。自己放電電極部5の支持体8は、両電界形成電極部6,6間に形成された支持柄部7の溝部に装着されている。これにより、図6に示すように自己放電電極部5の各導電性繊維9を介して左右対象に一対の電界形成電極部6,6の各芯材12,12が位置し、例えば、図3を参照すれば、帯電体Xが移動する際に帯電体Xの進行方向が正逆何れであっても、各電極部6,5,6下の通過順が同一となる。従って、帯電体Xに除電電極17を対峙させる際にも、除電電極17の設置方向に影響されない除電を行うことが可能となる。
【0044】
第1の実施形態の除電装置について、図3に示す試験装置によって第2の試験を行った。表2に第2の試験結果を示す。
【0045】
表2において、試験No.5は図2の除電電極2をフィルムkの走行方向の上流側に自己放電電極部5が位置し下流側に電界形成電極部6が位置するように設置した場合(表1の試験No.4と同様)であり、試験No.6は図2の除電電極2をフィルムkの走行方向の上流側に電界形成電極部6が位置し下流側に自己放電電極部5が位置するように設置した場合である。試験No.7は図5の除電電極16を設置し、試験No.8は図6の第1の実施形態の除電電極17を設置した場合を示す。第2の試験における条件は、何れの場合においても電界形成電極部6への印加電圧Vを±5kVとした事以外は、第1の試験と同様である。
【0046】
【表2】
Figure 0004031066
【0047】
表2に示すように、最も良好に除電が行えたものは図6に示した本発明の第1の実施形態の除電電極17であり(試験No.8)、次いで図2の除電電極2でフィルムkの走行方向の上流側に自己放電電極部5を配した場合(試験No.5)、次いで図2の除電電極2でフィルムkの走行方向の上流側に電界形成電極部6を配した場合(試験No.6)、次いで図5の除電電極16(試験No.7)となった。
【0054】
次に、本発明の第2の実施形態について説明する。図7に示すように、第2の実施形態の除電電極28は、自己放電電極部29と、電界形成電極部30と、両電極部29,30を支持する絶縁体の支持柄部31とによって構成されている。図8に示すように、電界形成電極部30は、支持柄部31の長手方向に穿設された支持穴10に絶縁被覆材11を介して支持された導電性芯材12を備えており、図2の除電電極2と同様の構成である。支持柄部31は、外方に突出する凸条32を備えている。
【0055】
自己放電電極部29は、導電性繊維33を備えるが、その長手方向の両端がアルミニウム製板材を折り曲げて形成された一対の支持体34,35により固定されている。導電性繊維33は、前記導電性芯材12と平行に前記凸条32の先端(図中下端)に支持体34,35を介して固定支持されている。
【0056】
図7に示すように、電界形成電極部30の芯材12は、高圧ケーブル4に電気的に接続されており、自己放電電極部29の一方の支持体35は、接地リード線13を介して大地14に接地されている。
【0057】
第2の実施形態の除電装置について、図3に示す試験装置によって第3の試験を行ったところ、表3に示す試験結果が得られた。なお、試験の条件は表中に示すように前記第2の試験と同一である。
【0058】
【表3】
Figure 0004031066
【0059】
表3に示すように、第2の実施形態の除電装置においても極めて良好に除電が行え、除電電極28(試験No.9)が、第1の実施形態の除電電極17(試験No.8)よりも良好な除電効果を得た。
【0060】
また、本発明における前記各実施形態においては、商用周波数(50Hz〜60Hz)の交流を高電圧に変換する交流高圧電源3を使用したが、これに限るものではなく、例えば、高周波(10kHz 〜100kHz )による交流高圧電源を使用しても効率のよい除電を行うことができる。特に、高周波高圧電源の周波数を20kHz としたときに高い除電効果を得ることができた。
【0061】
そして、このような高周波高圧電源は、前述の商用周波数(50Hz〜60Hz)による交流高圧電源3に比べて小型に形成することが可能となるため、図9に示すように、除電電極2の支持体7の一端部に高周波高圧電源39を一体に設けることもでき、除電装置全体をコンパクトに形成することが可能となる。
【図面の簡単な説明】
【図1】 本発明の除電装置と共通の構成を一部に有する除電装置を模式的に示す説明図。
【図2】 図1のII−II線断面説明図。
【図3】 各除電装置による除電効果を確認するための試験装置の概略図。
【図4】 図3の装置による試験結果を示す線図。
【図5】 図1の除電装置における他の要部を断面視して示す説明図。
【図6】 本発明の第1の実施形態の除電装置の要部を断面視して示す説明図。
【図7】 本発明の第2の実施形態の除電電極を示す説明図
【図8】 図7の VIII VIII 線断面図
【図9】 本発明の実施形態の変形例の除電装置を示す説明図
【図10】 従来の除電装置を示す説明図
【図11】 従来の除電装置を示す説明図
【符号の説明】
1…除電装置、3…交流高圧電源(電圧印加手段)、5,29…自己放電電極部、6,30…電界形成電極部、8,34,35…支持体、9,33…導電性繊維、12…導電性芯材。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a static eliminator that removes static electricity from a charged body using air ions generated by generating corona discharge in air.
[0002]
[Prior art]
Conventionally, a voltage application type static eliminator is known as a static eliminator for removing static electricity from a charged body.
[0003]
For example, as shown in FIG. 10 , the voltage application type static eliminator includes a static elimination electrode portion a, an AC high voltage power source b, and a high voltage cable c that connects both. In the static elimination electrode part a, a large number of needle-like discharge electrodes d are arranged in the longitudinal direction of a handle part e of a rod-like insulator, and a ground electrode f facing the discharge electrode d with an interval is an insulator. Is supported at both ends of the handle portion e by an insulating material.
[0004]
Then, by applying an AC high voltage from the AC high voltage power source b to the discharge electrode d via the high voltage cable c, a high electric field is formed between the discharge electrode d and the ground electrode f, and the discharge electrode An electric field concentrates on the tip of d, corona discharge is generated, and air ions are generated. The charge of the charged body x is neutralized by the air ions to neutralize the charge.
[0005]
At this time, since the voltage applied to the discharge electrode d is alternating current, positive air ions and negative air ions are generated alternately. When the charged body x is negatively charged, it is neutralized by positive air ions, and when the charged body x is positively charged, it is neutralized by negative air ions.
[0006]
However, since the voltage application type static eliminator is in a state where a high voltage is always applied to the discharge electrode d at the time of static elimination, when a grounding body other than the charged body x comes into contact with the discharge electrode d, the pattern portion e A high voltage leaks along the surface, which may cause deterioration of insulation of the handle portion e and its burning.
[0007]
A self-discharge type static eliminator is known as a static eliminator that removes static electricity from a charged body.
[0008]
For example, as shown in FIG. 11 , the self-discharge type static eliminator has a plurality of conductive fibers h as discharge electrodes held on a handle portion g of a conductor such as aluminum, and a conductor i extending from the handle portion g. Is grounded. The self-discharge type static eliminator generates air ions using the electrostatic energy of the charged body x. The electric field from the charged body x is collected on the conductive fibers h of the grounded discharge electrode, and the electric field is Corona discharge is generated and air ions are generated. When the charged body x is negatively charged, positive air ions are generated by the discharge electrode, and the negative charge of the charged body x is neutralized. When the charged body x is positively charged, negative air ions are generated by the discharge electrode, and the positive charge of the charged body x is neutralized. Thus, since the self-discharge type static eliminator generates air ions using the electrostatic energy of the charged body x, the AC high-voltage power source found in the voltage application type static eliminator is not required.
[0009]
However, the effect of static elimination by the self-discharge type static elimination device depends on the magnitude of the charging voltage of the charged body x, and when the charging voltage is low, specifically, the absolute value of the charging voltage is about 3.0 kV or less both positive and negative. In this case, there is an inconvenience that no corona discharge occurs and static elimination is not performed at all.
[0010]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a static eliminator that eliminates such inconvenience and can reliably eliminate static electricity regardless of the magnitude of the charging voltage of a charged body.
[0011]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides a self-discharge electrode unit having a plurality of conductive fibers electrically connected to a support and arranged at intervals in a grounded state. An electric field forming electrode portion provided with an electrically conductive core material coated with an insulator as an electrode for forming an electric field, a support handle portion formed of an insulator and integrally supporting both electrode portions, and the electric field forming electrode Voltage applying means for applying an alternating high voltage to the core material of the portion, and the self-discharge electrode portion has an electric field generated from the core material of the electric field forming electrode portion to which the alternating high voltage is applied. The self-discharge electrode portion is provided along the longitudinal direction of the support handle portion, and the self-discharge electrode portion of the self-discharge electrode portion is interposed through the support handle portion. A pair of the electric field forming electrode portions along both side positions And it is provided.
[0012]
In the present invention, when the static elimination electrode is brought close to a charged charged body, when the voltage of the charged body is high, the electric field from the charged body is concentrated on the tip of the grounded conductive fiber of the self-discharge electrode portion. Corona discharge is generated at the tip of the conductive fiber. When the voltage of the charged body is low, an AC high voltage is applied to the core material of the electric field forming electrode section by the voltage applying means, so that the electric field generated from the electric field forming electrode section The shortage is compensated for and corona discharge is generated at the tip of the conductive fiber. Accordingly, it is possible to sufficiently neutralize the charged body regardless of whether the charging voltage of the charged body is high or low. As described above, according to the present invention, since the AC high voltage is applied to the core material of the electric field forming electrode portion by the voltage applying means, the charging voltage of the charging body is increased by the electric field formed from the electric field forming electrode portion. Even if the absolute value is small, the shortage of the electric field from the charged body can be compensated. In addition, when the static elimination electrode is brought close to the charged body, the electric field can be concentrated on the tip of the conductive fiber of the self-discharge electrode portion without depending on the voltage level of the charged body to generate corona discharge. In addition, the charge of the charged body can be neutralized by air ions generated by corona discharge to satisfactorily eliminate the charge.
[0013]
Further, since the pair of electric field forming electrode portions are positioned along both sides of the self-discharge electrode portion, the electric field generated from the core material of both electric field forming electrode portions is electrically connected to the self-discharge electrode portion located in the center portion. The fibers can be evenly concentrated on both ends of the sex fibers.
[0014]
Further, in the present invention, both electric field forming electrode portions are supported by the support handle portion in parallel with each other, and the support handle portion includes a groove portion formed between the both electric field forming electrode portions. The self-discharge electrode portion is mounted on the surface.
[0015]
The groove portion allows the conductive fiber of the self-discharge electrode portion to be provided at a position extending along the diameter direction of the conductive core material, and the electric field generated from the core material of the electric field forming electrode portion is evenly distributed from both sides of the conductive fiber. It can be concentrated at its tip.
[0024]
According to another aspect of the present invention, there is provided an electric field forming electrode portion in which a conductive core material covered with an insulator is supported by a support handle portion of the insulator, and at least both ends supported by the electric field forming electrode portion. A self-discharge electrode part comprising conductive fibers provided in parallel to the conductive core material as a discharge electrode in a state of being supported through a body and grounded, and an electrode formed by an insulator and supporting both electrode parts integrally A support handle, and a voltage applying means for applying an alternating high voltage to the core of the electric field forming electrode. The support handle of the electric field forming electrode is along the longitudinal direction of the conductive core. A flat ridge projecting outward from the support handle is provided, and the self-discharge electrode portion is a tip of the ridge and a core material of the electric field forming electrode portion to which an alternating high voltage is applied. Through the support at a position where the generated electric field is concentrated along the conductive fiber. Characterized in that it is supported Te.
[0026]
In the present invention, that provided in parallel to the conductive fiber conductive core member. As a result, the conductive fiber is not the tip but the outer peripheral surface thereof is opposed to the charged body, but the outer peripheral surface is microscopically rough, and thus is generated from the core material of the electric field forming electrode portion. The electric field can be concentrated on the tip of the outer peripheral surface of the conductive fiber. Moreover, by providing the conductive fibers at the tips of the ridges, the electric field generated from the core material of the electric field forming electrode portion is evenly concentrated from both sides of the conductive fibers, and a high static elimination effect can be obtained.
[0027]
At this time, the voltage applying means applies a high frequency high voltage to the core material of the electric field forming electrode portion.
[0028]
Further, at this time, the voltage applying means is provided integrally with a support handle portion that supports the self-discharge electrode portion and the electric field forming electrode portion.
[0029]
In the present invention, the voltage applied to the core material of the electric field forming electrode portion from the voltage application means is high not only at a commercial frequency (50 Hz to 60 Hz) but also at a high frequency (10 kHz to 100 kHz) as long as it is an alternating current. A static elimination effect can be obtained. Since the voltage applying means is a device that generates a high frequency high voltage, it is smaller and lighter than a device that generates an AC high voltage at a commercial frequency, so the voltage applying means is provided integrally with the support handle. Thus, the static eliminator can be made compact.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. 1 is an explanatory view schematically showing a static eliminator device having a portion of the static eliminator common feature of the invention, FIG 2 is II-II line sectional view of FIG. 1, FIG 3 is neutralization effect by the neutralization apparatus 4 is a schematic diagram of a test apparatus for confirming the above, FIG. 4 is a diagram showing a test result by the apparatus of FIG. 3, FIG. 5 is an explanatory diagram showing another essential part of the static eliminator of FIG. first explanatory view showing a cross-sectional view of the main part of the neutralization apparatus of the embodiment, FIG. 7 is an explanatory view showing the neutralizing electrode of the second embodiment of the present invention of the present invention, VIII of FIG. 8 7 - VIII line cross-sectional view, FIG. 9 is an explanatory view showing a static eliminator of a modification of the embodiment of the present invention.
[0031]
As shown in FIG. 1, a static eliminator 1 having a configuration in common with the static eliminator of the present invention includes a static eliminator electrode 2, an AC high voltage power source 3 that is a voltage application means, a static eliminator electrode 2, and an AC high voltage power source 3. It is comprised with the high voltage | pressure cable 4 to connect.
[0032]
The static elimination electrode 2 is composed of a self-discharge electrode portion 5, an electric field forming electrode portion 6, and an insulating support handle portion 7 that supports both electrode portions 5 and 6. As shown in FIG. 2, the self-discharge electrode portion 5 includes a plurality of conductive fibers 9 having one end portion sandwiched between a support 8 formed by bending and polymerizing an aluminum plate. The support 8 is fixed to and supported by one side surface of the support handle 7. The electric field forming electrode portion 6 includes a conductive core material 12 supported via an insulating coating material 11 in a support hole 10 drilled in the longitudinal direction of the support handle portion 7. The core material 12 is electrically connected to the high-voltage cable 4. The high-voltage cable 4 itself may be inserted into the support hole 10 as the core material 12. As shown in FIG. 1, the support 8 of the self-discharge electrode unit 5 is grounded to the ground 14 via the ground lead wire 13, and the AC high-voltage power supply 3 is not shown via the power input lead wire 15. It is connected to a power outlet and grounded to the ground 14 via the ground lead wire 16.
[0033]
When the charged body X is neutralized by the static eliminator configured as described above, the neutralizing electrode 2 is opposed to the charged body X at a certain distance, and the self-discharge electrode portion 5 of the neutralizing electrode 2 is grounded. Then, an AC high voltage is applied to the electric field forming electrode unit 6 by the AC high voltage power source 3.
[0034]
Next, a process in which static elimination is performed according to the charged state of the charged body X will be described.
[0035]
When the charged body X is positively charged and the charging voltage is +3 kV or more, the electric field formed by the charged body X concentrates on the tip of the conductive fiber 9 of the self-discharge electrode portion 5 and corona discharge occurs. appear. Air ions are generated by this corona discharge, and positive air ions move to the conductive fiber 9 to give a charge, and negative air ions move to the charged body X to charge the charged body X with a positive charge. Neutralize. Thereby, the charged body X is neutralized.
[0036]
When the charged body X is negatively charged and the charging voltage is −3 kV or less, the electric field formed by the charged body X concentrates on the tip of the conductive fiber 9 of the self-discharge electrode portion 5 and corona discharge. Occurs. The air ions generated at this time move negative air ions to the conductive fibers 9 to give charges, and positive air ions move to the charged body X to neutralize the negative charges of the charged body X. . Thereby, the charged body X is neutralized.
[0037]
When the absolute value of the charging voltage of the charged body X is 3 kV or less, an electric field is generated in the electric field forming electrode portion 6 to which the AC high voltage is applied by the AC high voltage power source 3, and the charged body X is relatively small. The electric field of the electric field forming electrode portion 6 acts so as to be superimposed on the electric field. Thereby, even if the absolute value of the charging voltage of the charged body X is 3 kV or less, the electric field of the charged body X and the electric field of the electric field forming electrode section 6 are concentrated on the tip of the conductive fiber 9 of the self-discharge electrode section 5. The electric field becomes relatively large, and corona discharge occurs there. Then, by generating positive and negative air ions, the charge of the charged body X is neutralized and neutralized.
[0038]
A first test was performed on the static eliminator 1 of FIG. 1 using the test apparatus shown in FIG. The test device j is for examining the neutralizing effect by making the neutralizing electrode 2 face the charged film k. The film k provided as a charged body in the apparatus j is a polyethylene film and is formed in an endless belt shape having a thickness of 0.1 mm and a width of 100 mm. The film k is wound around a driving roll r, a driven roll m, and an extension roll n and is rotated endlessly. The test roll is from the drive roll r to the driven roll n, and the traveling speed v of the film k in this test section can be set as appropriate. The upper position of the film k test section, from the upstream side, electrostatic imparting electrode o, the initial charge voltage meter p, dividing Denden electrode 2, the residual voltage meter q is disposed. With the test apparatus j configured as described above, first, while confirming the voltage value Vin of the initial charging voltage measuring device p, the applied voltage to the static electricity applying electrode o is increased, and the initial charging voltage Vin of the film k is set to a desired value. Adjust to. And the residual voltage Vout after the charged film k passes under the static elimination electrode 2 is measured with the residual voltage measuring device q, and the static elimination effect by the static elimination electrode 2 is confirmed. Table 1 shows the first test result. In this test, the installation distance D between the tip of the conductive fiber 9 of the static elimination electrode 2 and the film k is 10 mm, the film traveling speed v is 50 m / min, and the applied voltage V to the electric field forming electrode portion 6 is 0, ± 3. , ± 4, ± 5 kV (test Nos. 1 to 4), and the residual voltage Vout when the initial charging voltage Vin is ± 15, ± 10, ± 5, ± 3, 0 kV It is.
[0039]
[Table 1]
Figure 0004031066
[0040]
The test results in Table 1 are shown as a diagram in FIG. In FIG. 4, the horizontal axis is the initial charging voltage Vin, the vertical axis is the residual voltage Vout, and the parameter is the applied voltage V to the electric field forming electrode portion 6. As shown in Table 1 and FIG. 4, when the applied voltage V to the electric field forming electrode part 6 is 0 kV (test No. 1), it shows the same state as the conventional self-discharge type static eliminator, and the film k In the region where the initial charging voltage Vin is −3.0 kV to +3.0 kV, corona discharge does not occur, and the charge cannot be eliminated at all. Even if the applied voltage V to the electric field forming electrode section 6 is 0 kV, if the absolute value of the initial charging voltage Vin of the film k is large, corona discharge is generated and the static electricity is eliminated by air ions.
[0041]
When the applied voltage V to the electric field forming electrode portion 6 is ± 3 kV, the charge removal is satisfactorily performed in the entire region of the initial charging voltage Vin of the film k. In particular, it was revealed that the charge removal is performed well even in the region where the initial charging voltage Vin of the film k is in the range of -3.0 kV to +3.0 kV. Furthermore, if the applied voltage V to the electric field forming electrode section 6 is increased to ± 4 kV and ± 5 kV, the charge eliminating effect becomes better.
[0042]
In addition to the static elimination electrode 2 shown in FIG. 2, the static elimination electrode 16 which shows the support handle | pattern part 7 in sectional view in FIG. 5 is mentioned. In addition, the already demonstrated structure attaches | subjects the code | symbol same as FIG.1 and FIG.2 in FIG. 5, and the description is abbreviate | omitted. A pair of the self-discharge electrode portions 5 and 5 are supported on the support handle portion 7 along both sides of the electric field forming electrode portion 6. Thus, as shown in FIG. 5, the conductive fibers 9 and 9 of the pair of self-discharge electrode portions 5 and 5 are positioned on the left and right sides through the core material 12 of the electric field forming electrode portion 6, for example, FIG. Referring to, when the charged body X moves, regardless of whether the traveling direction of the charged body X is forward or reverse, the passing order under the electrode portions 5, 6, 5 is the same. Therefore, even when the static elimination electrode 16 is opposed to the charged body X, it is possible to perform static elimination that is not affected by the installation direction of the static elimination electrode 16.
[0043]
Next, a first embodiment of the present invention will be described. FIG. 6 shows the static elimination electrode 17 of the first embodiment when the support handle 7 is viewed in cross section. In addition, the already demonstrated structure attaches | subjects the code | symbol same as FIG.1 and FIG.2 in FIG. 6, and the description is abbreviate | omitted. As shown in FIG. 6, the support handle portion 7 is provided with a pair of electric field forming electrode portions 6 and 6 along both sides of the self-discharge electrode portion 5. The support 8 of the self-discharge electrode portion 5 is attached to the groove portion of the support handle portion 7 formed between the electric field forming electrode portions 6 and 6. As a result, as shown in FIG. 6, the core members 12 and 12 of the pair of electric field forming electrode portions 6 and 6 are positioned on the left and right sides via the conductive fibers 9 of the self-discharge electrode portion 5, for example, FIG. , When the charged body X moves, the passing order under the electrode portions 6, 5, 6 is the same regardless of whether the traveling direction of the charged body X is forward or reverse. Therefore, even when is opposed the neutralizing electrode 17 to the strip conductors X, it is possible to perform charge elimination is not affected by the installation direction of the neutralizing electrode 17.
[0044]
About the static elimination apparatus of 1st Embodiment, the 2nd test was done with the test apparatus shown in FIG. Table 2 shows the second test result.
[0045]
In Table 2, test no. 5 is a case where the static elimination electrode 2 of FIG. 2 is installed such that the self-discharge electrode portion 5 is located on the upstream side in the traveling direction of the film k and the electric field forming electrode portion 6 is located on the downstream side (Test No. 4 in Table 1). And the test No. 6 is a case where the static elimination electrode 2 of FIG. 2 is installed such that the electric field forming electrode portion 6 is located on the upstream side in the traveling direction of the film k and the self-discharge electrode portion 5 is located on the downstream side. Test No. 7 installed the static elimination electrode 16 of FIG . 8 shows the case where the static elimination electrode 17 of 1st Embodiment of FIG. 6 is installed. The conditions in the second test are the same as those in the first test except that the applied voltage V to the electric field forming electrode portion 6 is ± 5 kV in any case.
[0046]
[Table 2]
Figure 0004031066
[0047]
As shown in Table 2, it was the static elimination electrode 17 of the first embodiment of the present invention shown in FIG. 6 (test No. 8) that was able to perform the static elimination best, and then the static elimination electrode 2 of FIG. When the self-discharge electrode portion 5 is disposed on the upstream side in the traveling direction of the film k (test No. 5), the electric field forming electrode portion 6 is disposed on the upstream side in the traveling direction of the film k by the static elimination electrode 2 in FIG. In this case (Test No. 6), the static elimination electrode 16 (Test No. 7) shown in FIG .
[0054]
Next, a second embodiment of the present invention will be described. As shown in FIG. 7 , the static elimination electrode 28 of the second embodiment includes a self-discharge electrode portion 29, an electric field forming electrode portion 30, and a support handle portion 31 of an insulator that supports both electrode portions 29 and 30. It is configured. As shown in FIG. 8 , the electric field forming electrode portion 30 includes a conductive core material 12 supported via an insulating coating material 11 in a support hole 10 drilled in the longitudinal direction of the support handle portion 31. The configuration is the same as that of the charge removal electrode 2 of FIG. The support handle 31 includes a ridge 32 that protrudes outward .
[0055]
The self-discharge electrode portion 29 includes conductive fibers 33, and both ends in the longitudinal direction thereof are fixed by a pair of supports 34 and 35 formed by bending an aluminum plate material. The conductive fiber 33 is fixed and supported via support members 34 and 35 at the tip (lower end in the figure) of the ridge 32 in parallel with the conductive core material 12.
[0056]
As shown in FIG. 7 , the core material 12 of the electric field forming electrode portion 30 is electrically connected to the high-voltage cable 4, and one support 35 of the self-discharge electrode portion 29 is connected via the ground lead wire 13. Grounded to the ground 14.
[0057]
About the static elimination apparatus of 2nd Embodiment, when the 3rd test was done with the test apparatus shown in FIG. 3, the test result shown in Table 3 was obtained. The test conditions are the same as in the second test as shown in the table.
[0058]
[Table 3]
Figure 0004031066
[0059]
As shown in Table 3, the static eliminator of the second embodiment can perform static elimination very well, and the static elimination electrode 28 (test No. 9) is the static elimination electrode 17 (test No. 8) of the first embodiment. Better static elimination effect.
[0060]
Moreover, in each said embodiment in this invention, although AC high voltage power supply 3 which converts the alternating current of commercial frequency (50Hz-60Hz) into a high voltage was used, it is not restricted to this, For example, high frequency (10kHz-100kHz) Efficient static elimination can be performed even if an AC high-voltage power source is used. In particular, when the frequency of the high-frequency and high-voltage power supply was 20 kHz, a high charge removal effect could be obtained.
[0061]
Such a high-frequency high-voltage power supply can be formed smaller than the AC high-voltage power supply 3 having the commercial frequency (50 Hz to 60 Hz) described above, and therefore, as shown in FIG. The high-frequency and high-voltage power supply 39 can be integrally provided at one end of the body 7, and the entire static elimination apparatus can be formed in a compact manner.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing a static eliminator having a part of the same configuration as that of the static eliminator of the present invention.
FIG. 2 is a sectional view taken along line II-II in FIG.
FIG. 3 is a schematic diagram of a test apparatus for confirming a static elimination effect by each static elimination apparatus .
4 is a diagram showing a test result by the apparatus of FIG. 3;
FIG. 5 is an explanatory view showing another main part of the static eliminator of FIG . 1 in a cross-sectional view.
FIG. 6 is an explanatory view showing a main part of the static eliminator of the first embodiment of the present invention in a sectional view.
FIG. 7 is an explanatory diagram showing a static elimination electrode according to a second embodiment of the present invention .
VIII cross-sectional view taken along the line - 8 VIII in Figure 7.
FIG. 9 is an explanatory view showing a static eliminator according to a modification of the embodiment of the present invention .
FIG. 10 is an explanatory diagram showing a conventional static eliminator .
FIG. 11 is an explanatory diagram showing a conventional static eliminator .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Static elimination apparatus, 3 ... AC high voltage power supply (voltage application means) 5,29 ... Self-discharge electrode part, 6,30 ... Electric field formation electrode part, 8, 34, 35 ... Support body, 9, 33 ... Conductive fiber 12 ... Conductive core material.

Claims (5)

支持体に電気的に接続され且つ接地された状態で互いに間隔を存して配設された複数の導電性繊維を放電電極とする自己放電電極部と、絶縁体により被覆された導電性芯材を電界を形成する電極として設けた電界形成電極部と、絶縁体によって形成され両電極部を一体に支持する支持柄部と、前記電界形成電極部の芯材に交流高電圧を印加する電圧印加手段とを備えてなり、前記自己放電電極部は、交流高電圧が印加された前記電界形成電極部の芯材から生じる電界が前記導電性繊維の先端に集中する位置に設けられている除電装置であって、前記自己放電電極部は前記支持柄部の長手方向に沿って設けられており、該支持柄部を介して自己放電電極部の両側位置に沿って一対の前記電界形成電極部が設けられていることを特徴とする除電装置。A self-discharge electrode portion having a plurality of conductive fibers electrically connected to a support and being grounded and spaced apart from each other, and a conductive core coated with an insulator An electric field forming electrode portion provided with a material as an electrode for forming an electric field, a support handle portion formed by an insulator and integrally supporting both electrode portions, and a voltage for applying an alternating high voltage to the core material of the electric field forming electrode portion it and a application means, the self-discharge electrode portion, neutralizing the electric field generated from the core of the electric field forming electrode portions high AC voltage is applied is provided at a position to focus on the tip of the conductive fiber The self-discharge electrode portion is provided along a longitudinal direction of the support handle portion, and a pair of the electric field forming electrode portions along both side positions of the self-discharge electrode portion via the support handle portion. dividing electric, characterized in that are provided . 両電界形成電極部は、互いに平行に前記支持柄部に支持されており、該支持柄部は、両電界形成電極部間に沿って形成された溝部を備え、該溝部に前記自己放電電極部が装着されていることを特徴とする請求項1記載の除電装置。 Both electric field forming electrode portions are supported by the support handle portion in parallel with each other, and the support handle portion includes a groove portion formed between both electric field forming electrode portions, and the self discharge electrode portion is provided in the groove portion. The static eliminator according to claim 1, wherein the static eliminator is attached . 絶縁体により被覆された導電性芯材が絶縁体の支持柄部に支持されてなる電界形成電極部と、該電界形成電極部に少なくとも両端部が支持体を介して支持され且つ接地された状態で前記導電性芯材に平行に設けられた導電性繊維を放電電極として備える自己放電電極部と、絶縁体によって形成され両電極部を一体に支持する支持柄部と、前記電界形成電極部の芯材に交流高電圧を印加する電圧印加手段とを備えてなり、前記電界形成電極部の支持柄部は、導電性芯材の長手方向に沿って該支持柄部の外方に突出する平板状の凸条を備え、前記自己放電電極部は、該凸条の先端であって且つ交流高電圧が印加された前記電界形成電極部の芯材から生じる電界が前記導電性繊維に沿って集中する位置に前記支持体を介して支持されていることを特徴とする除電装置。 An electric field forming electrode portion in which a conductive core material covered with an insulator is supported by a support handle portion of the insulator, and at least both ends of the electric field forming electrode portion are supported via a support and grounded A self-discharge electrode portion provided with conductive fibers provided in parallel to the conductive core material as a discharge electrode, a support handle portion formed of an insulator and integrally supporting both electrode portions, and the electric field forming electrode portion. Voltage applying means for applying an alternating high voltage to the core material, and the support pattern portion of the electric field forming electrode portion is a flat plate protruding outward of the support pattern portion along the longitudinal direction of the conductive core material The self-discharge electrode portion is formed at the tip of the ridge and the electric field generated from the core material of the electric field forming electrode portion to which an alternating high voltage is applied is concentrated along the conductive fiber. Japanese that are supported through the support position Static eliminator to. 前記電圧印加手段は、高周波高電圧を前記電界形成電極部の芯材に印加することを特徴とする請求項1乃至3の何れかに記載の除電装置。 4. The static eliminator according to claim 1, wherein the voltage applying unit applies a high-frequency high voltage to a core material of the electric field forming electrode part . 5. 前記電圧印加手段は、前記自己放電電極部と前記電界形成電極部とを支持する支持柄部に一体に設けられていることを特徴とする請求項1乃至4の何れかに記載の除電装置。 5. The static eliminator according to claim 1, wherein the voltage applying unit is provided integrally with a support handle portion that supports the self-discharge electrode portion and the electric field forming electrode portion .
JP10260196A 1995-06-14 1996-04-24 Static eliminator Expired - Fee Related JP4031066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10260196A JP4031066B2 (en) 1995-06-14 1996-04-24 Static eliminator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-147599 1995-06-14
JP14759995 1995-06-14
JP10260196A JP4031066B2 (en) 1995-06-14 1996-04-24 Static eliminator

Publications (2)

Publication Number Publication Date
JPH0963788A JPH0963788A (en) 1997-03-07
JP4031066B2 true JP4031066B2 (en) 2008-01-09

Family

ID=26443287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10260196A Expired - Fee Related JP4031066B2 (en) 1995-06-14 1996-04-24 Static eliminator

Country Status (1)

Country Link
JP (1) JP4031066B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI313054B (en) * 2003-07-22 2009-08-01 Trinc Or Static eliminator
JP2007042287A (en) * 2005-07-29 2007-02-15 Shishido Seidenki Kk Ion generator
KR100821629B1 (en) * 2006-08-30 2008-04-11 (주)선재하이테크 Air nozzle type ionizer
JP5951171B2 (en) * 2009-11-20 2016-07-13 三菱重工食品包装機械株式会社 Container cleaning device and beverage filling device
JP6770836B2 (en) * 2016-06-27 2020-10-21 Tmtマシナリー株式会社 Thread take-up device

Also Published As

Publication number Publication date
JPH0963788A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
US4673416A (en) Air cleaning apparatus
CN1953837B (en) Ion generation method and apparatus
US5066316A (en) Exhaust gas purifying apparatus
JPS59113458A (en) Apparatus for evenly charging moving web
JP4031066B2 (en) Static eliminator
US8901506B2 (en) Air ion measuring apparatus
US2535697A (en) Electrostatic precipitator
JP3284503B2 (en) Electrostatic charging device
JP2000133413A (en) Ion generating apparatus
JP2001121033A (en) Electric precipitator
JPS63286753A (en) Measuring instrument for particle concentration in sample gas
US4811689A (en) Electrostatic powder coating apparatus
JP3002581B2 (en) Static eliminator
JPS63285570A (en) Destaticizing separation device for electrostatic copying machine
JP4396084B2 (en) Manufacturing method of electrical insulating sheet
JP2007042287A (en) Ion generator
JPS6219033B2 (en)
JP2651476B2 (en) Method and device for removing static electricity from films
KR100205392B1 (en) Electrostatic precipitator
JPH02129900A (en) Charge removal apparatus
JPH10312878A (en) Web charging device
JP4736215B2 (en) Discharger performance measuring device
JP3732547B2 (en) AC ion generator
EP0203233B1 (en) Method and apparatus for the electrostatic pinning of polymeric webs
JP2007115559A (en) Static charge eliminator of electrical insulation sheet and manufacturing method of the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees