JP4030856B2 - Distributed power supply system and control method thereof - Google Patents

Distributed power supply system and control method thereof Download PDF

Info

Publication number
JP4030856B2
JP4030856B2 JP2002310638A JP2002310638A JP4030856B2 JP 4030856 B2 JP4030856 B2 JP 4030856B2 JP 2002310638 A JP2002310638 A JP 2002310638A JP 2002310638 A JP2002310638 A JP 2002310638A JP 4030856 B2 JP4030856 B2 JP 4030856B2
Authority
JP
Japan
Prior art keywords
power
storage device
frequency
power storage
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002310638A
Other languages
Japanese (ja)
Other versions
JP2004147445A (en
Inventor
裕成 川添
基生 二見
昌司 豊田
博昭 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002310638A priority Critical patent/JP4030856B2/en
Publication of JP2004147445A publication Critical patent/JP2004147445A/en
Application granted granted Critical
Publication of JP4030856B2 publication Critical patent/JP4030856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、商用系統に連系する構内系統に発電装置と電力貯蔵装置を備えた分散電源システムに係わり、特に、構内系統の自立運転制御に関するものである。
【0002】
【従来の技術】
このような分散電源システムは、ディーゼルやガスタービンのように発電機が系統に直接連系する発電装置と電力を調整する電力貯蔵装置を備え、この電力貯蔵装置を充放電制御して、構内系統の負荷へ安定した電力を供給する。
【0003】
対象システムの制御方法としては、特許文献1に記載されているように、商用系統との連系時において、負荷の過渡的な急変や負荷の過大なピーク消費電力ならびに自家発電系統側の電力不足に応じて、電力貯蔵装置から電力を供給することが開示されている。
【0004】
また、特許文献2には、商用系統において、需要負荷変動による電力系統の周波数の変動を抑制するように電力貯蔵装置に充放電を行うことが開示されている。
【0005】
さらに、特許文献3には、発電装置の発電電力が増加中には充電電力を増加(放電電力を減少)させ、発電装置の発電電力が減少中には放電電力を増加(充電電力を減少)させる電力貯蔵装置の制御が開示されている。この種の技術としては、このほかにも、特開2001−5543号公報や特開2001−327080号公報等がある。
【0006】
【特許文献1】
特開2000−69675号公報(要約ほか)
【特許文献2】
特開2001−37085号公報(請求項1ほか)
【特許文献3】
特開2000−175360号公報(図1ほか)
【0007】
【発明が解決しようとする課題】
従来技術の分散電源システムによれば、商用系統連系時において、負荷変動や自然エネルギーを動力源とする発電装置の出力変動を電力貯蔵装置の充放電制御で補っている。
【0008】
一方、需要家が分散電源システムを導入するメリットとして、商用系統停電時にも分散電源システムを無停電電源装置として活用することが考えられる。すなわち、分散電源を有する需要家は、商用系統からの電力供給が断たれても、構内系統に安定した電力を供給できる。
【0009】
発電装置を無停電電源装置として運転継続させるためには、商用系統連系運転の状態から、商用系統に連系する遮断器を開放して、自立運転に移行する際に発生する構内系統の電力変動及び電力振動を抑制する必要がある。上記従来技術では、前述したように何れも電力貯蔵装置が商用系統に同期連系している状態での変動を抑制するものであり、商用系統に比べて容量(慣性)の小さい発電装置に同期する自立運転状態での振動を抑制することはできない。
【0010】
本発明の目的は、発電装置と電力貯蔵装置を組合わせた構内の分散電源システムにおいて、商用系統から切離され自立運転に移行する際の構内系統の電力振動を抑制することである。
【0011】
本発明の他の目的は、商用系統から切離され自立運転に移行する際の構内系統の電力変動と電力振動をともに抑制することである。
【0012】
【課題を解決するための手段】
本発明の特徴とするところは、商用系統に遮断器を介して連系する構内系統と、この構内系統に接続された発電装置と、前記構内系統に接続され電力を充放電する電力貯蔵装置とを備えた分散電源システムにおいて、構内系統における特定周波数帯域での周波数の振動成分を検出する手段と、この振動成分に基づいて前記電力貯蔵装置を充放電制御する制御手段を備えたことである。
【0013】
本発明の他の特徴とするところは、構内系統の有効電力の変動分を検出する手段と、この変動分に基づいて前記電力貯蔵装置を充放電制御するとともに、構内系統における特定周波数帯域での周波数の振動成分を検出する手段と、この振動成分に基づいて前記電力貯蔵装置を充放電制御する制御手段を備えたことである。
【0014】
具体的には、構内系統の周波数を検出し、この周波数の特定周波数帯域での振動成分を抽出し、振動成分の上昇中に電力貯蔵装置を充電方向に向かうように動作させ、振動成分の低下中に電力貯蔵装置を放電方向に向かうように動作させる。これによって、自立運転に移行した際の電力振動を抑制する。
【0015】
なお、構内系統の周波数の代わりに、構内系統の電圧,構内負荷の有効電力,発電装置の有効電力,又は発電装置の角速度を用いても、同様の振動抑制効果を得ることができる。
【0016】
また、構内系統の有効電力の変動を検出し、有効電力が減少したときには電力貯蔵装置を充電動作させ、逆に有効電力が増加したときには電力貯蔵装置を放電動作させるように設定し、自立運転に移行した直後の電力変動を抑制する。
【0017】
本発明のその他の目的及び特徴は以下の実施例の説明で明らかにする。
【0018】
【発明の実施の形態】
本発明の実施の形態を以下、図を用いて説明する。
【0019】
図1は、本発明の一実施例による分散電源システムの構成図である。本実施例の分散電源システムは、電力貯蔵装置1と発電装置2で構成される。電力貯蔵装置1は、電力を蓄える電力貯蔵部11と、交直変換器のような電力を調整する電力変換部12からなる。電力貯蔵部11としては、鉛蓄電池,ナトリウム硫黄電池,ニッカド電池又はリチウムイオウ電池などの二次電池、電気二重層コンデンサ、フライホイール及び超電導コイルなどが考えられる。発電装置2は、系統に連系する少なくとも1つのディーゼルやガスタービンのような発電機で構成される。これらは共に構内負荷3に接続され、また、遮断器4を介して商用系統5に連系される。ここでは、電力貯蔵装置1の有効電力をPB、発電装置2の有効電力をPG、構内負荷の有効電力をPLとし、矢印の方向を正(プラス)と定義して説明を進める。
【0020】
制御装置(制御手段)6は、有効電力検出部7と周波数検出部8を介して、負荷の有効電力PLと周波数Fを取り込み、電力変換部12に制御信号を出力する。負荷の有効電力PLと、電力貯蔵装置1の有効電力PB及び発電装置2の有効電力PGの関係は、(1)式で表される。
【0021】
PL=PG+PB………………………………………………………………(1)
従って、負荷3の有効電力PLの検出が困難な場合には、発電装置2の有効電力PGと電力貯蔵装置1の有効電力PBを検出して加算した値を用いても良い。
【0022】
図2は、自立運転時に電力変動及び電力振動が発生した場合の動作説明図である。自立運転とは、図1の商用系統5で何らかの異常が発生して、遮断器4が開放され、分散電源システムだけで、構内系統に接続される負荷3へ電力を供給する状態を言う。波形は、上段より、構内系統の電圧VS、周波数F、構内負荷の有効電力PL、発電装置2の有効電力PG並びに電力貯蔵装置1の有効電力PBを表している。分散電源システムは、時刻t1で、商用系統5から解列して自立運転に移行している。この際、分散電源の発電量と構内の負荷量によって大きな電力変動が生じると、発電装置2の容量(慣性)が小さいため、図に示すような周波数F0の振動が発生し、負荷に安定した電力を供給できなくなる。最悪の場合、振動が発散して自立運転ができない事態に陥る。
【0023】
図3は、これを解決するための本発明の一実施例による制御装置6の機能ブロック図である。制御装置6は、電力変動抑制部61と電力振動抑制部62の2系を備え、これらの出力PB*1とPB*2の和PB*により電力変換部12を制御する変換器制御部63を備えている。
【0024】
まず、電力変動抑制部61は、有効電力検出部7を介して取り込んだ構内負荷の有効電力PLから、同じくPLを入力とする1次遅れ回路611の出力を減算部612で引いて、負荷の有効電力PLの変動分を抽出する。この負荷の有効電力の変動分に応じて、自立運転移行直後の電力変動を抑制するための第1の有効電力指令値PB*1を決定する。電力貯蔵装置1の有効電力PBの放電方向を正(プラス)と定義しているので、構内負荷の有効電力PLが減少したときには、電力貯蔵装置1が充電動作して発電装置2の加速を抑えるように、減算部612の出力符号は負(マイナス)になる。逆に、有効電力PLが増加したときには、発電装置2の減速を抑えるために放電動作させるよう、減算部612の出力符号が正(プラス)になるように、図示の通りに設定すれば良い。なお、1次遅れ回路611の伝達関数L1(S)は、(2)式で表される。
【0025】
L1(S)=1/(1+T・S)……………………………………………(2)
時定数Tは、有効電力指令値PB*1をリセット(ゼロ)するまでの遅延時間であり、発電装置2に大きな変動を与えないように、発電装置2の応答時定数(慣性定数)に対して十分に長い値、例えば30秒を設定する。発電装置2の応答時定数は通常、数[秒]程度であり、上記時定数を、数〜数十[秒]に設定する。
【0026】
一方、電力振動抑制部62では、周波数検出部8を介して取り込んだ構内系統の周波数Fから、バンドパスフィルタ621Aを介して特定周波数帯域での周波数の振動成分ΔFを抽出する。この特定周波数帯域とは、発電装置2の固有振動周波数F0を含む帯域とする。例えば、60[kW]のディーゼルエンジン発電機で、その固有振動周波数F0は、F0=6[Hz]程度であり、特定周波数帯域は、通常、10[Hz]未満の数[Hz]である。
【0027】
また、ゲイン調整部622Aでゲインを調整し、更に、位相調整部(位相調整手段)623Aで位相を調整して、自立運転移行後の電力振動を抑制するための第2の有効電力指令値PB*2を決定する。
【0028】
更に、発電装置2を複数設置して、それぞれ異なる電力振動を抑制する場合には、振動抑制系をそれらの数だけ備える必要がある。すなわち、バンドパスフィルタ621B、ゲイン調整部622B、位相調整部623B及び加算部624は、例えば、A,B2つの発電装置が存在する場合に用いる。
【0029】
さて、変換器制御部63には、電力変動抑制部61の有効電力指令値PB*1と電力振動抑制部62の有効電力指令値PB*2を加算部(加算手段)64で加算した有効電力指令値PB*が入力される。この総合電力指令値PB*に基づいて変換器制御部63にて、電力変換部12を制御するための信号が作られ、自立運転時にも構内負荷3への供給電力が安定するように、電力貯蔵装置1の充放電有効電力PBが制御される。
【0030】
図4は、本発明の一実施例によるバンドパスフィルタ621(621A,621B)のゲインと位相の設定方法説明図である。周波数Fの振動成分ΔFを抽出するためのバンドパスフィルタ621の伝達関数BPF(S)は、(3)式で表される。
【0031】
BPF(S)=((ω0/QB)・S)/(S2+(ω0/QB)・S+ω02)……(3)
ω0は、(4)式のように振動周波数F0をカットオフ周波数として設定する。
【0032】
ω0=2π×F0………………………………………………………………(4)
また、QBは、ゲイン特性の鋭さを設定する値である。この数値を大きくするとカットオフ周波数F0周辺のゲインが小さくなるため、抽出精度は高くなる。しかしその反面、振動周波数が変化した場合の抽出精度が低下してしまう。いわゆるロバスト性がなくなるため、ある程度の振動周波数の変化にも対応できる値に設定する必要があり、例えば、QB=0.5あたりに設定することが望ましい。
【0033】
図5は、本発明の一実施例による周波数検出信号の位相とダンピングの関係について説明する図である。発電装置2の振動を抑えるには、周波数の振動成分ΔFが上昇中には、電力貯蔵装置1を充電の方向に向かうように動作させて発電装置の加速を抑える。逆に、周波数の振動成分ΔFが低下中には、放電の方向に向かうように動作させて発電装置の減速を抑えれば良い。従って、電力振動抑制部62の有効電力指令値PB*2は、電力貯蔵装置1の有効電力PBの放電方向を正(プラス)とすると、図に示すようにΔFの位相に対して、180°位相のずれた値であることが最も好ましい。この180°位相のずれた値を得るには、ゲイン調整部622(622A,622B)の符号を負(マイナス)に設定するだけで良い。
【0034】
位相調整部623(623A,623B)では、上記の位相関係を保つように、例えば、検出遅れ等による位相の遅れを調整する。位相調整部623の伝達関数LL(S)は、(5)式で表され、位相∠LL(jω)は、(6)式から求まる。
【0035】
LL(S)=(1+T1・S)/(1+T2・S)………………………(5)
∠LL(jω)=tan-1(ω・T1)−tan-1(ω・T2)……(6)
即ち、T1>T2ならば、位相は進み方向に、逆にT1<T2ならば、遅れ方向に調整できる。
【0036】
また、電力振動抑制部62の検出信号としては、構内系統の周波数Fの代わりに、構内系統の電圧VS、構内負荷の有効電力PL、発電装置2の有効電力PG或いは発電装置2の角速度ωを用いても良い。何れの信号も振動周波数F0とその位相は、構内系統の周波数Fと同じであることから、各信号によってゲイン調整部622のゲインの大きさが異なる以外は、上記電力振動抑制部62の構成及び設定をそのまま踏襲できる。すなわち、発電装置2の振動を抑えるには、構内系統の電圧VS、構内負荷の有効電力PL、発電装置2の有効電力PG或いは発電装置2の角速度ωが上昇(増加)中には、電力貯蔵装置1を充電の方向に向かうように動作させて発電装置の加速を抑える。逆に、これらの信号が低下(減少)中には、放電の方向に向かうように動作させて、発電装置の減速を抑えれば良い。
【0037】
各信号は、なるべく1箇所でまとめて検出する方が好ましいが、角速度ωは、発電装置が複数である場合には、各発電装置から個別に検出する必要がある。ただし、各発電装置の変動周波数が同じ、もしくは近い時には、1箇所の検出でも良い。また、発電装置の容量(慣性)に差がある場合は、最も大きい発電装置を対象として振動を抑制しても良い。
【0038】
図6は、本発明の一実施例による作用効果を説明する各部波形図である。上段より、構内系統電圧VS、周波数F、負荷有効電力PL、発電装置有効電力PG、電力貯蔵装置有効電力PB、電力変動抑制指令値PB*1、電力振動抑制指令値PB*2及び総合指令値PB*を表している。図2と同様に、分散電源システムは、時刻t1で、商用系統5から解列して自立運転に移行し、有効電力の変動が発生している。ここでは、負荷の有効電力PLの変動分は減少している。同時に、時刻t1〜t4の各時間幅を半周期とする振動が発生している。
【0039】
まず、電力変動抑制部61では、負荷の有効電力PLの変動分、ここでは減少分に見合う負(マイナス)極性の第1の有効電力指令値PB*1となり、電力貯蔵装置1に充電動作を行わせる信号となっている。これにより、自立運転に移行した直後の電力変動を抑制する方向に働く。
【0040】
一方、電力振動抑制部62では、系統周波数Fの特定周波数F0帯域での振動成分に基き、これを抑制する。このため、図5で説明した周波数Fの振動成分ΔFと第2の有効電力指令値PB*2の関係に基き、逆位相の極性で変化する第2の有効電力指令値PB*2を得ており、発電装置2の振動を抑制する方向に作用する。
【0041】
従って、分散電源システムは、総合有効電力指令PB*(=第1の有効電力指令値PB*1+第2の有効電力指令値PB*2)によって、自立運転時においても電力変動及び電力振動を抑制しながら、構内負荷3へ安定に電力を供給できる。
【0042】
この実施例においては、次のステップを含む分散電源システムの制御方法である。すなわち、まず構内系統の有効電力を検出すると、この有効電力の変動分を検出する。次に、この有効電力の減少に応じて電力貯蔵装置を充電動作させ、他方、前記有効電力の増加に応じて前記電力貯蔵装置を放電動作させる。また、構内系統における特定周波数帯域での周波数,電圧又は有効電力の振動成分を検出し、この振動成分の位相を調整する。そして、この位相調整された振動成分に基いて、前記周波数の上昇中には、前記電力貯蔵装置を充電の方向に向かうように制御する。他方、前記周波数の低下中には、前記電力貯蔵装置を放電の方向に向かうように制御する分散電源システムの制御方法である。
【0043】
以上の実施例によれば、商用系統に連系する構内発電装置と電力貯蔵装置を組合わせた分散電源システムにおいて、自立運転移行時の電力変動及び電力振動をともに抑制し、自立運転移行時にも構内系統に安定した電力を供給できる。
【0044】
【発明の効果】
本発明によれば、商用系統に連系する構内発電装置と電力貯蔵装置を組合わせた分散電源システムにおける自立運転移行時の電力振動を抑制し、自立運転移行時にも構内系統に安定した電力を供給できる。
【図面の簡単な説明】
【図1】本発明の一実施例による分散電源システムの全体構成ブロック図。
【図2】自立運転時に電力変動及び電力振動が発生した場合の動作説明図。
【図3】本発明の一実施例による制御装置6の機能ブロック図。
【図4】本発明の一実施例によるバンドパスフィルタの特性設定方法を説明する図。
【図5】本発明の一実施例による周波数検出信号の位相とダンピングの関係図。
【図6】本発明の一実施例による作用効果を説明する各部波形図。
【符号の説明】
1…電力貯蔵装置、11…電力貯蔵部、12…電力変換部、2…発電装置、3…構内系統の負荷、4…遮断器、5…商用系統、6…制御装置(制御手段)、7…有効電力検出部、8…周波数検出部、PG…発電装置の有効電力、PB…電力貯蔵装置の有効電力、PL…構内負荷の有効電力、61…電力変動抑制部、611…1次遅れ回路、PB*1…電力変動抑制部の(第1の)有効電力指令値、F…構内系統の周波数、62…電力振動抑制部、621,621A,621B…バンドパスフィルタ、ΔF…周波数の振動成分、622,622A,622B…ゲイン調整部、623,623A,623B…位相調整部、PB*2…電力振動抑制部の(第2の)有効電力指令値、PB*…変換器制御部の(総合)有効電力指令値、63…変換器制御部、F0…バンドパスフィルタのカットオフ周波数(発電装置の固有振動周波数)、VS…構内系統の電圧、ω…発電装置の角速度。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distributed power supply system including a power generation device and a power storage device in a premises system linked to a commercial system, and more particularly to a self-sustained operation control of the premises system.
[0002]
[Prior art]
Such a distributed power supply system includes a power generation device in which a generator is directly connected to the system, such as a diesel or gas turbine, and a power storage device that adjusts power, and the power storage device is charged and discharged to control Supply stable power to the load.
[0003]
As a control method of the target system, as described in Patent Document 1, when connecting to a commercial system, a transient sudden change of the load, an excessive peak power consumption of the load, and a power shortage on the private power generation system side Accordingly, it is disclosed that power is supplied from the power storage device.
[0004]
Patent Document 2 discloses that in a commercial system, the power storage device is charged and discharged so as to suppress fluctuations in the frequency of the power system due to demand load fluctuations.
[0005]
Furthermore, in Patent Document 3, charging power is increased (discharging power is decreased) while the generated power of the power generating apparatus is increasing, and discharging power is increased (decreasing charging power) while the generated power of the power generating apparatus is decreasing. Control of a power storage device is disclosed. In addition to this, there are JP-A-2001-5543, JP-A-2001-327080, and the like.
[0006]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2000-69675 (summary, etc.)
[Patent Document 2]
JP 2001-37085 A (Claim 1 and others)
[Patent Document 3]
JP 2000-175360 A (FIG. 1 and others)
[0007]
[Problems to be solved by the invention]
According to the distributed power supply system of the prior art, during fluctuations in commercial grid connection, load fluctuations and output fluctuations of the power generator using natural energy as a power source are compensated by charge / discharge control of the power storage apparatus.
[0008]
On the other hand, as a merit for a customer to introduce a distributed power supply system, it is conceivable to use the distributed power supply system as an uninterruptible power supply device even in the event of a commercial power failure. That is, a consumer having a distributed power source can supply stable power to the local system even if the power supply from the commercial system is cut off.
[0009]
In order to continue the operation of the power generation device as an uninterruptible power supply, the power of the on-site system generated when the circuit breaker connected to the commercial system is opened and the operation is shifted to the independent operation from the state of the commercial system interconnection operation. It is necessary to suppress fluctuations and power oscillations. In the above prior arts, as described above, each of the power storage devices suppresses fluctuations in a state where the power storage device is synchronously linked to the commercial system, and is synchronized with a power generation device having a smaller capacity (inertia) than that of the commercial system. It is not possible to suppress vibration in the self-sustaining operation state.
[0010]
An object of the present invention is to suppress power oscillations in a local system when the system is separated from a commercial system and shifts to a self-sustained operation in a distributed power supply system on the premises combining a power generation device and a power storage device.
[0011]
Another object of the present invention is to suppress both power fluctuations and power oscillations in the premises system when the system is disconnected from the commercial system and shifts to the independent operation.
[0012]
[Means for Solving the Problems]
A feature of the present invention is that a premise system linked to a commercial system via a circuit breaker, a power generation device connected to the premise system, and a power storage device connected to the premise system to charge and discharge power. Is provided with means for detecting a vibration component of a frequency in a specific frequency band in the premises system, and control means for charge / discharge control of the power storage device based on the vibration component.
[0013]
Another feature of the present invention is that the means for detecting the fluctuation of the active power of the campus system, the charge storage and discharge control of the power storage device based on the fluctuation, and the specific frequency band in the campus system There are provided means for detecting a vibration component of frequency and control means for charge / discharge control of the power storage device based on the vibration component.
[0014]
Specifically, the frequency of the local system is detected, the vibration component in a specific frequency band of this frequency is extracted, the power storage device is operated in the charging direction while the vibration component is rising, and the vibration component is reduced. The power storage device is operated in the discharge direction. As a result, power oscillations when shifting to independent operation are suppressed.
[0015]
The same vibration suppression effect can be obtained by using the voltage of the local system, the effective power of the local load, the effective power of the power generator, or the angular velocity of the power generator instead of the frequency of the local system.
[0016]
In addition, the fluctuation of the active power in the campus system is detected, and when the active power decreases, the power storage device is charged, and conversely, when the active power increases, the power storage device is set to discharge. Suppresses power fluctuations immediately after the transition.
[0017]
Other objects and features of the present invention will become apparent from the following description of embodiments.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
FIG. 1 is a configuration diagram of a distributed power supply system according to an embodiment of the present invention. The distributed power supply system according to the present embodiment includes a power storage device 1 and a power generation device 2. The power storage device 1 includes a power storage unit 11 that stores power and a power conversion unit 12 that adjusts power such as an AC / DC converter. The power storage unit 11 may be a secondary battery such as a lead storage battery, a sodium sulfur battery, a nickel cadmium battery, or a lithium-sulfur battery, an electric double layer capacitor, a flywheel, a superconducting coil, or the like. The power generation device 2 is composed of at least one generator such as a diesel turbine or a gas turbine that is connected to the grid. These are both connected to the premises load 3 and connected to the commercial system 5 via the circuit breaker 4. Here, the description will proceed by defining the active power of the power storage device 1 as PB, the active power of the power generation device 2 as PG, the active power of the local load as PL, and the direction of the arrow as positive (plus).
[0020]
The control device (control means) 6 takes in the active power PL and the frequency F of the load via the active power detection unit 7 and the frequency detection unit 8 and outputs a control signal to the power conversion unit 12. The relationship between the active power PL of the load, the active power PB of the power storage device 1 and the active power PG of the power generation device 2 is expressed by equation (1).
[0021]
PL = PG + PB ……………………………………………………………… (1)
Therefore, when it is difficult to detect the active power PL of the load 3, a value obtained by detecting and adding the active power PG of the power generation device 2 and the active power PB of the power storage device 1 may be used.
[0022]
FIG. 2 is an operation explanatory diagram when power fluctuations and power vibrations occur during the self-sustaining operation. Self-sustained operation refers to a state in which some abnormality occurs in the commercial system 5 of FIG. 1, the circuit breaker 4 is opened, and power is supplied to the load 3 connected to the local system only by the distributed power system. From the top, the waveform represents the voltage VS, frequency F, the active power PL of the local load, the active power PG of the power generator 2 and the active power PB of the power storage device 1 from the upper stage. The distributed power supply system is disconnected from the commercial system 5 at time t1 and shifts to the independent operation. At this time, if a large power fluctuation occurs due to the power generation amount of the distributed power source and the load amount on the premises, the capacity (inertia) of the power generation device 2 is small, so that the vibration of the frequency F0 as shown in the figure occurs and the load is stabilized The power cannot be supplied. In the worst case, vibrations diverge and the vehicle cannot be operated independently.
[0023]
FIG. 3 is a functional block diagram of the control device 6 according to an embodiment of the present invention for solving this. The control device 6 includes two systems of a power fluctuation suppression unit 61 and a power vibration suppression unit 62, and includes a converter control unit 63 that controls the power conversion unit 12 by the sum PB * of these outputs PB * 1 and PB * 2. I have.
[0024]
First, the power fluctuation suppression unit 61 subtracts the output of the first-order lag circuit 611 that also receives PL from the active power PL of the local load taken in via the active power detection unit 7 by the subtraction unit 612, and The variation of the active power PL is extracted. The first active power command value PB * 1 for suppressing the power fluctuation immediately after the transition to the independent operation is determined according to the fluctuation of the active power of the load. Since the discharge direction of the active power PB of the power storage device 1 is defined as positive (plus), when the active power PL of the local load decreases, the power storage device 1 performs a charging operation to suppress acceleration of the power generation device 2. Thus, the output sign of the subtraction unit 612 becomes negative (minus). On the contrary, when the active power PL increases, the output sign of the subtractor 612 may be set as shown in the figure so that the discharge operation is performed in order to suppress the deceleration of the power generation device 2 so as to be positive (plus). Note that the transfer function L1 (S) of the first-order lag circuit 611 is expressed by equation (2).
[0025]
L1 (S) = 1 / (1 + T · S) ……………………………………… (2)
The time constant T is a delay time until the active power command value PB * 1 is reset (zero), and the response time constant (inertia constant) of the power generator 2 is set so as not to give a large fluctuation to the power generator 2. And a sufficiently long value, for example, 30 seconds is set. The response time constant of the power generation device 2 is normally about several seconds, and the time constant is set to several to several tens of seconds.
[0026]
On the other hand, the power vibration suppression unit 62 extracts the vibration component ΔF of the frequency in the specific frequency band through the bandpass filter 621A from the frequency F of the local system taken in through the frequency detection unit 8. The specific frequency band is a band including the natural vibration frequency F0 of the power generation device 2. For example, in a diesel engine generator of 60 [kW], the natural vibration frequency F0 is about F0 = 6 [Hz], and the specific frequency band is usually a few [Hz] less than 10 [Hz].
[0027]
Further, the second active power command value PB for adjusting the gain by the gain adjusting unit 622A and further adjusting the phase by the phase adjusting unit (phase adjusting unit) 623A to suppress the power oscillation after shifting to the independent operation. * 2 is determined.
[0028]
Further, when a plurality of power generation devices 2 are installed to suppress different power vibrations, it is necessary to provide the same number of vibration suppression systems. That is, the bandpass filter 621B, the gain adjustment unit 622B, the phase adjustment unit 623B, and the addition unit 624 are used when, for example, two power generation devices A and B exist.
[0029]
Now, the converter control unit 63, the effective by adding the active power command value PB * 2 of the active power command value PB * 1 and the power vibration suppressing portion 62 of the power fluctuation suppressing unit 61 by an adder (adding means) 64 power Command value PB * is input. Based on the total power command value PB * , the converter control unit 63 generates a signal for controlling the power conversion unit 12 so that the power supplied to the premises load 3 is stable during the independent operation. The charge / discharge effective power PB of the storage device 1 is controlled.
[0030]
FIG. 4 is an explanatory diagram of a method for setting the gain and phase of the bandpass filter 621 (621A, 621B) according to one embodiment of the present invention. A transfer function BPF (S) of the bandpass filter 621 for extracting the vibration component ΔF of the frequency F is expressed by the following equation (3).
[0031]
BPF (S) = ((ω0 / QB) · S) / (S 2 + (ω0 / QB) · S + ω0 2 ) (3)
For ω0, the vibration frequency F0 is set as a cutoff frequency as shown in the equation (4).
[0032]
ω0 = 2π × F0 ……………………………………………………………… (4)
QB is a value for setting the sharpness of the gain characteristic. When this value is increased, the gain around the cutoff frequency F0 is decreased, and the extraction accuracy is increased. However, on the other hand, the extraction accuracy when the vibration frequency changes is lowered. Since the so-called robustness is lost, it is necessary to set a value that can cope with a certain change in vibration frequency. For example, it is desirable to set the value around QB = 0.5.
[0033]
FIG. 5 is a diagram for explaining the relationship between the phase of the frequency detection signal and damping according to an embodiment of the present invention. In order to suppress the vibration of the power generation device 2, while the vibration component ΔF of the frequency is increasing, the power storage device 1 is operated so as to go in the charging direction to suppress the acceleration of the power generation device. On the contrary, while the vibration component ΔF of the frequency is decreasing, it is only necessary to operate in the direction of discharge to suppress the deceleration of the power generator. Therefore, the active power command value PB * 2 of the power vibration suppression unit 62 is 180 ° with respect to the phase of ΔF as shown in the figure, when the discharge direction of the active power PB of the power storage device 1 is positive (plus). Most preferably, the values are out of phase. In order to obtain a value that is 180 degrees out of phase, it is only necessary to set the sign of the gain adjustment unit 622 (622A, 622B) to negative.
[0034]
In the phase adjustment unit 623 (623A, 623B), for example, a phase delay due to a detection delay or the like is adjusted so as to maintain the above phase relationship. The transfer function LL (S) of the phase adjustment unit 623 is expressed by equation (5), and the phase ∠LL (jω) is obtained from equation (6).
[0035]
LL (S) = (1 + T1 · S) / (1 + T2 · S) (5)
∠LL (jω) = tan −1 (ω · T1) −tan −1 (ω · T2) (6)
That is, if T1> T2, the phase can be adjusted in the advance direction, and conversely if T1 <T2, the phase can be adjusted in the delay direction.
[0036]
In addition, as a detection signal of the power vibration suppression unit 62, instead of the frequency F of the local system, the voltage VS of the local system, the effective power PL of the local load, the effective power PG of the power generation device 2, or the angular velocity ω of the power generation device 2 are used. It may be used. Since any signal has the same vibration frequency F0 and its phase as the frequency F of the local system, the configuration of the power vibration suppression unit 62 and the above are different except that the magnitude of the gain of the gain adjustment unit 622 differs depending on each signal. You can follow the settings as they are. That is, in order to suppress the vibration of the power generation device 2, the power storage is performed while the voltage VS of the local system, the effective power PL of the local load, the active power PG of the power generation device 2 or the angular velocity ω of the power generation device 2 is increasing (increasing). The device 1 is operated so as to go in the charging direction to suppress the acceleration of the power generation device. Conversely, while these signals are decreasing (decreasing), it is only necessary to operate in the direction of discharge to suppress deceleration of the power generation device.
[0037]
Although it is preferable to detect each signal collectively as much as possible at one place, the angular velocity ω needs to be detected individually from each power generator when there are a plurality of power generators. However, when the fluctuating frequency of each power generator is the same or close, it may be detected at one location. In addition, when there is a difference in capacity (inertia) of the power generation device, vibration may be suppressed for the largest power generation device.
[0038]
FIG. 6 is a waveform diagram of each part for explaining the function and effect of the embodiment of the present invention. From the top, the on-site system voltage VS, frequency F, load active power PL, power generator active power PG, power storage device active power PB, power fluctuation suppression command value PB * 1, power vibration suppression command value PB * 2, and general command value PB * is represented. As in FIG. 2, the distributed power supply system is disconnected from the commercial system 5 at time t <b> 1 and shifts to the self-sustaining operation, and the fluctuation of the active power occurs. Here, the fluctuation amount of the active power PL of the load is reduced. At the same time, a vibration having a half period of each time width from time t1 to t4 is generated.
[0039]
First, in the power fluctuation suppressing unit 61, the first active power command value PB * 1 having a negative (minus) polarity corresponding to the fluctuation of the active power PL of the load, here, the reduction is obtained, and the power storage device 1 is charged. It is a signal to be performed. Thereby, it works in the direction which suppresses the electric power fluctuation immediately after shifting to independent operation.
[0040]
On the other hand, the power vibration suppression unit 62 suppresses this based on the vibration component in the specific frequency F0 band of the system frequency F. Therefore, based on the vibration component ΔF and second active power command value PB * 2 relationship between the frequency F described in FIG. 5, the second to obtain active power command value PB * 2 that changes polarity in opposite phase And acts in a direction to suppress vibration of the power generation device 2.
[0041]
Therefore, the distributed power supply system suppresses power fluctuations and power oscillations even during independent operation by the total active power command PB * (= first active power command value PB * 1 + second active power command value PB * 2). However, power can be stably supplied to the premises load 3.
[0042]
In this embodiment, the distributed power supply system control method includes the following steps. That is, when the active power of the on-premise system is first detected, the variation of this active power is detected. Next, the power storage device is charged according to the decrease in the effective power, and the power storage device is discharged according to the increase in the effective power. Further, the vibration component of the frequency, voltage or active power in the specific frequency band in the campus system is detected, and the phase of this vibration component is adjusted. Then, based on the phase-adjusted vibration component, the power storage device is controlled to go in the charging direction while the frequency is increasing. On the other hand, it is a control method of the distributed power supply system that controls the power storage device so as to go in the direction of discharge while the frequency is decreasing.
[0043]
According to the above embodiment, in the distributed power supply system that combines the on-site power generation device and the power storage device linked to the commercial system, both the power fluctuation and the power vibration during the transition to the independent operation are suppressed, and the Stable power can be supplied to the campus system.
[0044]
【The invention's effect】
According to the present invention, it is possible to suppress power oscillation at the time of transition to independent operation in a distributed power supply system that combines a power generation device and a power generation device linked to a commercial system, and to supply stable power to the campus system even at the time of transition to independent operation. Can supply.
[Brief description of the drawings]
FIG. 1 is an overall configuration block diagram of a distributed power supply system according to an embodiment of the present invention.
FIG. 2 is an operation explanatory diagram when power fluctuation and power vibration occur during self-sustained operation.
FIG. 3 is a functional block diagram of a control device 6 according to an embodiment of the present invention.
FIG. 4 is a diagram for explaining a method for setting the characteristics of a bandpass filter according to an embodiment of the present invention.
FIG. 5 is a relationship diagram between a phase of a frequency detection signal and damping according to an embodiment of the present invention.
FIG. 6 is a waveform diagram of each part for explaining the function and effect of one embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electric power storage apparatus, 11 ... Electric power storage part, 12 ... Electric power conversion part, 2 ... Electric power generation apparatus, 3 ... Load of premises system, 4 ... Circuit breaker, 5 ... Commercial system, 6 ... Control apparatus (control means), 7 ... Active power detection unit, 8 ... Frequency detection unit, PG ... Active power of power generation device, PB ... Active power of power storage device, PL ... Active power of local load, 61 ... Power fluctuation suppression unit, 611 ... Primary delay circuit , PB * 1... (First) active power command value of the power fluctuation suppression unit, F... Frequency of the local system, 62... Power vibration suppression unit, 621, 621A, 621B. 622, 622A, 622B, gain adjustment unit, 623, 623A, 623B, phase adjustment unit, PB * 2, ... (second) active power command value of power vibration suppression unit, PB *, converter control unit (overall) ) Active power command value, 63 ... Converter system Part, (the natural vibration frequency of the generator) F0 ... band-pass filter cut-off frequency, voltage of VS ... campus system, ω ... angular velocity of the power plant.

Claims (3)

商用系統の異常時に開放される遮断器を介して商用系統に連系する構内系統と、
この構内系統に接続され、前記遮断器が投入され前記構内系統が前記商用系統に連系中から前記遮断器が開放され前記構内系統が自立運転に移行した後に亘って運転される発電装置と、
前記構内系統に接続され電力を充放電する電力貯蔵装置とを備えた分散電源システムにおいて、
前記遮断器が開放され前記構内系統が自立運転に移行した直後の構内負荷の有効電力の変動分を検出する手段と、
構内系統における前記発電装置の固有振動周波数を含む特定周波数帯域での周波数の振動成分を検出する手段と、
検出した前記有効電力の変動分および前記周波数の振動成分に基づいて前記電力貯蔵装置を充放電制御する制御手段を備え
前記制御手段は、前記構内系統の有効電力の減少に応じて前記電力貯蔵装置を充電動作させ、前記構内系統の有効電力の増加に応じて前記電力貯蔵装置を放電動作させるとともに、前記振動成分の上昇中に前記電力貯蔵装置を充電方向に向かうように動作させ、前記振動成分の低下中に前記電力貯蔵装置を放電方向に向かうように動作させることを特徴とする分散電源システム。
A premises system linked to the commercial system via a circuit breaker that is opened in the event of an abnormality in the commercial system,
A power generator that is connected to the local system, is operated after the circuit breaker is turned on , the internal system is connected to the commercial system, the circuit breaker is opened, and the local system is shifted to independent operation ;
In a distributed power supply system comprising a power storage device connected to the on-premises system and charging and discharging power,
Means for detecting a change in active power of the on-site load immediately after the circuit breaker is opened and the on-site system shifts to a self-sustaining operation;
Means for detecting a vibration component of a frequency in a specific frequency band including a natural vibration frequency of the power generation device in a campus system;
Control means for charge / discharge control of the power storage device based on the detected fluctuation of the active power and the vibration component of the frequency ,
The control means causes the power storage device to perform a charging operation according to a decrease in the active power of the local system, and discharges the power storage device according to an increase in the active power of the local system, and A distributed power supply system , wherein the power storage device is operated in a charging direction while rising, and the power storage device is operated in a discharging direction while the vibration component is decreasing .
請求項1において、前記制御手段は、前記有効電力の変動分と前記周波数の振動成分とを加算する手段を備え、この加算手段の出力に応じて前記電力貯蔵装置を充放電制御することを特徴とする分散電源システム。  2. The control device according to claim 1, wherein the control unit includes a unit that adds a variation of the active power and a vibration component of the frequency, and performs charge / discharge control of the power storage device according to an output of the addition unit. And distributed power system. 商用系統の異常時に開放される遮断器を介して商用系統に連系する構内系統と、
この構内系統に接続され、前記遮断器が投入され前記構内系統が前記商用系統に連系中から前記遮断器が開放され前記構内系統が自立運転に移行した後に亘って運転される発電装置と、
前記構内系統に接続され電力を充放電する電力貯蔵装置とを備えた分散電源システムの制御方法であって、
前記遮断器が開放され前記構内系統が自立運転に移行した直後の構内負荷の有効電力の変動分を検出するステップと、
この有効電力の変動分に応じて前記電力貯蔵装置を充放電動作させるステップと、
構内系統における前記発電装置の固有振動周波数を含む特定周波数帯域での周波数の振動成分を検出するステップと、
この振動成分の位相を調整するステップと、
この位相調整された振動成分に基いて、前記周波数の上昇中に前記電力貯蔵装置を充電の方向に向かうように制御するステップと、
前記周波数の低下中に前記電力貯蔵装置を放電の方向に向かうように制御するステップを含むことを特徴とする分散電源システムの制御方法。
A premises system linked to the commercial system via a circuit breaker that is opened in the event of an abnormality in the commercial system,
A power generator that is connected to the on- premises system, is operated after the circuit breaker is turned on and the on-site system is connected to the commercial system after the circuit breaker is opened and the on-site system shifts to a self-sustaining operation ;
A control method of a distributed power supply system comprising a power storage device connected to the local system and charging and discharging power,
Detecting the amount of change in active power of the on-site load immediately after the circuit breaker is opened and the on-site system shifts to the autonomous operation;
Charging and discharging the power storage device according to the variation of the active power; and
Detecting a vibration component of the frequency at a particular frequency band including the natural frequency of the power generator in the premises system,
Adjusting the phase of the vibration component;
Based on the phase-adjusted vibration component, controlling the power storage device in a charging direction during the increase in the frequency; and
A control method for a distributed power supply system, comprising the step of controlling the power storage device in a direction of discharge while the frequency is decreasing.
JP2002310638A 2002-10-25 2002-10-25 Distributed power supply system and control method thereof Expired - Lifetime JP4030856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310638A JP4030856B2 (en) 2002-10-25 2002-10-25 Distributed power supply system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310638A JP4030856B2 (en) 2002-10-25 2002-10-25 Distributed power supply system and control method thereof

Publications (2)

Publication Number Publication Date
JP2004147445A JP2004147445A (en) 2004-05-20
JP4030856B2 true JP4030856B2 (en) 2008-01-09

Family

ID=32456074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310638A Expired - Lifetime JP4030856B2 (en) 2002-10-25 2002-10-25 Distributed power supply system and control method thereof

Country Status (1)

Country Link
JP (1) JP4030856B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947926B2 (en) * 2005-06-23 2012-06-06 東京瓦斯株式会社 Method of operating private power generation equipment equipped with power storage means and private power generation equipment
JP5320916B2 (en) * 2008-09-09 2013-10-23 株式会社明電舎 Generator vibration suppression control device
JP5320917B2 (en) * 2008-09-09 2013-10-23 株式会社明電舎 Generator vibration suppression control device
WO2011016092A1 (en) * 2009-08-07 2011-02-10 清水建設株式会社 Island operating system for distributed power source
JP5633963B2 (en) * 2010-10-12 2014-12-03 一般財団法人電力中央研究所 Control method for power system stabilizer
CN102510080A (en) * 2011-11-09 2012-06-20 南方电网科学研究院有限责任公司 Method for scheduling energy storage system in micro-grid
JP6368456B2 (en) * 2012-08-23 2018-08-01 株式会社ダイヘン Power fluctuation component output suppression device
CN103715752B (en) * 2012-10-08 2016-04-20 周锡卫 A kind of distributed new electric power micro-grid system with piconet structure
CN103795116A (en) * 2014-01-26 2014-05-14 广东易事特电源股份有限公司 Power supply change-over and control device, and power supply method and system
JP6335641B2 (en) 2014-05-23 2018-05-30 三菱電機株式会社 Frequency stabilizer for single system
CN104104116B (en) * 2014-07-01 2017-09-19 杭州电子科技大学 A kind of photovoltaic micro supply/demand control system design method containing many distributed energies
CN104538985A (en) * 2014-11-27 2015-04-22 晶澳(扬州)太阳能光伏工程有限公司 Solar off-grid and grid-connected control method for hybrid solar and commercial power supply
CN104882909B (en) * 2015-05-29 2017-04-19 国家电网公司 DC bus voltage adjusting and MPPT unified control system and method of photovoltaic microgrid
KR102043209B1 (en) * 2018-04-05 2019-11-11 두산중공업 주식회사 Energy system capable of storing unused power operation method thereof
EP4054046A1 (en) * 2021-03-01 2022-09-07 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Systems and methods for power variability reduction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819179A (en) * 1994-06-30 1996-01-19 Hitachi Ltd System stabilization system using secondary battery
JPH0965588A (en) * 1995-08-24 1997-03-07 Hitachi Ltd Electric power storage system
JPH1127993A (en) * 1997-06-30 1999-01-29 Toshiba Corp Power converter and power system
JPH1155858A (en) * 1997-07-30 1999-02-26 Meidensha Corp Incoming and transforming station for private use
JPH11262186A (en) * 1998-03-09 1999-09-24 Hitachi Ltd Controller of power storage system

Also Published As

Publication number Publication date
JP2004147445A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4030856B2 (en) Distributed power supply system and control method thereof
Sebastián et al. Effective active power control of a high penetration wind diesel system with a Ni–Cd battery energy storage
KR101119460B1 (en) Power accumulator and hybrid distributed power supply system
JP4672525B2 (en) Power quality maintenance control device
WO2019035760A1 (en) Virtual power system inertia apparatus and methods of operation thereof
JP4947926B2 (en) Method of operating private power generation equipment equipped with power storage means and private power generation equipment
US8860247B2 (en) Electric power system and uninterruptible power supply for important load
WO2013140916A1 (en) System stabilization device
JP5508796B2 (en) Power supply system control method and power supply system control apparatus
JPH1169893A (en) Hybrid power generation system
AU2003293372A1 (en) Electrical power supply
JPH0965588A (en) Electric power storage system
JP5062325B2 (en) System stabilization device
US20110291483A1 (en) Electric power system
JP2009027797A (en) Output variation relaxation system for new energy power generation system
JP5141764B2 (en) System stabilization device
JP4659270B2 (en) Wind power generation equipment
WO2012055115A1 (en) Integrated excitation and turbine controller for synchronous generator and control method thereof
JP2002374629A (en) Received power regulating device, private power generating device, and method of controlling them
JP2001161098A (en) Instantaneous incoming power control system wherein reverse power flow is permitted
JP3302875B2 (en) Reactive power compensator for grid connection protection
JP2000041338A (en) System interlinkage device
JP5477744B2 (en) Private power generation system
JPS58204735A (en) Method of controlling operation of power storage device
JPH09312934A (en) Power system stabilizer of power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071017

R150 Certificate of patent or registration of utility model

Ref document number: 4030856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term