JP4026737B2 - Drain neutralization treatment method and neutralization treatment apparatus - Google Patents

Drain neutralization treatment method and neutralization treatment apparatus Download PDF

Info

Publication number
JP4026737B2
JP4026737B2 JP12400699A JP12400699A JP4026737B2 JP 4026737 B2 JP4026737 B2 JP 4026737B2 JP 12400699 A JP12400699 A JP 12400699A JP 12400699 A JP12400699 A JP 12400699A JP 4026737 B2 JP4026737 B2 JP 4026737B2
Authority
JP
Japan
Prior art keywords
drain
electrode
electrode chamber
neutralization
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12400699A
Other languages
Japanese (ja)
Other versions
JP2000312887A (en
Inventor
茂 小向
嘉弘 新谷
大介 越水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Rinnai Corp
Original Assignee
Tokyo Gas Co Ltd
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Rinnai Corp filed Critical Tokyo Gas Co Ltd
Priority to JP12400699A priority Critical patent/JP4026737B2/en
Publication of JP2000312887A publication Critical patent/JP2000312887A/en
Application granted granted Critical
Publication of JP4026737B2 publication Critical patent/JP4026737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、酸性ドレンの中和処理に関し、特に潜熱回収用熱交換器を備えた燃焼装置を用いて天然ガス或いは都市ガス等を燃焼する際に発生する排ガスの酸性ドレンの中和に適した処理方法、及び処理装置に関する。
【0002】
【従来の技術】
潜熱回収用熱交換器を備えた燃焼器は、民生用或は産業用の給湯器等に応用されている。図4にこのような給湯器の一般的な構成を示した。バーナ2で都市ガス等が燃焼され、発生した燃焼熱は第1段熱交換器3において水を所定温度まで加熱するために消費されるが、余剰の燃焼熱は第1段熱交換器3の上方に配設された第2段熱交換器4において、水管中の水を加熱するために使用される。
【0003】
第2段熱交換器4において、燃焼排ガスが給水管から供給された冷水と熱交換する際に、排ガスの顕熱のみでなく排ガス中の水蒸気が保有している潜熱も回収され、高い熱交換効率が達成される。潜熱回収が行われる結果、排ガス中の水蒸気は凝縮して水滴5を生じ、集合してドレンとなるが、このドレンは排ガス中の硫黄酸化物(SOと略記)や窒素酸化物(NOと略記)等を吸収して、PHが3程度の強酸性液体となっている。
【0004】
強酸性のドレンをそのまま排出すると、排水管系統等に使用されている金属製品の腐蝕やコンクリート建造物の劣化等の被害、水質汚染等の環境問題を起こす原因となるため、排水基準で規定するPH5−9の範囲に適合するように中和処理する必要がある。
【0005】
従来、ドレンの中和処理方法として、第2段熱交換器4の下方に受け皿6を配設して水滴5を集め、例えば図4に示すように燃焼器内に、又は燃焼器外にアルカリ性中和剤等を充填した中和器9を設け、ドレン管7を通して中和器9にドレンを導いて中和処理する技術が提案されている(例えば特開平9−150163号、特開昭60−97094号等)。
【0006】
最近、この受け皿に集めたドレンを燃焼器内の空間に配設した1槽の小型中和タンクへ導入し、この中和タンク内にイオン化傾向が水素を挟んで反対順位にある2本の金属電極を対向配置し、ドレンを電気分解することにより中和する画期的な技術が提案された(特開平8−136058号)。
【0007】
【発明が解決しようとする課題】
上記電気分解方法では、燃焼器外の中和タンク設置や中和剤補給の必要がないため、煩雑な保守を要せず且つクリーンにドレンを中和できる。しかしながら、燃焼時即ちドレン発生中は第1電極に正の電圧、第2電極に負の電圧を印加し、逆に燃焼停止中即ちドレン非発生時には第1電極に負の電圧、第2電極に正の電圧を印加することとしているため、常に電力を消費することになる。
【0008】
また、同一槽内に2本の電極が近接して配置されているため、陽極付近で電解されたドレンと陰極付近で電解されたドレンの混合が常に起こり、中和が比較的緩慢にしか進行しない。本発明は、酸性ドレンの直接電気分解におけるこのような問題点の改善を課題とするものである。
【0009】
【課題を解決するための手段】
本発明によれば、陽極室と陰極室を別個に設け、両室を塩橋、隔膜若しくはイオン交換膜を介して接続し、ドレン発生時にのみ電圧印加することにより、酸性ドレンは発生中に陰極室において電気分解され、速やかに中和されたドレンが陰極室より排出されて上記課題が解決される。
【0010】
即ち本発明は、電解質溶液または固体電解質を収納した第1電極室に塩橋、隔膜若しくはイオン交換膜を介して第2電極室を接続し、ドレンを第2電極室へ連続的または断続的に導入し、第1電極には正電圧を、第2電極には負電圧を印加してドレンを電気分解処理し、処理されたドレンを第2電極室から連続的または断続的に排出することを特徴とするドレンの中和処理方法の発明である。
【0011】
また、第2の本発明は、ドレンを中和処理するための装置であって、少なくとも、第1電極と電解質溶液または固体電解質とを収納した第1電極室、この第1電極室と塩橋、隔膜若しくはイオン交換膜を介して接続され且つドレンの導入口及び排出口を有する第2電極室、この第2電極室に収納した第2電極、及びそれぞれ第1電極に正電圧、第2電極に負電圧を印加する電圧印加制御手段からなることを特徴とするドレン中和処理装置の発明である。
【0012】
本発明において、第2電極室に酸性ドレンを導入して負電圧を印加すると、ドレン中の水素イオンが化学式1の陰極反応により水素ガスとなって除去されるため、ドレンのPH値は酸性側からアルカリ性側へと変化する。中性付近のPH値になった時点で、中和処理が済んだドレンを、例えばサイフォン等の移液手段により第2電極室から排出すると、環境基準に適合した排水処理が達成される。
【0013】
【化1】
2H+2e-=H
【0014】
電解質溶液と第1電極とを収納した第1電極室では、正電圧を印加すると化学式2の陽極反応は左側へ進行して酸素が発生するが、イオン化反応の標準電極電位(E)が化学式2の反応のEより大きな電極材料は溶解しない。
【化2】
+2HO+4e-=4OH-
=0.401V
【0015】
【発明の実施の形態】
本発明のドレン中和処理方法の一実施態様を示した図3を参照しながら、本発明の中和処理方法を説明する。第1電極室11には導電率の高いKイオンを高濃度で含有する飽和KCl水溶液15を入れ、アルミニウム棒13を第1電極としてこの水溶液に浸し、固定する。第1電極13に用いられる材料は、高い印加電圧を要しない材料であれば特に制約はない。電解質も、一般に用いられる導電率の高いNa、K等を含有する無機塩類であれば特に制約はない。
【0016】
第2電極室12にはドレンを導入する。図3では、ドレン管21bを使用してドレンを導入する。また処理済みのドレンを第2電極室12から随時排出するため、図3ではドレン管21aを使用する。ドレンが電気分解を受ける時間、即ちドレンが第2電極室12に滞留する時間の調節を可能にするように、ドレン管21aに液深調節式のサイフォン管20を接続している。第2電極室12に白金棒14を第2電極14としてドレンに浸して固定する。更に、電気分解の進行に伴うドレンのPH値変化を測定する便宜のためPH計33を、また排出する処理済みドレンのPH値を均一化するため攪拌子34を設けても良い。
【0017】
両電極室11及び12をU字型塩橋17或はH字型塩橋で接続する。塩橋電解質として、液間電位を小さくするKNO、KCl等の濃厚水溶液をゼラチンで固化したものを充填する。なお、ゼラチン固化に代えて、塩橋17の両端を多孔質の隔壁で閉鎖して水溶液の流出を止めても良い。または図1のドレン中和処理装置10に示したように、塩橋17に代えて、一般にこの分野で用いられる隔膜またはイオン交換膜を介して両電極室11及び12を接続しても良い。
【0018】
ドレンを第2電極室12に満たし、直流電圧0.5−3V程度の正電圧を第1電極13に、また同じボルト数の負電圧を第2電極14に印加する手段29、例えばガルバノスタット、電池等を各電極に接続する。電圧を印加し、攪拌子34を使用してドレンを攪拌しつつ時間の経過と共に第2電極室12のPH変化をPH計33により測定し、PH値が7になるまでの時間を計測する。次いで、ドレンのPHが中性付近になった時点でサイフォンが作用して中和済みのドレンが第2電極室12から排出されるように、ドレン発生速度に対応してドレン滞留時間即ちドレン液面から第2電極室の底までの液深を、サイフォン管20の長さを調節することにより調整する。一旦このように液深を調節して直流電圧を印加すると、ドレンが連続的に第2電極室12に流入しても、所要の時間に亘り電気分解が行われ、PHが7付近まで中和されたドレンがサイフォン作用により自動的に排出される。ドレン発生が停止した時点、或は暫くタイムラグを置いた後で、電圧印加を止める。
【0019】
次に本発明の中和処理装置の実施形態について、本発明の一構成例を示した図2に沿って説明する。第1電極室11には前記電解質溶液15または固体電解質と第1電極13とが収納され、絶縁封止材料23bを用いて電解質15を封止すると共に第1電極13が固定されている。第1電極室11の材料は、前記電解質15に腐蝕されない材質であれば良い。
【0020】
第2電極室12には第2電極14が収納され、絶縁封止材料21aで固定されると共に、下部にドレン導入口19、比較的上部にドレン排出口18が設けられている。前記の通り第2電極室12内のドレン液深を最適に設定するため、ドレン液面からの深さの異なる複数ドレン排出口18が設けられ、ドレンの流出位置を幾つか備えたサイフォン管20が各ドレン排出口18に接続されている。第2電極室12に用いる材料は、ドレン16に腐蝕されない材質であれば良い。ドレン導入口19はドレン管11bを介してドレン発生源(図示せず)に接続されている。ドレン排出口18にはドレン管11aが接続されており、排水ピットへ中和処理済みドレンを導く。または、業務用大型給湯器のようにドレンの発生速度がかなり大きい場合には、上記サイフォンに代えて、ドレン排出口18に流量制御用開閉弁を設けると共に第2電極室12に液位計(図示せず)を設け、この液位計からの信号により開閉弁を自動的に開閉させ、中和処理済みドレンを断続的に第2電極室12外へ排出しても良い。或は、家庭用小型給湯器のように燃焼器が比較的小型でドレンの発生速度が極く小さい場合には、開閉弁もサイフォンも設けず、中和処理済みドレンが自然に溢れ出るようにしても良い。
【0021】
第1電極室11と第2電極室12をH字型塩橋17を介して接続する。塩橋が液に浸る部位の末端には多孔性隔壁を設け、塩橋内にはKNO等の濃厚水溶液が充填されている。または塩橋に代えて、通常用いられるアスベスト膜等の隔膜或いはイオン交換膜(図示せず)等を用いて1槽を2室に分割して第1及び第2電極室として用いても良い。第1及び第2電極の材料は、通常用いられる黒鉛、鉛、アルミニウム等で良い。
【0022】
両電極13及び14を導線等を用いて電圧印加手段29に電気的に接続する。電圧印加手段29は、ドレンの酸性度に対応した電流量を印加する可変電圧発生部28、及び燃焼検出子(図示せず)からの信号26を受けて燃焼の開始、停止に応じて上記可変電圧発生部をオン・オフする印加指令部27から構成されている。燃焼停止後も第2電極室12に滞留するドレンを充分に中和するため、印加指令部27にはオン・オフにタイム・ラグを与える機能を付加しても良い。
【0023】
[実施例1]
本発明の処理方法による中和性能を例示するため、図3に示された中和処理装置を用いて行った実施例を説明する。第1電極13としてアルミニウム棒、電解質溶液15として飽和KCl水溶液、第2電極14として白金棒、また酸性ドレン16の模擬液として1NのHNOに数滴のKNO水溶液を添加したもの300mlを使用した。U字型塩橋17にはKNOの6N溶液をゼラチンで固化したものを充填した。ガルバノスタット19を用いて第1電極13に正電圧、第2電極14に負電圧を3V印加し、電流10mAを流した。通電開始と共に第2電極14表面から発生する水素の気泡が観察された。マグネット撹拌子34を用いて電解液16を撹拌しながら電気分解を進めた。通電開始からの時間経過と共に上昇(アルカリ側に移行)するPH値をPH計33により測定した結果を表1に示した。PHが約4の酸性であったドレン模擬液16が、通電から7分で中性となり、8分経過でアルカリ性となったので、7分前後の電気分解により排水基準PH=5−9を満たし得ることが判る。
【0024】
[比較例1]
上記実施例と同一の模擬液を使用し、容量300mlのビーカー1個に上記実施例と同一の両電極を2cm間隔で対向配置した以外は全く同様にして電気分解を行った。PH計による測定結果を表1に併せて示した。このように両電極が同一槽内に配置された従来の方法では、通電開始時に約4であったドレン模擬液のPHは、10分間の通電後もなお約5.3に止まり、中和の進行が比較的遅いことが判る。
【0025】
【表1】

Figure 0004026737
【0026】
【発明の効果】
本発明を用いれば、中和剤の補給なしに長期間、ドレンの中和を継続することができる。またドレンの発生量や発生源に応じて、電極室や電極の寸法を家庭用或は産業用に対応して拡大又は縮小できるので、広範囲な処理能力に応じて装置を製作することができる。しかも、電気分解の所要時間がかなり短いのでドレンを長時間滞留させる必要がなく、特に中和装置の小型化を容易に達成できる。
【0027】
【図面の簡単な説明】
【図1】本発明の一構成例(隔膜型電解槽式中和処理装置)を組込んだ給湯器の概要を示す断面図である。
【図2】本発明の中和処理装置の一構成例を示す断面図である。
【図3】本発明の中和処理方法の一態様を示す説明図である。
【図4】従来の潜熱回収用熱交換器を備えた給湯器を説明する断面図である。
【符号の説明】
1 燃焼器(給湯器)
2 バーナ
3 第1段熱交換器
4 第2段熱交換器
5 水滴
6 受け皿
7 ドレン管
8 ファン
9 中和器
10 ドレン中和処理装置
11 第1電極室
12 第2電極室
13 第1電極
14 第2電極
15 電解質溶液
16 ドレン
17 塩橋
18 ドレン排出口
19 ドレン導入口
20 サイフォン管
21a、21b ドレン管
22a、22b、22c 液深調節用仕切弁
23a、23b 絶縁封止材料
24 水素放出口
25 通気口
26 燃焼検知子からの信号
27 印加指令部
28 可変電圧発生部
29 電圧印加手段
33 PH計
34 攪拌子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to neutralization treatment of acidic drain, and particularly suitable for neutralization of acidic drain of exhaust gas generated when natural gas or city gas is burned using a combustion apparatus equipped with a heat exchanger for recovering latent heat. The present invention relates to a processing method and a processing apparatus.
[0002]
[Prior art]
A combustor including a heat exchanger for recovering latent heat is applied to a hot water heater for consumer use or industrial use. FIG. 4 shows a general configuration of such a water heater. The city gas or the like is burned in the burner 2 and the generated combustion heat is consumed in the first stage heat exchanger 3 to heat the water to a predetermined temperature, but surplus combustion heat is consumed in the first stage heat exchanger 3. In the 2nd stage heat exchanger 4 arrange | positioned upwards, it is used in order to heat the water in a water pipe.
[0003]
In the second stage heat exchanger 4, when the combustion exhaust gas exchanges heat with the cold water supplied from the water supply pipe, not only the sensible heat of the exhaust gas but also the latent heat possessed by the water vapor in the exhaust gas is recovered, and high heat exchange is achieved. Efficiency is achieved. As a result of the latent heat recovery, the water vapor in the exhaust gas condenses to form water droplets 5 and collects to become drain, which is a sulfur oxide (abbreviated as SO X ) or nitrogen oxide (NO X in the exhaust gas). And a strong acid liquid with a pH of about 3.
[0004]
If draining strong acid drains as they are, it may cause environmental problems such as corrosion of metal products used in drainage pipes, deterioration of concrete structures, water pollution, etc. It is necessary to neutralize so as to meet the range of PH5-9.
[0005]
Conventionally, as a drain neutralization treatment method, a tray 6 is disposed below the second stage heat exchanger 4 to collect water droplets 5, and, for example, alkaline inside the combustor or outside the combustor as shown in FIG. There has been proposed a technique in which a neutralizer 9 filled with a neutralizing agent or the like is provided, and drainage is guided to the neutralizer 9 through a drain pipe 7 (for example, Japanese Patent Laid-Open No. 9-150163, Japanese Patent Laid-Open No. 60). -97094 etc.).
[0006]
Recently, the drain collected in this tray has been introduced into one small neutralization tank located in the space inside the combustor, and two metals with ionization tendencies in opposite order across hydrogen in this neutralization tank. An epoch-making technique has been proposed in which electrodes are arranged oppositely and neutralized by electrolyzing the drain (Japanese Patent Laid-Open No. 8-1336058).
[0007]
[Problems to be solved by the invention]
In the above electrolysis method, it is not necessary to install a neutralization tank outside the combustor or to supply a neutralizing agent, so that complicated maintenance is not required and the drain can be neutralized cleanly. However, a positive voltage is applied to the first electrode and a negative voltage is applied to the second electrode during combustion, i.e., during drain generation. Conversely, when combustion is stopped, i.e., when no drain is generated, a negative voltage is applied to the first electrode, Since a positive voltage is applied, power is always consumed.
[0008]
In addition, since the two electrodes are arranged close to each other in the same tank, mixing of the drained electrolysis near the anode and the drained electrolysis near the cathode always occurs, and the neutralization proceeds only relatively slowly. do not do. An object of the present invention is to improve such problems in the direct electrolysis of acidic drain.
[0009]
[Means for Solving the Problems]
According to the present invention, an anode chamber and a cathode chamber are provided separately, both chambers are connected via a salt bridge, a diaphragm, or an ion exchange membrane, and a voltage is applied only at the time of drain generation. The drain which has been electrolyzed in the chamber and quickly neutralized is discharged from the cathode chamber to solve the above-mentioned problem.
[0010]
That is, according to the present invention, the second electrode chamber is connected to the first electrode chamber containing the electrolyte solution or the solid electrolyte via the salt bridge, the diaphragm or the ion exchange membrane, and the drain is continuously or intermittently connected to the second electrode chamber. Introducing and applying a positive voltage to the first electrode and a negative voltage to the second electrode to electrolyze the drain, and discharging the treated drain continuously or intermittently from the second electrode chamber It is an invention of a drainage neutralization treatment method characterized.
[0011]
The second aspect of the present invention is an apparatus for neutralizing a drain, and includes at least a first electrode chamber containing a first electrode and an electrolyte solution or a solid electrolyte, and the first electrode chamber and a salt bridge. A second electrode chamber connected via a diaphragm or an ion exchange membrane and having a drain introduction port and a discharge port; a second electrode housed in the second electrode chamber; and a positive voltage and a second electrode respectively for the first electrode It is an invention of a drain neutralizing apparatus characterized by comprising a voltage application control means for applying a negative voltage to the drain.
[0012]
In the present invention, when acidic drain is introduced into the second electrode chamber and a negative voltage is applied, hydrogen ions in the drain are removed as hydrogen gas by the cathodic reaction of Chemical Formula 1, so that the pH value of the drain is on the acidic side. Changes from alkaline to alkaline. When the neutralized PH value is discharged from the second electrode chamber by a liquid transfer means such as a siphon when the PH value near neutrality is reached, wastewater treatment that meets environmental standards is achieved.
[0013]
[Chemical 1]
2H + + 2e = H 2
[0014]
In the first electrode chamber containing the electrolyte solution and the first electrode, when a positive voltage is applied, the anodic reaction of Chemical Formula 2 proceeds to the left to generate oxygen, but the standard electrode potential (E O ) of the ionization reaction is expressed by the chemical formula. An electrode material larger than EO of reaction 2 does not dissolve.
[Chemical 2]
O 2 + 2H 2 O + 4e = 4OH
E O = 0.401V
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The neutralization treatment method of the present invention will be described with reference to FIG. 3 showing one embodiment of the drain neutralization treatment method of the present invention. A saturated KCl aqueous solution 15 containing high-conductivity K + ions at a high concentration is placed in the first electrode chamber 11, and an aluminum rod 13 is immersed in this aqueous solution as a first electrode and fixed. The material used for the first electrode 13 is not particularly limited as long as it does not require a high applied voltage. The electrolyte is not particularly limited as long as it is an inorganic salt containing Na + , K + or the like that is generally used and has high conductivity.
[0016]
Drain is introduced into the second electrode chamber 12. In FIG. 3, the drain is introduced using the drain pipe 21b. Further, in order to discharge the treated drain from the second electrode chamber 12 at any time, a drain pipe 21a is used in FIG. A liquid depth-adjustable siphon tube 20 is connected to the drain tube 21a so that the time during which the drain is electrolyzed, that is, the time during which the drain stays in the second electrode chamber 12 can be adjusted. A platinum rod 14 is immersed in a drain as the second electrode 14 and fixed in the second electrode chamber 12. Further, a PH meter 33 may be provided for the convenience of measuring the change in the PH value of the drain as the electrolysis progresses, and a stirrer 34 may be provided for making the PH value of the treated drain to be discharged uniform.
[0017]
Both electrode chambers 11 and 12 are connected by a U-shaped salt bridge 17 or an H-shaped salt bridge. As the salt bridge electrolyte, a solution obtained by solidifying a concentrated aqueous solution of KNO 3 , KCl or the like with gelatin to reduce the liquid junction potential is filled. Instead of gelatin solidification, both ends of the salt bridge 17 may be closed with porous partition walls to stop the aqueous solution from flowing out. Alternatively, as shown in the drain neutralization processing apparatus 10 of FIG. 1, instead of the salt bridge 17, both electrode chambers 11 and 12 may be connected via a diaphragm or ion exchange membrane generally used in this field.
[0018]
Means 29 for applying a drain to the second electrode chamber 12 and applying a positive voltage of about 0.5-3V DC voltage to the first electrode 13 and a negative voltage of the same volt number to the second electrode 14, for example, galvanostat; A battery or the like is connected to each electrode. While applying voltage and stirring the drain using the stirrer 34, the PH change of the second electrode chamber 12 is measured with the passage of time by the PH meter 33, and the time until the PH value becomes 7 is measured. Next, when the pH of the drain becomes near neutral, the siphon acts to discharge the neutralized drain from the second electrode chamber 12, so that the drain residence time, that is, the drain liquid, corresponds to the drain generation rate. The liquid depth from the surface to the bottom of the second electrode chamber is adjusted by adjusting the length of the siphon tube 20. Once the liquid depth is adjusted in this way and a DC voltage is applied, even if drain continuously flows into the second electrode chamber 12, electrolysis is performed over a required time, and PH is neutralized to around 7. The drained water is automatically discharged by siphon action. The voltage application is stopped when drain generation stops or after a time lag.
[0019]
Next, an embodiment of the neutralization processing apparatus of the present invention will be described with reference to FIG. 2 showing one configuration example of the present invention. In the first electrode chamber 11, the electrolyte solution 15 or solid electrolyte and the first electrode 13 are accommodated, and the electrolyte 15 is sealed with an insulating sealing material 23b and the first electrode 13 is fixed. The material of the first electrode chamber 11 may be any material that is not corroded by the electrolyte 15.
[0020]
In the second electrode chamber 12, the second electrode 14 is accommodated and fixed with an insulating sealing material 21a, and a drain introduction port 19 is provided at the lower portion and a drain discharge port 18 is provided at a relatively upper portion. As described above, in order to optimally set the drain liquid depth in the second electrode chamber 12, a plurality of drain discharge ports 18 having different depths from the drain liquid surface are provided, and a siphon tube 20 having several drain outlet positions. Are connected to each drain outlet 18. The material used for the second electrode chamber 12 may be any material that is not corroded by the drain 16. The drain introduction port 19 is connected to a drain generation source (not shown) through a drain pipe 11b. A drain pipe 11a is connected to the drain discharge port 18 to guide the neutralized drain to the drain pit. Alternatively, when the drain generation speed is considerably high as in a large commercial water heater, a flow control opening / closing valve is provided at the drain outlet 18 instead of the siphon and a liquid level gauge ( (Not shown) may be provided, and the open / close valve may be automatically opened and closed by a signal from the liquid level gauge, and the neutralized drain may be intermittently discharged out of the second electrode chamber 12. Or, if the combustor is relatively small and the drain generation rate is extremely low, such as a small water heater for home use, neither the on-off valve nor siphon is provided, so that the neutralized drain overflows naturally. May be.
[0021]
The first electrode chamber 11 and the second electrode chamber 12 are connected via an H-shaped salt bridge 17. A porous partition wall is provided at the end of the portion where the salt bridge is immersed in the liquid, and the salt bridge is filled with a concentrated aqueous solution such as KNO 3 . Alternatively, instead of the salt bridge, one tank may be divided into two chambers and used as the first and second electrode chambers using a generally used diaphragm such as an asbestos membrane or an ion exchange membrane (not shown). The material of the first and second electrodes may be commonly used graphite, lead, aluminum or the like.
[0022]
Both electrodes 13 and 14 are electrically connected to the voltage applying means 29 using conducting wires or the like. The voltage application means 29 receives the signal 26 from the variable voltage generator 28 and the combustion detector (not shown) for applying a current amount corresponding to the acidity of the drain, and the above variable according to the start and stop of combustion. It is comprised from the application command part 27 which turns on and off a voltage generation part. In order to sufficiently neutralize the drain accumulated in the second electrode chamber 12 even after the combustion is stopped, the application command unit 27 may be provided with a function of giving a time lag to ON / OFF.
[0023]
[Example 1]
In order to illustrate the neutralization performance by the treatment method of the present invention, an example carried out using the neutralization apparatus shown in FIG. 3 will be described. Use aluminum rod as first electrode 13, saturated KCl aqueous solution as electrolyte solution 15, platinum rod as second electrode 14, and 300 ml of 1N HNO 3 with a few drops of KNO 3 aqueous solution added as simulated drain of acid drain 16 did. The U-shaped salt bridge 17 was filled with a 6N solution of KNO 3 solidified with gelatin. A galvanostat 19 was used to apply a positive voltage of 3 V to the first electrode 13 and a negative voltage of 2 V to the second electrode 14 to pass a current of 10 mA. Hydrogen bubbles generated from the surface of the second electrode 14 with the start of energization were observed. Electrolysis was advanced while stirring the electrolyte solution 16 using the magnet stirrer 34. Table 1 shows the results of measuring the PH value, which increases (shifts to the alkali side) with the passage of time from the start of energization, using the PH meter 33. The drain simulation liquid 16, which had an acidic pH of about 4, became neutral after 7 minutes of energization, and became alkaline after 8 minutes. Therefore, electrolysis at around 7 minutes satisfied the drainage standard PH = 5-9. I know you get.
[0024]
[Comparative Example 1]
The same simulation solution as in the above example was used, and electrolysis was performed in exactly the same manner except that both electrodes identical to those in the above example were placed facing each other at a distance of 2 cm in one beaker having a capacity of 300 ml. Table 1 also shows the measurement results with the PH meter. Thus, in the conventional method in which both electrodes are arranged in the same tank, the pH of the drain simulation liquid, which was about 4 at the start of energization, still remains at about 5.3 after 10 minutes of energization, It can be seen that the progress is relatively slow.
[0025]
[Table 1]
Figure 0004026737
[0026]
【The invention's effect】
If this invention is used, neutralization of drain can be continued for a long time without replenishment of a neutralizing agent. In addition, since the dimensions of the electrode chamber and the electrode can be enlarged or reduced in accordance with the amount or source of the drain, the apparatus can be manufactured according to a wide range of processing capabilities. In addition, since the time required for electrolysis is considerably short, it is not necessary to retain the drain for a long time, and in particular, the neutralization device can be easily downsized.
[0027]
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an outline of a water heater incorporating a configuration example (diaphragm electrolytic cell type neutralization treatment apparatus) of the present invention.
FIG. 2 is a cross-sectional view showing a configuration example of a neutralization processing apparatus of the present invention.
FIG. 3 is an explanatory view showing an embodiment of the neutralization treatment method of the present invention.
FIG. 4 is a cross-sectional view illustrating a conventional water heater provided with a latent heat recovery heat exchanger.
[Explanation of symbols]
1 Combustor (water heater)
2 Burner 3 First stage heat exchanger 4 Second stage heat exchanger 5 Water drop 6 Dish 7 Drain pipe 8 Fan 9 Neutralizer 10 Drain neutralization processing device 11 First electrode chamber 12 Second electrode chamber 13 First electrode 14 Second electrode 15 Electrolyte solution 16 Drain 17 Salt bridge 18 Drain outlet 19 Drain inlet 20 Siphon pipes 21a, 21b Drain pipes 22a, 22b, 22c Liquid depth adjusting gate valves 23a, 23b Insulating sealing material 24 Hydrogen outlet 25 Vent 26 Signal 27 from combustion detector Application command unit 28 Variable voltage generation unit 29 Voltage application means 33 PH meter 34 Stirrer

Claims (5)

電解質溶液または固体電解質を収容した第1電極室に塩橋、隔膜若しくはイオン交換膜を介して第2電極室を接続し、ドレンを第2電極室へ連続的または断続的に導入し、第1電極には正電圧を、第2電極には負電圧を印加してドレンを電気分解処理し、処理されたドレンを第2電極室から連続的または断続的に排出することを特徴とするドレンの中和処理方法。The second electrode chamber is connected to the first electrode chamber containing the electrolyte solution or the solid electrolyte via a salt bridge, a diaphragm or an ion exchange membrane, and the drain is continuously or intermittently introduced into the second electrode chamber. The drain is electrolyzed by applying a positive voltage to the electrode and a negative voltage to the second electrode, and the treated drain is discharged continuously or intermittently from the second electrode chamber. Neutralization method. 前記ドレンは、天然ガス、メタンハイドレートから分離して得た可燃ガス、液化石油ガス若しくは都市ガスを、潜熱回収用熱交換器を備えた燃焼装置で燃焼して生じた排ガスから結露した排水である請求項1記載の中和処理方法。The drain is drainage that is condensed from flue gas generated by burning combustible gas, liquefied petroleum gas, or city gas obtained by separation from natural gas, methane hydrate, and a combustion device equipped with a heat exchanger for recovering latent heat. The neutralization method according to claim 1. ドレンを中和処理する装置であって、少なくとも、第1電極と電解質溶液または固体電解質とを収納した第1電極室、この第1電極室と塩橋、隔膜若しくはイオン交換膜を介して接続され且つドレンの導入口及び排出口を有する第2電極室、この第2電極室に収納した第2電極、及びそれぞれ第1電極に正電圧、第2電極に負電圧を印加する電圧印加制御手段からなることを特徴とするドレンの中和処理装置。An apparatus for neutralizing drain, which is connected to at least a first electrode chamber containing an electrolyte solution or a solid electrolyte, and the first electrode chamber via a salt bridge, a diaphragm or an ion exchange membrane. And a second electrode chamber having a drain introduction port and a discharge port, a second electrode housed in the second electrode chamber, and a voltage application control means for applying a positive voltage to the first electrode and a negative voltage to the second electrode, respectively. A drain neutralization apparatus characterized by comprising: 前記ドレンは、潜熱回収用熱交換器を備えた燃焼装置で発生したドレンである請求項3記載の中和処理装置。The neutralization processing apparatus according to claim 3, wherein the drain is drain generated in a combustion apparatus including a heat exchanger for recovering latent heat. 潜熱回収用熱交換器で発生するドレンを中和処理する請求項3記載のドレン中和処理装置を内蔵してなることを特徴とする潜熱回収用熱交換器を備えた給湯器。4. A water heater provided with a latent heat recovery heat exchanger, comprising the drain neutralization apparatus according to claim 3, wherein the drain generated in the latent heat recovery heat exchanger is neutralized.
JP12400699A 1999-04-30 1999-04-30 Drain neutralization treatment method and neutralization treatment apparatus Expired - Fee Related JP4026737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12400699A JP4026737B2 (en) 1999-04-30 1999-04-30 Drain neutralization treatment method and neutralization treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12400699A JP4026737B2 (en) 1999-04-30 1999-04-30 Drain neutralization treatment method and neutralization treatment apparatus

Publications (2)

Publication Number Publication Date
JP2000312887A JP2000312887A (en) 2000-11-14
JP4026737B2 true JP4026737B2 (en) 2007-12-26

Family

ID=14874708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12400699A Expired - Fee Related JP4026737B2 (en) 1999-04-30 1999-04-30 Drain neutralization treatment method and neutralization treatment apparatus

Country Status (1)

Country Link
JP (1) JP4026737B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4989242B2 (en) * 2007-02-05 2012-08-01 株式会社パロマ Water heater
JP2014145547A (en) * 2013-01-30 2014-08-14 Noritz Corp Combustion device
JP6142548B2 (en) * 2013-01-30 2017-06-07 株式会社ノーリツ Combustion device
JP6331306B2 (en) * 2013-09-25 2018-05-30 株式会社ノーリツ Neutralizer and latent heat recovery heat source
JP7269791B2 (en) * 2019-05-15 2023-05-09 リンナイ株式会社 thermal equipment

Also Published As

Publication number Publication date
JP2000312887A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
WO2020042870A1 (en) Plating solution production and regeneration process and device for insoluble anode acid copper electroplating
JP4026737B2 (en) Drain neutralization treatment method and neutralization treatment apparatus
CA2958474A1 (en) Electrochemical device for storing electrical energy and producing hydrogen, and method for producing hydrogen
US3342712A (en) Water conditioning method and apparatus
CA2710285C (en) Internal flow control in electrolytic cells
KR20130110359A (en) Seawater electrolytic apparatus
US9657600B2 (en) Heat exchanger, a purifier, an electrode-containing pipe, a power generation system, a control method for heat exchanger and a scale removing method
CN208612484U (en) Multifunctional electrical ion switch
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
US20220258213A1 (en) Dissolving silicate scale
JPS6034919B2 (en) Evaporative seawater desalination equipment
KR102219485B1 (en) Condensed water exhausting device for condensing boiler
KR100439998B1 (en) Apparatus creating electrolysed-water by multi-step and diaphram
CN109763018A (en) A kind of descaling and antiscaling alloy, descaler and preparation method thereof
CN100497749C (en) Apparatus for carrying out an electrolytic process on a halogenide compound
CN202682851U (en) Aluminum alloy plate and strip hot rolling emulsion electrolytic emulsion breaker
CN114112890B (en) Device and method for measuring critical chloride ion concentration of reinforced concrete in tidal zone and splash zone
CN213835554U (en) Hydrogen absorption machine
Ajersch et al. Bubble Enhanced Mass Transfer of Electrodeposited Zinc from Acid Solutions
RU60682U1 (en) OXYGEN AND HYDROGEN GENERATOR
KR20070075624A (en) Electrolytic water generation apparatus
Norboyev et al. Development of a mathematical model of a recycling cooling system of a thermal power plant
RU2637506C1 (en) Installation for electrochemical decomposition of aqueous solutions of chlorides
JPH08158086A (en) Salt water electrolytic cell
JP2002246056A (en) Fuel cell power generation system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees