JP4024374B2 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP4024374B2
JP4024374B2 JP06805898A JP6805898A JP4024374B2 JP 4024374 B2 JP4024374 B2 JP 4024374B2 JP 06805898 A JP06805898 A JP 06805898A JP 6805898 A JP6805898 A JP 6805898A JP 4024374 B2 JP4024374 B2 JP 4024374B2
Authority
JP
Japan
Prior art keywords
discharge
arc
frequency
waveform
acoustic resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06805898A
Other languages
Japanese (ja)
Other versions
JPH11265795A (en
Inventor
智 小南
光治 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06805898A priority Critical patent/JP4024374B2/en
Priority to US09/270,315 priority patent/US6147461A/en
Priority to EP99105451A priority patent/EP0944294B1/en
Priority to DE69920087T priority patent/DE69920087T2/en
Priority to KR1019990009161A priority patent/KR100333997B1/en
Priority to CNB99105962XA priority patent/CN1146306C/en
Publication of JPH11265795A publication Critical patent/JPH11265795A/en
Application granted granted Critical
Publication of JP4024374B2 publication Critical patent/JP4024374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/288Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
    • H05B41/292Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2928Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は放電ランプ特にHIDランプ(高輝度放電ランプ)の放電アークを音響共鳴でほぼストレートにできる点灯装置に係り、カタホレシス現象による放電アークの色ムラをなくし、かつ封入物が発光管のほぼ中央部で放電アークを取り巻くように帯状に付着することを防止し、発光管の失透を抑制して放電ランプを長寿命化する放電ランプ点灯装置に関するものである。
【0002】
【従来の技術】
HIDランプは、高輝度、高効率、高演色性、長寿命などの特徴から屋外照明用光源さらに屋内照明用光源とくに店舗照明用光源とし注目され、最近ではより小型低電力のHIDランプが、映像機器用光源、自動車前照灯用光源としても注目されている。
【0003】
一般にこの種のランプを水平点灯すると、発光管内に発生する温度分布による対流の影響で放電アークが上方向に湾曲する。放電アークが湾曲すると、約5000Kの放電アークと発光管上部とが近接するため発光管上部の温度が上昇し、発光管の劣化すなわち膨れ、失透が急速に進行し、ランプ寿命に悪影響を与えていた。特に小型低電力のHIDランプでは、放電アークと発光管との距離がさらに近くなるため、この放電アーク湾曲がランプ寿命により大きな影響を与える。また、湾曲が発生すると放電アークが上下非対称となるため、反射鏡と組み合わせて使用する場合の光学設計に際して、放電アークの湾曲を考慮に入れる必要があり、反射鏡が非常に複雑になる等の問題も有していた。
【0004】
この放電アークの湾曲を除去する手法として、音響共鳴を利用する点灯方法が特公平7−9835号公報および特開平7−14684号公報において提案されている。特公平7−9835号公報によれば、図13に示すような、直流電流51に音響共鳴で対流の影響を低減し、放電アークをストレートにする周波数の交流電流52が重畳された電流波形をランプに供給することによって放電アークの湾曲を低減しほぼストレートの放電アークにできることを教示している。
【0005】
また、特開平7−14684号公報によれば、10kHz〜100kHzの周波数範囲で、発光管内に半径方向の音響共鳴を励起する周波数及び波形の交流電流をランプに供給し、そのとき交流電流の周波数FV と半径方向音響波の周波数FRと間にn・2FV=m・FR(n、m:整数)、FR=3.83C/(2πR)(C:発光管内の半径方向の音速、R:発光管の内半径)の関係が成立するように交流電流の周波数を選定することにより、対流の影響による放電アークの湾曲を除去できることを開示している。
【0006】
音響共鳴は、ランプを高周波で点灯した時、封入物と発光管の形状で決まるランプ固有の周波数とランプに入力される電力の周期的変化の周波数がほぼ等しくなった時、発光管内に粗密波の定在波が生じるため発生する現象であり、放電アークの不安定、立ち消え、発光管の破裂等の原因となるため、従来はこの音響共鳴を避ける傾向にあった。一般に音響共鳴には、半径方向、軸方向、円周方向の3種類のモードがあり、特公平7−9835号公報および特開平7−14684号公報による手法は、音響共鳴の中でも半径方向の音響共鳴を利用した点灯方法である。
【0007】
【発明が解決しようとする課題】
しかしながら特公平7−9835号公報による放電ランプ点灯装置では、放電ランプに一方向の電流が流れるため、放電ランプの放電空間の電界強度は周期的に変化するものの常に一方向の電界が発生する。そのため充填物が片寄るカタホレシス現象により、放電アークに色ムラが発生するという問題点を有していた。
【0008】
また、特開平7−14684号公報による放電ランプを点灯装置では、図14に示すように、発光管内で蒸発せずに液体状で存在する封入物が発光管の中央部で放電アークを取り巻くようにほぼ帯状に付着する。これは半径方向の音響共鳴によりアークが直線状になる一方で、音響共鳴の他のモードである軸方向の音響共鳴によって発光管中央部での封入物の密度が高くなり帯状になったと考えられる。
【0009】
封入物が発光管中央部で放電アークを取り巻くように帯状に付着すると、付着部分で発光管を構成する石英ガラスと封入物との化学反応が加速され、発光管に帯状の失透が発生して光束が低下するため、ランプ寿命を短くする。また、通常ランプは反射鏡と組み合わせて使用するため、発光管の中央部に帯状の失透が発生すると、反射鏡と組み合わせた器具効率を低下させる。
【0010】
本発明はこのような従来の問題点を解決するためのもので、その目的とするところはカタホレシス現象を回避して放電アークの色ムラをなくし、放電アークの湾曲を小さくしたほぼストレートで点灯し、かつ発光管中央部で封入物が帯状になることを防止することで発光管の帯状の失透を防止し、ランプを長寿命化する点灯装置を提供することである。
【0011】
【課題を解決するための手段】
発明は、放電空間を画定する発光管を有する放電ランプを点灯する装置であって、放電アークをストレートにするモードを励起する音響共鳴周波数の周波数成分を有する波形であって、その波形の中心線が一定レベルに保持されている第1波形信号を発生する発生手段と、前記第1波形信号の中心線が、前記音響共鳴周波数よりも低い変調周波数で極性が交互に変化するように、前記第1波形信号を周期性を持って変調させると共に変調信号を発生する変調手段とを有し、前記第1波形信号のピークからピークまでの値をα、前記変調信号の実効値をβとした場合の変調深度α/βを、前記発光管のほぼ中央部に封入物が略帯状に付着しない値に選定し、当該変調深度α/βが0.3〜0.6の範囲にある放電ランプ点灯装置である。
【0014】
【発明の実施の形態】
図1に第1波形信号である放電アークをストレートにするモードを励起する音響共鳴周波数f2の正弦波と、音響共鳴周波数f2より低い変調周波数で極性が交互に変化する波形である周波数f1(400Hz)の矩形波との合成波を示す。
【0015】
この合成波は、音響共鳴周波数f2の正弦波と周波数f1の矩形波とを重畳した波形である。図1に示す波形の電流をランプに供給して水平点灯し、音響共鳴周波数f2の正弦波の最大値と最小値の差αを変化させることにより変調深度α/β(βは合成波の実効値)を変化させたときの放電アークの湾曲の大きさLと点灯時の封入物の発光管への付着状態を実験的に求めた結果を以下に説明する。
【0016】
実験には35Wメタルハライドランプを用いた。図2(a)は、放電アークAの湾曲の大きさLの測定方法を示す図であり、発光間1t内の対向する一対の電極1m、1n間の中心で電極軸Bと直行する断面の電極軸Bと放電アークAの中心との距離を放電アークAの湾曲の大きさLとして測定した。
【0017】
尚、実験に使用した35Wメタルハライドランプの音響共鳴周波数f2は150kHzである。図2(b)は放電アークAの湾曲の大きさLを求めた結果を示す。変調深度が増加するに従い徐々に放電アークの湾曲が小さくなり、変調深度0.3以上では放電アークの湾曲の大きさLが急激に小さくなることがわかる。また、図2(c)は点灯時の封入物の発光管への付着状態に示す。封入物の発光管への付着状態はほぼ変調深度0.6を境に変化し、変調深度0.6以下では封入物は重力による影響で発光管の下部に集まり、変調深度0.6以上では封入物が発光管の中央部でアークを取り巻くようにほぼ帯状に付着することがわかる。
【0018】
ここで、変調深度0.6以上で封入物が発光管中央部で帯状になり、変調深度0.3以上で放電アークがストレートになる理由について説明する。両者の発生原因は、発光管内に発生する音響共鳴に起因すると推定できる。封入物を帯状に付着させるには軸方向の音響共鳴が、放電アークをストレートにするには半径方向の音響共鳴が主要因と考えられる。半径方向の音響共鳴は、電極軸B付近の空間に放電アークが通過しやすい空間を、さらにその周囲に放電アークが通過しにくい空間を形成する。
【0019】
そのため、放電アークは通過しやすい電極軸B付近の空間を通過し、ほぼストレートの放電アークになる。また同時に、発光管内には軸方向の音響共鳴も発生する。この軸方向の音響共鳴は、電極間中心の電極軸と直交する断面に封入物を集める場合があり、これが封入物を帯状に付着させる原因と考えられる。
【0020】
音響共鳴が封入物を移動させる力は発光管内に発生する粗密波の強さに比例するはずである。粗密波はランプ電力の周期的変化がアーク温度の周期的変化となり、アーク温度の周期的変化が圧力変化となって発生する。すなわち、音響共鳴が封入物を移動させる力とランプ電力の周期的変化の幅は比例し、ランプ電力の周期的変化の幅が大きければ封入物を移動させる力は大きくなる。
【0021】
図1に示す電流をランプに供給した場合、音響共鳴周波数f2の正弦波の最大値と最小値の差αが大きいほど、すなわち変調深度α/βが大きいほどランプ電力の周期的変化の幅が大きくなり、変調深度α/βが0.6以上で封入物を発光管の中央部に移動させる十分な力が発生し帯状になると考えられる。
【0022】
また、ガス状(軽い)の放電アークを移動させる、すなわちストレートにする力と、液体状(重い)の封入物を移動させる、すなわち発光管中央部に帯状に付着させる力とでは、後者の方がより大きな力が必要であると考えられ、比較的小さい力で良い放電アークをストレートにするために必要な力は、比較的小さい変調深度0.3以上十分得られ、そのため、変調深度0.3以上で急激に放電アークの湾曲Lが小さくなると考えられる。
【0023】
以上の実験結果より、変調深度0.6以下にすることによって、放電アークの湾曲を小さくできると共に発光管の失透の原因となる封入物の帯状の付着を防止できるためランプを長寿命化できる。また、変調深度を0.3〜0.6の範囲にすることにより、より放電アークの湾曲を小さくできるためより長寿命化の効果は大きい。
【0024】
さらに、図1に示す音響共鳴周波数と矩形波との合成波をランプに印加するので、400Hzの矩形波の周期でランプ電流の極性が変化し、放電空間に発生する電界の極性が周期的に変化する。そのため、カタホレシス現象を防止でき、放電アークの色ムラを防止できる。
【0025】
また、図3に第1波形信号である放電アークをストレートにするモードを励起する音響共鳴周波数f2の正弦波と、音響共鳴周波数f2より低い変調周波数で極性が交互に変化する波形である周波数f3の三角波との合成波を示す。この合成波は、音響共鳴周波数f2の正弦波と周波数f3の三角波とを重畳した波形となっている。
【0026】
図3に示す波形で変調深度0.6以下の電流をランプに供給しても同様に放電アークの湾曲が小さくなると共に発光管の失透の原因となる封入物の帯状の付着を防止できる。さらに、放電空間に発生する電界の極性が周波数f3で決まる周期で変化するため、カタホレシス現象を防止できる。
【0027】
なお、ここでは、第1波形信号を放電アークをストレートにするモードを励起する音響共鳴周波数f2の正弦波したが、放電アークをストレートにするモードを励起する音響共鳴周波数f2の周波数成分を含む波形であればよく、例えば三角波、鋸波等でもよい。また、所定の周期および幅で周波数を変化させる周波数変調を加えた正弦波にすると、ランプ特性の経時変化・ばらつきにより発生する放電アークをストレートにするモードを励起する音響共鳴周波数の変化・ばらつきを吸収できる。
【0028】
また、音響共鳴周波数f2より低い変調周波数で極性が交互に変化する波形である周波数f1の矩形波または周波数f3の三角波との合成波を例に示しているが、その他の波形例えば、正弦波・階段波・鋸波など放電アークをストレートにするモードを励起する音響的共鳴周波数f2を上限とする周波数で極性が交互に変化する波形との合成波であれば同様の効果が得られる。また、多少の直流成分を含む波形でも極性が変化すればよく、また正負非対称な波形でもよい。要は、放電ランプの放電空間の電界が一方向にならないように、カタホレシス現象を回避しうる波形であればよい。
【0029】
以下、本発明の実施の形態について図面を参照しながら説明する。図4は35Wメタルハライドランプに対する第1の実施の形態を示すものである。図4において1は放電空間を画定する発光管内に封入物として水銀とハロゲン化金属(Sc−Na系)が密封された放電ランプである上記記載の35Wメタルハライドランプである。
【0030】
2は35Wメタルハライドランプ1に所定の波形の電流を供給して点灯する点灯手段であり、点灯手段2は放電アークをストレートにするモードを励起する音響共鳴周波数の周波数成分を有する第1波形信号の発生手段である150kHzの正弦波を発生する正弦波発生回路3と、音響共鳴周波数を上限とする周波数で極性が変化する波形を出力する極性変化電源である400Hzの矩形波を発生する矩形波発生回路4と、正弦波発生回路3の出力と矩形波発生回路4の出力を合成する合成回路5とで構成されている。
【0031】
以上のように構成された第1の実施の形態の各部の波形を図5に示す。
図5(a)は矩形波発生回路4の出力波形であり、400Hzの矩形波である。図5(b)は、正弦波発生回路3の出力波形であり、150kHzの正弦波である。図5(c)は、正弦波発生回路3の出力と矩形波発生回路4の出力とを重畳した合成回路5の出力波形であり、変調深度は0.6以下になるように矩形波発生回路4および正弦波発生回路3の出力を設定し、図5(c)の波形を35Wメタルハライドランプ1に印加する。
【0032】
以上のように第1の実施の形態によれば、35Wメタルハライドランプ1に図5(c)に示す放電アークをストレートにするモードを励起する音響共鳴周波数の正弦波(150kHz)と400Hzの矩形波とを重畳した変調深度0.6以下の合成波を印加できるので、色ムラのないストレートの放電アークを実現できると共に封入物の帯状の付着を防止できる。
【0033】
図6は、第2の実施の形態を示すものである。図6において、1は第1の実施の形態と同様の35Wメタルハライドランプである。12は35Wメタルハライドランプ1に所定の波形を供給して点灯する点灯手段であり、点灯手段12はアークをストレートにするモードを励起する音響共鳴周波数の周波数成分を有する第1波形信号の発生手段である150kHzの正弦波を発生する高周波電源17と、高周波電源17の出力を音響共鳴周波数よりも低い変調周波数で極性が交互に変化するように変調させる変調手段13と、35Wメタルハライドランプ1の放電を開始させるために十分な高電圧を印加する始動手段15とで構成されている。
【0034】
変調手段13は、瞬時値が時間的に変化しない直流信号を出力するDC電源16と、DC電源16の出力に高周波電源17の出力を重畳する重畳回路18と、重畳回路18からの出力を音響共鳴周波数よりも低い変調周波数で極性を交互に変化させるインバータ回路である矩形波変換回路14とで構成される。以上のように構成された第2の実施の形態の各部の波形を図7に示す。
【0035】
図7(a)は、DC電源16の出力電流波形であり、DC電源16は、直流電源19とトランジスタ20とダイオード21とチョークコイル22とコンデンサ23とで降圧チョッパ回路を構成し、抵抗24・25で検出するランプ電圧相当の信号と抵抗26で検出するランプ電流相当の信号から制御回路27でランプ電力を演算しランプ電力が35W一定になるようにトランジスタ20のオン・オフ比を可変する構成のもので、瞬時値が時間的に変化しない直流波形を出力する。
【0036】
図7(b)は、高周波電源17の出力電流波形であり、高周波電源17は音響共鳴周波数150kHzの正弦波を出力する正弦波電源28と正弦波電源28の出力電流を変調深度0.6以下になるように電流を制限するチョークコイル29とで構成され、音響共鳴周波数の正弦波電流を出力する。
【0037】
図7(c)は、重畳回路18の出力電流波形であり、重畳回路18はチョークコイル30とコンデンサ31とで構成され、DC電源16の出力電流が高周波電源17に流れ込まないようにコンデンサ31で直流カットし、また高周波電源17の出力電流がDC電源16に流れ込まないようにチョークコイル30で高周波カットする構成で、チョークコイル30とコンデンサ31の接続点を出力端とし音響共鳴周波数の正弦波を重畳した直流を出力する。
【0038】
図7(d)は、矩形波変換回路14の出力電流波形であり、矩形波変換回路14はトランジスタ32・33・34・35と駆動回路36とで構成され駆動回路36からの出力信号によりトランジスタ32・35がONする期間とトランジスタ33・34がONする期間を交互に発生させることによって重畳回路18の出力である音響共鳴周波数の正弦波を重畳した直流を400Hzの交流に変換して35Wメタルハライドランプ1に供給する。
【0039】
以上のように第2の実施形態によれば、始動手段15からの高電圧で35Wメタルハライドランプ1が点灯すると、その後、図7(d)に示す、変調深度0.6以下で、放電アークをストレートにするモードを励起する音響共鳴周波数(150kHz)の正弦波と音響共鳴周波数以下の周波数(400Hz)の矩形波との合成波電流を供給することができるので、放電アークに色ムラのないストレートの放電アークを実現できると共に封入物の帯状の付着を防止できる。正弦波電源28の出力電圧を変化させることによって変調深度を自由に可変できる。
【0040】
図8は本発明の第3の実施の形態を示すものである。図8において、1は第1および第2の実施の形態と同様の放電ランプである35Wメタルハライドランプである。40は35Wメタルハライドランプ1を始動・点灯するための点灯手段であり、放電アークをストレートにするモードを励起する音響共鳴周波数の周波数成分を有する波形を重畳した直流を出力す第1波形信号の発生手段である直流電源41と、150kHzの正弦波を発生する高周波電源17と、高周波電源17の出力を音響共鳴周波数よりも低い変調周波数で極性が交互に変化するように変調させる変調手段13と直流電源41の出力を音響共鳴周波数を上限とする周波数で極性を変化させるインバータ回路である矩形波変換回路14と、35Wメタルハライドランプ1の放電を開始させるために十分な高電圧を印加する始動手段15とで構成されている。
【0041】
なお、矩形波変換回路14と始動手段15とは第2の実施の形態と同様の構成のものである。第2の実施の形態と異なる点は放電アークをストレートにするモードを励起する音響共鳴周波数の周波数成分を有する第1波形信号の発生手段である直流電源41の構成であり、以下に直流電源41の構成と動作を説明する。
【0042】
直流電源41は、直流電源42とスイッチ素子であるトランジスタ43とダイオード44とチョークコイル45とコンデンサ46とで降圧チョッパ回路を構成し、抵抗47・48で検出するランプ電圧相当の信号と抵抗49で検出するランプ電流相当の信号から制御回路50でランプ電力を演算しランプ電力が35W一定になるようにトランジスタ43のオン・オフ比を可変する構成で、トランジスタ43のオン・オフ周波数を放電アークをストレートにするモードを励起する音響共鳴周波数である150kHzに設定し、チョークコイル45とコンデンサ46とで構成するフィルタ回路を150kHz成分がカットされない特性で、かつ変調深度が0.6以下となる所定の値と設定することで直流電源41の出力電流波形は150kHzで周期的に変動する変調深度0.6以下の直流を出力することができる。
【0043】
以上のように構成された第3の実施の形態の直流電源41の出力電流波形を図9(a)に、また、矩形波変換回路14の出力電流波形を図9(b)に示す。
【0044】
上記第1、第2の実施の形態と同様に、35Wメタルハライドランプ1に変調深度0.6以下で、放電アークをストレートにするモードを励起する音響共鳴周波数(150kHz)の周波数成分を有する波形と音響共鳴周波数以下の周波数(400Hz)の矩形波との合成波電流を供給する構成にできるので、放電アークに色ムラのないストレートの放電アークを実現できると共に封入物の帯状の付着を防止できる。
【0045】
また、チョークコイル45とコンデンサ46を所定の値に設定し、トランジスタ43のオン・オフ周波数を音響共鳴周波数で放電アークをストレートにできる周波数の150kHzに設定するだけの簡単な構成で、矩形波に所定の変調深度を加えることができるので点灯手段の構成が簡単になる。
【0046】
図10は本発明の第4の実施の形態を示すものである。図10において、第3の実施形態と異なるのは、封入物の発光管への付着状態を検出し、その付着状態に応じて変調深度α/βを変化させる変調深度制御手段51を有する点と、放電アークをストレートにするモードを励起する音響共鳴周波数の周波数成分を有する波形を重畳した直流を出力す第1波形信号の発生手段である直流電源52内のコンデンサ53が容量可変タイプである点であり、その他の構成は同様であるので説明を省略する。
【0047】
変調深度制御手段51は35Wメタルハライドランプの近傍に配置され点灯中の封入物の状態、すなわち帯であるかないかを検出する検出手段である受光手段54と、受光手段54からの信号によりコンデンサ53の容量を変化させ変調深度α/βを変化させる変調深度制御回路58とで構成される。受光手段54は封入物が帯状になる部分、すなわち発光管中央部を透過してくる局所的な光を受光するように配置されている。
【0048】
以上のように構成された第4の実施の形態の放電ランプ点灯装置において、以下その動作を説明する。まず封入物が帯状であるかないかを検出する方法について説明する。
【0049】
放電アークから発する光は発光管を透過してくるが、発光管の封入物が帯状に付着するとその部分で封入物による光の反射及び吸収が発生し、光の透過分光特性が局所的に変化する。すなわち、封入物が付いているときと付いていないときで顕著に差のでる波長の光が存在し、この変化を検出できるように受光手段14を構成すれば封入物の状態を検出できる。
【0050】
具体的には、図11に示すようにフォトダイオード55、フィルタ56、レンズ57とで受光手段54を構成し、封入物が帯状になる部分の局所的な光をレンズ57で集光し、フィルタ56を通してフォトダイオード55で受光する。
【0051】
例えば、封入物がSc−Na系のヨウ化物であれば、封入物の色は淡黄色であり、青色の光を吸収する性質がある。そのため、封入物が帯状になっていれば、そこを透過する光は青色の光が大幅に減少する。すなわち、青色の光の量により封入物が帯状であるかないかを検出でき、この青色の光の変化を検出するために、フィルタ56には青色透過フィルタを使用する。
【0052】
この構成により、封入物が帯状になっている場合は、受光手段54に入力される光には青色の光がほとんど含まれていないためフォトダイオード55には光がほとんど入力されず、受光手段54の出力はほとんど0であり、変調深度制御回路58は封入物が帯状になっていると判断する。
【0053】
また、逆に封入物が帯状になっていない場合、受光手段54に入力される光には青色の光が含まれいるため、フィルタ56を通過した光がフォトダイオード55に入力され、受光手段54はフォトダイオード55に入力される光の量に比例した信号を変調深度制御回路58に出力し、変調深度制御回路58はこの信号が所定の値であればヨウ化物が帯状になっていないと判断する。
【0054】
変調深度とコンデンサ53の容量の関係は、図12に示すようになり、変調深度はコンデンサの容量が大きくなるほど小さくなる。そのため、変調深度制御回路58は変調深度を大きくするにはンデンサ53の容量を小さく、変調深度を小さくするにはコンデンサ53の容量を大きくし、変調深度を制御する。
【0055】
以上のように第4の実施の形態によれば、受光手段54で35Wメタルハライドランプ1の点灯中の封入物の状態を検出し、変調深度制御回路58により変調深度を可変することで、封入物が帯状にならない領域でもっとも放電アークの湾曲が小さくなる変調深度で35Wメタルハライドランプ1を点灯できる。また35Wメタルハライドランプ1の製造上の交差および経時変化によりる、封入物が帯状になる変調深度のばらつきを吸収できる。
【0056】
なお、以上の実施の形態において、放電ランプは35Wメタルハライドランプとしたが、封入物が点灯中に発光管内で液体状で存在するランプであれば他のランプでもよい。
【0057】
また、矩形波発生回路4は、本実施の形態では標準的な矩形波を発生させるものとしたが、波形の立ち上がり・立ち下がりに傾きをもつ台形波を発生させる構成でもよく、略矩形波を発生できる構成でもよい。同様に矩形波変換回路14は略矩形波に変換できるならば、他の構成でもよい。さらに矩形波発生回路4・矩形波変換回路14は、略矩形波以外の正弦波・三角波・階段波・鋸波など放電アークをストレートにするモードを励起する音響共鳴周波数を上限とする周波数で極性が交互に変化する波形を発生できる構成のものでもよく、多少の直流成分を含む波形でも極性が変化すればよく、また正負非対称な波形でもよい。要は、放電ランプの放電空間の電界が一方向にならないように、カタホレシス現象を回避しうる波形であればよい。
【0058】
さらに、矩形波発生回路4および矩形波変換回路14の周波数は400Hzとしたが、放電アークをストレートにするモードを励起する音響共鳴周波数を上限とする周波数であればよい。
【0059】
また、正弦波発生回路3、高周波電源17からは150kHzの正弦波を発生する構成としたが、例えば三角波、鋸波等でもよく音響共鳴周波数の周波数成分を有する波形ならばよい。正弦波電源28も同様である。
【0060】
また、正弦波発生回路3、正弦波電源28にFM変調機能を追加し発生する正弦波を所定の周期と幅で周波数可変できる構成にすると、ランプ特性の経時変化・ばらつきにより発生する放電アークをストレートにするモードを励起する音響共鳴周波数の変化・ばらつきを吸収できる。また同様に第3の実施の形態のトランジスタ43のオン・オフ周波数を制御回路50からの信号でFM変調できるようにすれば同様の効果を得ることができる。
【0061】
また、高周波電源17は正弦波電源28とチョークコイル29とで構成し、チョークコイル29のインピーダンスで正弦波電源28の出力電流を制限し所定の変調深度にする構成にしたが、チョークコイル以外の抵抗・コンデンサおよびそれらの複合構成でもよい。
【0062】
また、瞬時値が時間的に変化しない波形を出力するDC電源16を降圧チョッパ回路で構成したが、昇圧チョッパ回路・反転チョッパ回路など他の回路方式でも同様の構成が可能である。
【0063】
また、制御回路27、50はランプ電力が定格値の35W一定になるようにトランジスタ20、43のオン・オフ比を制御する構成にしたが、点灯初期の光出力を補うため点灯初期に定格値以上の電力を供給するように制御してもよいし、調光制御などランプ特性を可変制御する構成のものでもよい。
【0064】
また、重畳回路18は、チョークコイル30とコンデンサ31とで構成したが他の構成でもよいことは言うまでもない。
【0065】
また、直流電源41は音響共鳴周波数の周波数成分を有する波形を重畳した直流を出力できるなら昇圧チョッパ回路または反転チョッパ回路またはフォワードコンバータ回路など他の回路方式で構成してもよい。
【0066】
また、スイッチ素子としてトランジスタを用いたが、FET・サイリスタ・IGBTなど他の素子でもよい。
【0067】
また、35Wメタルハライドランプ1の点灯中の封入物の状態を検出する受光手段54をフォトダイオード55、フィルタ56、レンズ57とで構成したが、点灯中に封入物が帯状になっているかなっていないかを検出できる構成であればよく、例えば、CCDカメラなどで35Wメタルハライドランプ1を撮像し、画像処理により検出することも可能である。また、フィルタ56は封入物が付いているときと付いていないときで顕著に差のでる波長の光を検出できれば他のフィルタでもよい。また、封入されている封入物が異なれば、フィルタ56を変更する必要があるのは言うまでもない。
【0068】
【発明の効果】
以上のように本発明によれば、放電アークをストレートにするモードを励起する音響的共鳴周波数の周波数成分を有する波形と音響的共鳴周波数を上限とする周波数で極性が交互に変化する波形との合成波で放電ランプを点灯し、変調深度を発光管のほぼ中央部に封入物が帯状に付着しない値に選定することにより、放電アークに色ムラのないストレートの放電アークを実現できると共に点灯中に封入物が発光管の中央部で帯状になることを防止でき、放電ランプを長寿命化できる。
【図面の簡単な説明】
【図1】放電アークをストレートにするモードを励起する音響的共鳴周波数f2の正弦波と周波数f1の矩形波との合成波を示す図
【図2】(A)ランプ内の放電アークの湾曲を示す図
(B)変調深度を変化させたときの電極軸と放電アーク中心との距離の変化を示す図
(C)変調深度を変化させたときの封入物の付着状態を示す模式図
【図3】放電アークをストレートにするモードを励起する音響的共鳴周波数f2の正弦波と周波数f3の三角波との合成波を示す図
【図4】本発明の第1の実施の形態の放電ランプ点灯装置の構成図
【図5】(A)矩形波発生回路4の出力波形図
(B)正弦波発生回路3の出力波形図
(C)合成回路5の出力波形図
【図6】本発明の第2の実施の形態の放電ランプ点灯装置の構成図
【図7】(A)DC電源16の出力波形図
(B)高周波電源17の出力波形図
(C)重畳回路18の出力波形図
(D)矩形波変換回路14の出力波形図
【図8】本発明の第3の実施の形態の放電ランプ点灯装置の構成図
【図9】(A)直流電源41の出力波形図
(B)矩形波変換回路14の出力波形図
【図10】本発明の第4の実施の形態の放電ランプ点灯装置の構成図
【図11】点灯中の封入物の状態を検出する受光手段54の構成図
【図12】コンデンサ53の正電容量と変調深度との関係を示す図
【図13】従来の放電ランプ点灯装置で放電ランプを点灯した時のランプ電流波形図
【図14】従来の放電ランプ点灯装置で放電ランプを点灯した時の封入物の付着状態を示す模式図
【符号の説明】
1 35Wメタルハライドランプ
2 点灯手段
3 正弦波発生回路
4 矩形波発生回路
5 合成回路
12 点灯手段
13 変調手段
14 矩形波変換回路
15 始動手段
16 DC電源
17 高周波電源
18 重畳回路
40 点灯手段
41 直流電源
51 変調深度制御手段
52 直流電源
54 受光手段
58 変調深度制御回路
59 点灯手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lighting device that can make a discharge arc of a discharge lamp, particularly an HID lamp (high-intensity discharge lamp), almost straight by acoustic resonance, eliminates color unevenness of the discharge arc due to the cataphoresis phenomenon, and the inclusion is almost at the center of the arc tube. The present invention relates to a discharge lamp lighting device that prevents the discharge arc from adhering around the discharge arc at the portion and suppresses devitrification of the arc tube to extend the life of the discharge lamp.
[0002]
[Prior art]
HID lamps are attracting attention as light sources for outdoor lighting, indoor lighting, especially store lighting because of their high brightness, high efficiency, high color rendering, and long life. Recently, smaller and lower power HID lamps are It is also attracting attention as a light source for equipment and a light source for automobile headlamps.
[0003]
In general, when this type of lamp is lit horizontally, the discharge arc is bent upward due to the influence of convection due to the temperature distribution generated in the arc tube. If the discharge arc is curved, the discharge arc of about 5000K and the upper part of the arc tube are close to each other, so that the temperature of the upper part of the arc tube rises, and the arc tube deteriorates, that is, swells and devitrifies rapidly, and adversely affects the lamp life. It was. In particular, in a small and low-power HID lamp, the distance between the discharge arc and the arc tube is further reduced, so that the discharge arc curvature has a great influence on the lamp life. In addition, since the discharge arc becomes vertically asymmetric when bending occurs, it is necessary to take into account the bending of the discharge arc when optically combined with a reflecting mirror, and the reflecting mirror becomes very complicated. He also had problems.
[0004]
As a method for removing the curvature of the discharge arc, a lighting method using acoustic resonance has been proposed in Japanese Patent Publication No. 7-9835 and Japanese Patent Laid-Open No. 7-14684. According to Japanese Patent Publication No. 7-9835, a current waveform in which an alternating current 52 having a frequency that reduces the influence of convection by acoustic resonance and straightens a discharge arc is superimposed on a direct current 51 as shown in FIG. It teaches that by supplying a lamp, the arc of the discharge arc can be reduced, resulting in a nearly straight discharge arc.
[0005]
Further, according to Japanese Patent Laid-Open No. 7-14684, in the frequency range of 10 kHz to 100 kHz, a frequency and waveform alternating current that excites radial acoustic resonance in the arc tube is supplied to the lamp, and then the frequency of the alternating current is supplied. F V And radial acoustic wave frequency F R N · 2F between V = M · F R (N, m: integer), F R = 3.83 C / (2πR) (C: radial sound velocity in the arc tube, R: inner radius of the arc tube) The frequency of the alternating current is selected so that the discharge arc due to the effect of convection It is disclosed that the curvature of can be removed.
[0006]
Acoustic resonance occurs when the lamp is lit at a high frequency, when the frequency inherent to the lamp, which is determined by the shape of the enclosure and arc tube, and the frequency of the periodic change in the power input to the lamp are substantially equal, This phenomenon is caused by the occurrence of the standing wave, which causes instability, extinction of the discharge arc, bursting of the arc tube, and so on, and has conventionally tended to avoid this acoustic resonance. In general, there are three types of acoustic resonance modes in the radial direction, the axial direction, and the circumferential direction, and the method described in Japanese Patent Publication No. 7-9835 and Japanese Patent Laid-Open No. 7-14684 is a method of acoustic resonance in the radial direction. It is a lighting method using resonance.
[0007]
[Problems to be solved by the invention]
However, in the discharge lamp lighting device disclosed in Japanese Examined Patent Publication No. 7-9835, a unidirectional current flows through the discharge lamp. Therefore, although the electric field strength in the discharge space of the discharge lamp changes periodically, a unidirectional electric field is always generated. For this reason, there has been a problem that color unevenness occurs in the discharge arc due to the cataphoresis phenomenon in which the packing is offset.
[0008]
Further, in a lighting device for a discharge lamp according to Japanese Patent Application Laid-Open No. 7-14684, as shown in FIG. 14, the inclusion that exists in a liquid state without evaporating in the arc tube surrounds the discharge arc in the central portion of the arc tube. It adheres almost like a band. This is thought to be due to the fact that the arc becomes linear due to the acoustic resonance in the radial direction, while the density of the inclusions in the central portion of the arc tube increases due to the acoustic resonance in the axial direction, which is another mode of acoustic resonance. .
[0009]
When the inclusion adheres in a strip shape so as to surround the discharge arc in the central portion of the arc tube, the chemical reaction between the quartz glass constituting the arc tube and the inclusion is accelerated at the adhering portion, and strip-like devitrification occurs in the arc tube. As the luminous flux decreases, the lamp life is shortened. In addition, since a normal lamp is used in combination with a reflecting mirror, if strip-like devitrification occurs in the central portion of the arc tube, the efficiency of the instrument combined with the reflecting mirror is reduced.
[0010]
The present invention is intended to solve such problems of the prior art, and its object is to avoid the cataphoresis phenomenon, eliminate the color unevenness of the discharge arc, and light with a substantially straight line with a reduced discharge arc curvature. And it is providing the lighting device which prevents the devitrification of the strip | belt shape of an arc_tube | light_emitting_tube by preventing that an enclosure becomes a strip | belt shape in the center part of an arc_tube | light_emitting_tube, and prolongs a lamp life.
[0011]
[Means for Solving the Problems]
Book The present invention is an apparatus for lighting a discharge lamp having an arc tube that defines a discharge space, and has a waveform having a frequency component of an acoustic resonance frequency that excites a mode for straightening a discharge arc, the center line of the waveform Generating means for generating a first waveform signal having a constant level, and the center line of the first waveform signal alternately change in polarity at a modulation frequency lower than the acoustic resonance frequency. A modulation means for modulating one waveform signal with periodicity and generating a modulation signal, where α is the value from peak to peak of the first waveform signal and β is the effective value of the modulation signal The modulation depth α / β of the arc tube is selected to a value that does not allow the inclusion to adhere to the substantially central portion of the arc tube. The modulation depth α / β is in the range of 0.3 to 0.6. This is a discharge lamp lighting device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, a sine wave of an acoustic resonance frequency f2 that excites a mode that straightens the discharge arc that is the first waveform signal, and a frequency f1 (400 Hz) that has a waveform in which the polarity alternately changes at a modulation frequency lower than the acoustic resonance frequency f2. ) Shows a combined wave with a rectangular wave.
[0015]
This synthesized wave is a waveform in which a sine wave having an acoustic resonance frequency f2 and a rectangular wave having a frequency f1 are superimposed. The current of the waveform shown in FIG. 1 is supplied to the lamp and is lit horizontally, and the modulation depth α / β (β is the effective of the combined wave is obtained by changing the difference α between the maximum value and the minimum value of the sine wave of the acoustic resonance frequency f2. The results of experimentally determining the magnitude L of the arc of the discharge arc when the value) is changed and the state of attachment of the enclosed material to the arc tube during lighting will be described below.
[0016]
A 35 W metal halide lamp was used for the experiment. FIG. 2A is a diagram showing a method of measuring the curvature L of the discharge arc A, and shows a cross section perpendicular to the electrode axis B at the center between a pair of opposing electrodes 1m and 1n in the light emission interval 1t. The distance between the electrode axis B and the center of the discharge arc A was measured as the curvature L of the discharge arc A.
[0017]
The acoustic resonance frequency f2 of the 35 W metal halide lamp used in the experiment is 150 kHz. FIG. 2 (b) shows the result of determining the curvature L of the discharge arc A. It can be seen that the curvature of the discharge arc gradually decreases as the modulation depth increases, and the magnitude L of the curvature of the discharge arc decreases rapidly at a modulation depth of 0.3 or more. FIG. 2 (c) shows the state of the inclusions attached to the arc tube during lighting. The adhesion state of the inclusions to the arc tube changes almost at the modulation depth of 0.6, and at the modulation depth of 0.6 or less, the inclusions gather under the arc tube due to the influence of gravity, and at the modulation depth of 0.6 or more. It can be seen that the encapsulated material adheres in a strip shape so as to surround the arc at the center of the arc tube.
[0018]
Here, the reason why the inclusion becomes a band at the central portion of the arc tube at a modulation depth of 0.6 or more and the discharge arc becomes straight at a modulation depth of 0.3 or more will be described. It can be estimated that the cause of both is due to acoustic resonance occurring in the arc tube. The acoustic resonance in the axial direction is considered to be the main factor for adhering the inclusions in a strip shape, and the acoustic resonance in the radial direction is the main factor for making the discharge arc straight. The acoustic resonance in the radial direction forms a space in which the discharge arc easily passes in a space near the electrode axis B, and further a space in which the discharge arc hardly passes.
[0019]
For this reason, the discharge arc passes through the space near the electrode axis B, which is easy to pass, and becomes a substantially straight discharge arc. At the same time, axial acoustic resonance also occurs in the arc tube. This axial acoustic resonance sometimes collects the inclusions in a cross section orthogonal to the electrode axis at the center between the electrodes, which is considered to cause the inclusions to adhere in a band shape.
[0020]
The force by which the acoustic resonance moves the enclosure should be proportional to the intensity of the dense waves generated in the arc tube. In the close-packed wave, a periodic change in lamp power is a periodic change in arc temperature, and a periodic change in arc temperature is a pressure change. That is, the force by which the acoustic resonance moves the enclosure and the width of the periodic change of the lamp power are proportional, and if the width of the periodic change of the lamp power is large, the force to move the enclosure increases.
[0021]
When the current shown in FIG. 1 is supplied to the lamp, the larger the difference α between the maximum value and the minimum value of the sine wave at the acoustic resonance frequency f2, that is, the greater the modulation depth α / β, the greater the width of the periodic change in lamp power. It is considered that when the modulation depth α / β is 0.6 or more, a sufficient force is generated to move the inclusion to the central portion of the arc tube, resulting in a band shape.
[0022]
Also, the latter is more effective in moving the gas (light) discharge arc, that is, straightening, and moving the liquid (heavy) enclosure, that is, attaching the belt in the center of the arc tube. Therefore, a force required to straighten a good discharge arc with a relatively small force can be obtained sufficiently with a relatively small modulation depth of 0.3 or more. It is considered that the curvature L of the discharge arc is suddenly reduced at 3 or more.
[0023]
From the above experimental results, by setting the modulation depth to 0.6 or less, it is possible to reduce the curvature of the discharge arc and to prevent the sticking of the inclusions that cause the devitrification of the arc tube, so that the life of the lamp can be extended. . Moreover, since the curvature of the discharge arc can be further reduced by setting the modulation depth in the range of 0.3 to 0.6, the effect of extending the life is greater.
[0024]
1 is applied to the lamp, the polarity of the lamp current changes with the period of the rectangular wave of 400 Hz, and the polarity of the electric field generated in the discharge space changes periodically. Change. Therefore, the cataphoresis phenomenon can be prevented, and the discharge arc color unevenness can be prevented.
[0025]
3 shows a sine wave of an acoustic resonance frequency f2 that excites a mode that straightens the discharge arc, which is the first waveform signal, and a frequency f3 that has a waveform in which the polarity alternately changes at a modulation frequency lower than the acoustic resonance frequency f2. A composite wave with a triangular wave is shown. This synthesized wave has a waveform in which a sine wave having an acoustic resonance frequency f2 and a triangular wave having a frequency f3 are superimposed.
[0026]
Even if a current having a modulation depth of 0.6 or less is supplied to the lamp in the waveform shown in FIG. 3, the discharge arc is similarly reduced, and it is possible to prevent the adhering band-like attachment causing the devitrification of the arc tube. Furthermore, since the polarity of the electric field generated in the discharge space changes with a period determined by the frequency f3, the cataphoresis phenomenon can be prevented.
[0027]
Here, the first waveform signal is a sine wave of the acoustic resonance frequency f2 that excites the mode that straightens the discharge arc, but the waveform includes the frequency component of the acoustic resonance frequency f2 that excites the mode that straightens the discharge arc. For example, a triangular wave or a sawtooth wave may be used. In addition, if a sine wave with frequency modulation that changes the frequency with a predetermined period and width is used, the change / variation in the acoustic resonance frequency that excites the mode that straightens the discharge arc caused by the change / variation in the lamp characteristics over time. Can absorb.
[0028]
In addition, although a composite wave with a rectangular wave of frequency f1 or a triangular wave of frequency f3, which is a waveform whose polarity alternately changes at a modulation frequency lower than the acoustic resonance frequency f2, is shown as an example, other waveforms such as a sine wave, A similar effect can be obtained if it is a combined wave with a waveform whose polarity alternately changes at a frequency having an upper limit of the acoustic resonance frequency f2 for exciting a mode that straightens the discharge arc, such as a staircase wave or a sawtooth wave. Further, the waveform may include a slight DC component as long as the polarity is changed, and may be a positive / negative asymmetric waveform. In short, the waveform may be any waveform that can avoid the cataphoresis phenomenon so that the electric field in the discharge space of the discharge lamp does not become one direction.
[0029]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 4 shows a first embodiment for a 35 W metal halide lamp. In FIG. 4, reference numeral 1 denotes the 35 W metal halide lamp described above, which is a discharge lamp in which mercury and a metal halide (Sc—Na system) are sealed in an arc tube defining a discharge space.
[0030]
Reference numeral 2 denotes lighting means for supplying a current of a predetermined waveform to the 35 W metal halide lamp 1 for lighting. The lighting means 2 is a first waveform signal having a frequency component of an acoustic resonance frequency for exciting a mode for straightening a discharge arc. A sine wave generating circuit 3 that generates a 150 kHz sine wave as a generating means, and a rectangular wave generator that generates a 400 Hz rectangular wave as a polarity changing power source that outputs a waveform whose polarity changes at a frequency up to the acoustic resonance frequency. The circuit 4 is composed of a synthesis circuit 5 that synthesizes the output of the sine wave generation circuit 3 and the output of the rectangular wave generation circuit 4.
[0031]
FIG. 5 shows waveforms of respective parts of the first embodiment configured as described above.
FIG. 5A shows an output waveform of the rectangular wave generating circuit 4, which is a 400 Hz rectangular wave. FIG. 5B shows an output waveform of the sine wave generation circuit 3, which is a 150 kHz sine wave. FIG. 5C shows an output waveform of the synthesis circuit 5 in which the output of the sine wave generation circuit 3 and the output of the rectangular wave generation circuit 4 are superimposed, and the rectangular wave generation circuit has a modulation depth of 0.6 or less. 4 and the output of the sine wave generation circuit 3 are set, and the waveform of FIG. 5C is applied to the 35 W metal halide lamp 1.
[0032]
As described above, according to the first embodiment, the acoustic resonance frequency sine wave (150 kHz) and the 400 Hz rectangular wave for exciting the 35 W metal halide lamp 1 in the mode in which the discharge arc shown in FIG. Since a combined wave with a modulation depth of 0.6 or less can be applied, a straight discharge arc with no color unevenness can be realized and a band-like adhesion of the inclusion can be prevented.
[0033]
FIG. 6 shows a second embodiment. In FIG. 6, reference numeral 1 denotes a 35 W metal halide lamp similar to that of the first embodiment. Reference numeral 12 denotes lighting means for supplying a predetermined waveform to the 35 W metal halide lamp 1 for lighting, and the lighting means 12 is a first waveform signal generating means having a frequency component of an acoustic resonance frequency for exciting a mode for straightening the arc. A high-frequency power supply 17 that generates a certain 150 kHz sine wave, a modulation means 13 that modulates the output of the high-frequency power supply 17 so that the polarity alternately changes at a modulation frequency lower than the acoustic resonance frequency, and the discharge of the 35 W metal halide lamp 1 And starting means 15 for applying a sufficiently high voltage for starting.
[0034]
The modulation means 13 includes a DC power supply 16 that outputs a DC signal whose instantaneous value does not change with time, a superposition circuit 18 that superimposes the output of the high-frequency power supply 17 on the output of the DC power supply 16, and an output from the superposition circuit 18 as an acoustic signal. The rectangular wave conversion circuit 14 is an inverter circuit that alternately changes the polarity at a modulation frequency lower than the resonance frequency. FIG. 7 shows waveforms of respective parts of the second embodiment configured as described above.
[0035]
FIG. 7A shows an output current waveform of the DC power supply 16. The DC power supply 16 includes a DC power supply 19, a transistor 20, a diode 21, a choke coil 22, and a capacitor 23 to form a step-down chopper circuit. The control circuit 27 calculates lamp power from the signal corresponding to the lamp voltage detected at 25 and the signal corresponding to the lamp current detected at the resistor 26, and the on / off ratio of the transistor 20 is varied so that the lamp power is constant at 35W. A DC waveform whose instantaneous value does not change with time is output.
[0036]
FIG. 7B shows an output current waveform of the high-frequency power source 17. The high-frequency power source 17 modulates the output current of the sine wave power source 28 that outputs a sine wave with an acoustic resonance frequency of 150 kHz and the sine wave power source 28 to a depth of 0.6 or less. And a sine wave current having an acoustic resonance frequency is output.
[0037]
FIG. 7C shows an output current waveform of the superposition circuit 18, which is composed of a choke coil 30 and a capacitor 31, and the capacitor 31 prevents the output current of the DC power source 16 from flowing into the high frequency power source 17. The DC cut is performed, and the choke coil 30 is used to cut the high frequency so that the output current of the high frequency power supply 17 does not flow into the DC power supply 16. Output superimposed DC.
[0038]
FIG. 7D shows an output current waveform of the rectangular wave conversion circuit 14. The rectangular wave conversion circuit 14 includes transistors 32, 33, 34, and 35 and a drive circuit 36. A 35W metal halide is produced by alternately generating a period in which the transistors 32 and 35 are turned on and a period in which the transistors 33 and 34 are turned on to convert a direct current superimposed with a sine wave of the acoustic resonance frequency, which is the output of the superposition circuit 18, into an alternating current of 400 Hz. Supply to lamp 1.
[0039]
As described above, according to the second embodiment, when the 35 W metal halide lamp 1 is lit with the high voltage from the starting means 15, the discharge arc is then applied at a modulation depth of 0.6 or less as shown in FIG. Since a combined wave current of a sine wave having an acoustic resonance frequency (150 kHz) that excites a straightening mode and a rectangular wave having a frequency equal to or lower than the acoustic resonance frequency (400 Hz) can be supplied, the discharge arc has no color unevenness. The discharge arc can be realized, and the adhering band-like adhesion can be prevented. The modulation depth can be freely varied by changing the output voltage of the sine wave power supply 28.
[0040]
FIG. 8 shows a third embodiment of the present invention. In FIG. 8, 1 is a 35 W metal halide lamp which is a discharge lamp similar to the first and second embodiments. 40 is a lighting means for starting and lighting the 35 W metal halide lamp 1, and generates a first waveform signal that outputs a direct current on which a waveform having a frequency component of an acoustic resonance frequency that excites a mode for straightening a discharge arc is superimposed. DC power source 41 as means, a high frequency power source 17 that generates a sine wave of 150 kHz, a modulation unit 13 that modulates the output of the high frequency power source 17 so that the polarity alternately changes at a modulation frequency lower than the acoustic resonance frequency, and the direct current A rectangular wave conversion circuit 14 that is an inverter circuit that changes the polarity of the output of the power supply 41 at a frequency that has an acoustic resonance frequency as an upper limit, and a starter 15 that applies a high voltage sufficient to start the discharge of the 35 W metal halide lamp 1. It consists of and.
[0041]
The rectangular wave conversion circuit 14 and the starter 15 have the same configuration as that of the second embodiment. The difference from the second embodiment is the configuration of a DC power supply 41 that is a first waveform signal generating means having a frequency component of an acoustic resonance frequency that excites a mode that straightens the discharge arc. The configuration and operation will be described.
[0042]
The direct current power source 41 comprises a step-down chopper circuit composed of the direct current power source 42, the transistor 43 as a switching element, the diode 44, the choke coil 45 and the capacitor 46, and a signal corresponding to the lamp voltage detected by the resistors 47 and 48 and the resistor 49. The control circuit 50 calculates the lamp power from the signal corresponding to the detected lamp current, and the on / off ratio of the transistor 43 is varied so that the lamp power is constant at 35 W. The acoustic resonance frequency for exciting the straight mode is set to 150 kHz, and the filter circuit constituted by the choke coil 45 and the capacitor 46 has a characteristic that the 150 kHz component is not cut and the modulation depth is 0.6 or less. By setting the value, the output current waveform of the DC power supply 41 is 150 kHz. Can output periodically fluctuating modulation depth 0.6 DC.
[0043]
An output current waveform of the DC power supply 41 of the third embodiment configured as described above is shown in FIG. 9A, and an output current waveform of the rectangular wave conversion circuit 14 is shown in FIG. 9B.
[0044]
Similar to the first and second embodiments, the 35 W metal halide lamp 1 has a modulation depth of 0.6 or less and a waveform having a frequency component of an acoustic resonance frequency (150 kHz) that excites a mode that straightens the discharge arc. Since a combined wave current with a rectangular wave having a frequency equal to or lower than the acoustic resonance frequency (400 Hz) can be supplied, it is possible to realize a straight discharge arc with no color unevenness in the discharge arc and to prevent adhesion of the inclusions in a band shape.
[0045]
In addition, the choke coil 45 and the capacitor 46 are set to predetermined values, and the on / off frequency of the transistor 43 is set to 150 kHz, which is a frequency at which the discharge arc can be straightened at an acoustic resonance frequency. Since a predetermined modulation depth can be added, the configuration of the lighting means is simplified.
[0046]
FIG. 10 shows a fourth embodiment of the present invention. In FIG. 10, the third embodiment is different from the third embodiment in that it has a modulation depth control means 51 that detects the adhesion state of the enclosure to the arc tube and changes the modulation depth α / β according to the adhesion state. The capacitor 53 in the DC power source 52, which is a means for generating a first waveform signal that outputs a DC having a waveform having a frequency component of an acoustic resonance frequency that excites a mode that straightens the discharge arc, is a variable capacity type. Since other configurations are the same, description thereof is omitted.
[0047]
The modulation depth control means 51 is arranged in the vicinity of the 35 W metal halide lamp, and the light receiving means 54 which is a detection means for detecting the state of the lit inclusion, that is, whether or not it is a band, and the signal from the light receiving means 54 And a modulation depth control circuit 58 that changes the capacitance and changes the modulation depth α / β. The light receiving means 54 is disposed so as to receive the local light transmitted through the portion where the encapsulated material becomes a band, that is, the central portion of the arc tube.
[0048]
The operation of the discharge lamp lighting device of the fourth embodiment configured as described above will be described below. First, a method for detecting whether or not the inclusion is in a band shape will be described.
[0049]
Light emitted from the discharge arc passes through the arc tube, but when the arc tube enclosure adheres in a band shape, reflection and absorption of light by the enclosure occur at that portion, and the light transmission spectral characteristics change locally. To do. That is, there is light with a wavelength that is significantly different between when the inclusion is attached and when it is not attached. If the light receiving means 14 is configured so that this change can be detected, the state of the inclusion can be detected.
[0050]
Specifically, as shown in FIG. 11, the photodiode 55, the filter 56, and the lens 57 constitute the light receiving means 54, and the local light at the portion where the encapsulated material becomes a band is collected by the lens 57, and the filter Light is received by the photodiode 55 through 56.
[0051]
For example, if the inclusion is a Sc-Na iodide, the color of the inclusion is light yellow and has the property of absorbing blue light. Therefore, if the encapsulated material has a band shape, blue light is greatly reduced in the light transmitted therethrough. That is, it is possible to detect whether the encapsulated material is band-like or not based on the amount of blue light, and a blue transmission filter is used as the filter 56 in order to detect this change in blue light.
[0052]
With this configuration, when the encapsulated material has a band shape, the light input to the light receiving means 54 contains almost no blue light, so that almost no light is input to the photodiode 55, and the light receiving means 54. Is almost zero, and the modulation depth control circuit 58 determines that the inclusion is in a band shape.
[0053]
On the other hand, when the inclusion is not in the form of a band, the light input to the light receiving means 54 includes blue light, so that the light that has passed through the filter 56 is input to the photodiode 55 and received by the light receiving means 54. Outputs a signal proportional to the amount of light input to the photodiode 55 to the modulation depth control circuit 58, and the modulation depth control circuit 58 determines that the iodide is not in the form of a band if this signal is a predetermined value. To do.
[0054]
The relationship between the modulation depth and the capacitance of the capacitor 53 is as shown in FIG. 12, and the modulation depth decreases as the capacitance of the capacitor increases. Therefore, the modulation depth control circuit 58 controls the modulation depth by increasing the capacitance of the capacitor 53 to decrease the capacitance of the capacitor 53 to increase the modulation depth and increasing the capacitance of the capacitor 53 to decrease the modulation depth.
[0055]
As described above, according to the fourth embodiment, the light receiving means 54 detects the state of the enclosed object while the 35 W metal halide lamp 1 is lit, and the modulation depth control circuit 58 varies the modulation depth, thereby The 35 W metal halide lamp 1 can be lit at a modulation depth where the curvature of the discharge arc is the smallest in the region where is not strip-shaped. Further, it is possible to absorb the variation in the modulation depth at which the inclusion becomes a band due to the manufacturing intersection of the 35 W metal halide lamp 1 and the change over time.
[0056]
In the above embodiment, the discharge lamp is a 35 W metal halide lamp. However, other lamps may be used as long as the inclusion is in a liquid state in the arc tube during lighting.
[0057]
The rectangular wave generating circuit 4 generates a standard rectangular wave in the present embodiment, but may be configured to generate a trapezoidal wave having a slope at the rising and falling edges of the waveform. The structure which can generate | occur | produce may be sufficient. Similarly, the rectangular wave conversion circuit 14 may have another configuration as long as it can convert into a substantially rectangular wave. Further, the rectangular wave generating circuit 4 and the rectangular wave converting circuit 14 are polar at a frequency having an upper limit of an acoustic resonance frequency that excites a mode for straightening a discharge arc, such as a sine wave, a triangular wave, a staircase wave, and a saw wave other than a substantially rectangular wave. It is possible to generate a waveform that alternately changes, a waveform that includes some DC component, as long as the polarity is changed, and a waveform that is asymmetric between positive and negative may be used. In short, the waveform may be any waveform that can avoid the cataphoresis phenomenon so that the electric field in the discharge space of the discharge lamp does not become one direction.
[0058]
Furthermore, although the frequency of the rectangular wave generation circuit 4 and the rectangular wave conversion circuit 14 is 400 Hz, any frequency may be used as long as the upper limit is the acoustic resonance frequency that excites the mode for straightening the discharge arc.
[0059]
Further, the sine wave generating circuit 3 and the high frequency power supply 17 are configured to generate a 150 kHz sine wave. However, for example, a triangular wave, a sawtooth wave, or the like may be used as long as it has a frequency component of the acoustic resonance frequency. The same applies to the sine wave power supply 28.
[0060]
In addition, when an FM modulation function is added to the sine wave generation circuit 3 and the sine wave power supply 28 so that the frequency of the sine wave generated can be varied with a predetermined period and width, a discharge arc generated due to a change and variation in lamp characteristics with time is generated. It can absorb changes and variations in the acoustic resonance frequency that excites the straightening mode. Similarly, if the on / off frequency of the transistor 43 of the third embodiment can be FM-modulated by a signal from the control circuit 50, the same effect can be obtained.
[0061]
The high frequency power supply 17 is constituted by a sine wave power supply 28 and a choke coil 29, and the output current of the sine wave power supply 28 is limited to the predetermined modulation depth by the impedance of the choke coil 29. A resistor / capacitor and their combined configuration may be used.
[0062]
Further, although the DC power supply 16 that outputs a waveform whose instantaneous value does not change with time is configured by a step-down chopper circuit, the same configuration is possible with other circuit systems such as a step-up chopper circuit and an inverting chopper circuit.
[0063]
In addition, the control circuits 27 and 50 are configured to control the on / off ratio of the transistors 20 and 43 so that the lamp power is constant at a rated value of 35 W. Control may be performed so that the above power is supplied, or a configuration in which lamp characteristics are variably controlled, such as dimming control, may be used.
[0064]
Further, although the superposition circuit 18 is constituted by the choke coil 30 and the capacitor 31, it goes without saying that other configurations may be adopted.
[0065]
Further, the DC power supply 41 may be configured by other circuit methods such as a step-up chopper circuit, an inverting chopper circuit, or a forward converter circuit as long as it can output a DC with a waveform having a frequency component of the acoustic resonance frequency.
[0066]
In addition, although a transistor is used as the switch element, other elements such as an FET, a thyristor, and an IGBT may be used.
[0067]
In addition, the light receiving means 54 for detecting the state of the enclosed material during lighting of the 35 W metal halide lamp 1 is constituted by the photodiode 55, the filter 56, and the lens 57, but the filled material is not in a band shape during lighting. For example, a 35 W metal halide lamp 1 can be imaged with a CCD camera and detected by image processing. The filter 56 may be another filter as long as it can detect light having a wavelength that is significantly different between when the inclusion is attached and when it is not. Needless to say, the filter 56 needs to be changed if the enclosed matter is different.
[0068]
【The invention's effect】
As described above, according to the present invention, a waveform having a frequency component of an acoustic resonance frequency that excites a mode in which a discharge arc is straight and a waveform whose polarity alternately changes at a frequency with the acoustic resonance frequency as an upper limit. By turning on the discharge lamp with a composite wave and selecting the modulation depth to a value that does not cause the inclusions to adhere to the center of the arc tube, a straight discharge arc with no color unevenness can be realized and the lighting is on. In addition, it is possible to prevent the encapsulated material from forming a belt-like shape at the central portion of the arc tube, thereby extending the life of the discharge lamp.
[Brief description of the drawings]
FIG. 1 is a diagram showing a combined wave of a sine wave having an acoustic resonance frequency f2 and a rectangular wave having a frequency f1 for exciting a mode in which a discharge arc is straightened.
FIG. 2A is a diagram showing the curvature of a discharge arc in a lamp.
(B) The figure which shows the change of the distance of an electrode axis | shaft and discharge arc center when changing the modulation depth.
(C) Schematic diagram showing the state of attachment of the inclusion when the modulation depth is changed
FIG. 3 is a diagram showing a combined wave of a sine wave having an acoustic resonance frequency f2 and a triangular wave having a frequency f3 for exciting a mode for straightening a discharge arc.
FIG. 4 is a configuration diagram of a discharge lamp lighting device according to the first embodiment of the present invention.
5A is an output waveform diagram of the rectangular wave generation circuit 4. FIG.
(B) Output waveform diagram of sine wave generation circuit 3
(C) Output waveform diagram of synthesis circuit 5
FIG. 6 is a configuration diagram of a discharge lamp lighting device according to a second embodiment of the present invention.
7A is an output waveform diagram of the DC power supply 16. FIG.
(B) Output waveform diagram of the high-frequency power supply 17
(C) Output waveform diagram of superposition circuit 18
(D) Output waveform diagram of rectangular wave conversion circuit 14
FIG. 8 is a configuration diagram of a discharge lamp lighting device according to a third embodiment of the present invention.
9A is an output waveform diagram of the DC power supply 41. FIG.
(B) Output waveform diagram of the rectangular wave conversion circuit 14
FIG. 10 is a configuration diagram of a discharge lamp lighting device according to a fourth embodiment of the present invention.
FIG. 11 is a block diagram of the light receiving means 54 for detecting the state of the encapsulated object during lighting.
FIG. 12 is a diagram showing the relationship between the positive capacitance of the capacitor 53 and the modulation depth.
FIG. 13 is a lamp current waveform diagram when a discharge lamp is lit by a conventional discharge lamp lighting device.
FIG. 14 is a schematic diagram showing an attached state of an inclusion when a discharge lamp is lit with a conventional discharge lamp lighting device.
[Explanation of symbols]
1 35W metal halide lamp
2 lighting means
3 Sine wave generator
4 Rectangular wave generation circuit
5 Synthesis circuit
12 lighting means
13 Modulation means
14 Rectangular wave conversion circuit
15 Starting means
16 DC power supply
17 High frequency power supply
18 Superposition circuit
40 lighting means
41 DC power supply
51 Modulation depth control means
52 DC power supply
54 Light receiving means
58 Modulation depth control circuit
59 Lighting means

Claims (5)

放電空間を画定する発光管を有する放電ランプを点灯する装置であって、
放電アークをストレートにするモードを励起する音響共鳴周波数の周波数成分を有する波形であって、その波形の中心線が一定レベルに保持されている第1波形信号を発生する発生手段と、
前記第1波形信号の中心線が、前記音響共鳴周波数よりも低い変調周波数で極性が交互に変化するように、前記第1波形信号を周期性を持って変調させると共に、変調信号を発生する変調手段とを有し、
前記第1波形信号のピークからピークまでの値をα、前記変調信号の実効値をβとした場合の変調深度α/βを、前記発光管のほぼ中央部に封入物が略帯状に付着しない値に選定し、当該変調深度α/βが0.3〜0.6の範囲にある、放電ランプ点灯装置。。
An apparatus for lighting a discharge lamp having an arc tube that defines a discharge space,
Generating means for generating a first waveform signal having a frequency component of an acoustic resonance frequency for exciting a mode for straightening a discharge arc, the center line of the waveform being held at a constant level;
Modulation that modulates the first waveform signal with periodicity and generates a modulation signal such that the polarity of the center line of the first waveform signal alternately changes at a modulation frequency lower than the acoustic resonance frequency. Means,
When the value from the peak to the peak of the first waveform signal is α and the effective value of the modulation signal is β, the modulation depth α / β is not substantially attached to the central portion of the arc tube. A discharge lamp lighting device that is selected as a value and the modulation depth α / β is in the range of 0.3 to 0.6 . .
音響共鳴周波数は、放電ランプの放電空間媒体中の音速と放電アークに交差する放電空間の長さとで決定されることを特徴とする請求項1記載の放電ランプ点灯装置。2. The discharge lamp lighting device according to claim 1, wherein the acoustic resonance frequency is determined by the speed of sound in the discharge space medium of the discharge lamp and the length of the discharge space intersecting the discharge arc. 前記放電ランプは封入物として少なくともハロゲン化金属または水銀が含まれていることを特徴とする請求項1または2記載の放電ランプ点灯装置。The discharge lamp lighting device according to claim 1 or 2, wherein the discharge lamp contains at least a metal halide or mercury as an enclosure. 封入物の発光管への付着状態を検出し、その付着状態に応じて変調深度α/βを変化させる変調深度制御手段を有することを特徴とする請求項1〜のいずれかに記載の放電ランプ点灯装置。The discharge according to any one of claims 1 to 3 , further comprising a modulation depth control means that detects a state of adhesion of the inclusion to the arc tube and changes the modulation depth α / β according to the state of adhesion. Lamp lighting device. 変調深度制御手段が放電ランプの光出力を検出することを特徴とする請求項記載の放電ランプの点灯装置。5. The discharge lamp lighting device according to claim 4, wherein the modulation depth control means detects the light output of the discharge lamp.
JP06805898A 1998-03-18 1998-03-18 Discharge lamp lighting device Expired - Fee Related JP4024374B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP06805898A JP4024374B2 (en) 1998-03-18 1998-03-18 Discharge lamp lighting device
US09/270,315 US6147461A (en) 1998-03-18 1999-03-16 Operating apparatus of discharge lamp
EP99105451A EP0944294B1 (en) 1998-03-18 1999-03-17 Operating apparatus of discharge lamp
DE69920087T DE69920087T2 (en) 1998-03-18 1999-03-17 Device for operating a discharge lamp
KR1019990009161A KR100333997B1 (en) 1998-03-18 1999-03-18 Lighting apparatus of discharge lamp
CNB99105962XA CN1146306C (en) 1998-03-18 1999-03-18 Discharge-lamp control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06805898A JP4024374B2 (en) 1998-03-18 1998-03-18 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JPH11265795A JPH11265795A (en) 1999-09-28
JP4024374B2 true JP4024374B2 (en) 2007-12-19

Family

ID=13362815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06805898A Expired - Fee Related JP4024374B2 (en) 1998-03-18 1998-03-18 Discharge lamp lighting device

Country Status (6)

Country Link
US (1) US6147461A (en)
EP (1) EP0944294B1 (en)
JP (1) JP4024374B2 (en)
KR (1) KR100333997B1 (en)
CN (1) CN1146306C (en)
DE (1) DE69920087T2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664337B1 (en) 1998-12-17 2007-01-02 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Circuit arrangement
FR2799062B1 (en) * 1999-09-27 2001-12-21 Valeo Vision IMPROVEMENTS IN ORDERING THE SUPPLY OF DISCHARGE LAMPS, ESPECIALLY A MOTOR VEHICLE PROJECTOR
US6476566B2 (en) 2000-12-27 2002-11-05 Infocus Systems, Inc. Method and apparatus for canceling ripple current in a lamp
US6621576B2 (en) 2001-05-22 2003-09-16 Xerox Corporation Color imager bar based spectrophotometer for color printer color control system
US6788007B2 (en) * 2001-12-21 2004-09-07 Koninklijke Philips Electronics N.V. Use of arc straightening in HID lamps operated at VHF frequencies
KR100453712B1 (en) * 2002-10-15 2004-10-22 학교법인 유한학원 Multiplex modulation driving method and apparatus of the high frequency electronic ballast for the metal halide lamp
AU2003292480A1 (en) 2003-01-15 2004-08-10 Koninklijke Philips Electronics N.V. Method of representing a video image by means of a projector
US6924604B2 (en) * 2003-09-25 2005-08-02 Osram Sylvania Inc. Method of operating a discharge lamp system and a discharge lamp system using a combination radial and longitudinal acoustic mode to reduce vertical segregation
JP2007115660A (en) * 2005-09-22 2007-05-10 Toshiba Lighting & Technology Corp High-pressure discharge lamp lighting device, and illumination device
DE102009016579A1 (en) 2009-04-06 2010-10-14 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement and method for operating a high-pressure discharge lamp
US8358083B2 (en) * 2009-12-18 2013-01-22 Osram Sylvania Inc. System and method including self oscillating feedback for acoustic operation of a discharge lamp
GB2584468A (en) * 2019-06-05 2020-12-09 Animal Dynamics Ltd A motor drive signal generator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189609B2 (en) * 1994-11-18 2001-07-16 松下電器産業株式会社 Discharge lamp lighting device
JP3189602B2 (en) * 1994-11-25 2001-07-16 松下電器産業株式会社 Discharge lamp lighting device
US4983889A (en) * 1989-05-15 1991-01-08 General Electric Company Discharge lamp using acoustic resonant oscillations to ensure high efficiency
US5198727A (en) * 1990-02-20 1993-03-30 General Electric Company Acoustic resonance operation of xenon-metal halide lamps on unidirectional current
DE4317368A1 (en) * 1993-05-25 1994-12-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method for operating a high-pressure discharge lamp
KR100389170B1 (en) * 1994-11-18 2003-10-11 마츠시타 덴끼 산교 가부시키가이샤 Discharge lamp-lighting apparatus
JP3189641B2 (en) * 1995-08-24 2001-07-16 松下電器産業株式会社 Discharge lamp lighting device
JP3201981B2 (en) * 1996-08-22 2001-08-27 松下電器産業株式会社 Discharge lamp lighting device and method
KR100294371B1 (en) * 1996-08-22 2001-09-17 모리시타 요이찌 Discharge lamp lighting device and method

Also Published As

Publication number Publication date
EP0944294B1 (en) 2004-09-15
DE69920087T2 (en) 2005-01-20
CN1234720A (en) 1999-11-10
JPH11265795A (en) 1999-09-28
KR19990078014A (en) 1999-10-25
CN1146306C (en) 2004-04-14
DE69920087D1 (en) 2004-10-21
KR100333997B1 (en) 2002-04-24
US6147461A (en) 2000-11-14
EP0944294A2 (en) 1999-09-22
EP0944294A3 (en) 2001-04-25

Similar Documents

Publication Publication Date Title
EP0713352B1 (en) Discharge lamp-lighting apparatus
JP4024374B2 (en) Discharge lamp lighting device
JP3315008B2 (en) Discharge lamp lighting device
HU182651B (en) Method for operating miniature high-pressure metal-vapour discharge lamp and miniature high-pressure lamp arrangement
KR100294371B1 (en) Discharge lamp lighting device and method
US6005356A (en) Operating method and operating apparatus for a high pressure discharge lamp
US6225754B1 (en) Operating method and operating apparatus for a high pressure discharge lamp
KR100322328B1 (en) Lighting method and lighting device of discharge lamp
HU212358B (en) Method and circuit arrangement for operating xenon-metal-halide lamp
JP4135398B2 (en) High pressure discharge lamp lighting device
JP3246407B2 (en) Discharge lamp lighting device
JP3201981B2 (en) Discharge lamp lighting device and method
JPH08195288A (en) Discharge lamp lighting device
JP2006185663A (en) Lighting device
JP3233278B2 (en) Lighting method and lighting device for discharge lamp
JP3189641B2 (en) Discharge lamp lighting device
JP3189602B2 (en) Discharge lamp lighting device
JP2005512287A (en) HID lamp color mixing at VHF frequency
JP3445926B2 (en) Lighting method and lighting device for high pressure discharge lamp
JP4096590B2 (en) High pressure discharge lamp lighting device
JP2600646Y2 (en) Lighting device for discharge lamp
JP2002279936A (en) Lighting method for xenon electric discharge fluorescent lamp
JPH11162690A (en) Dimmer device for rare-gas discharge lamp
JP2003347085A (en) Lighting circuit for cold cathode discharge tube and illuminating device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees