JP4022752B2 - Leakage flow measurement method - Google Patents

Leakage flow measurement method Download PDF

Info

Publication number
JP4022752B2
JP4022752B2 JP2002361461A JP2002361461A JP4022752B2 JP 4022752 B2 JP4022752 B2 JP 4022752B2 JP 2002361461 A JP2002361461 A JP 2002361461A JP 2002361461 A JP2002361461 A JP 2002361461A JP 4022752 B2 JP4022752 B2 JP 4022752B2
Authority
JP
Japan
Prior art keywords
flow rate
measured
container
leakage flow
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002361461A
Other languages
Japanese (ja)
Other versions
JP2004163378A (en
Inventor
涛 王
光正 彭
▲趙▼▲たん▼
伸一 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to JP2002361461A priority Critical patent/JP4022752B2/en
Priority to CNA031526454A priority patent/CN1499183A/en
Publication of JP2004163378A publication Critical patent/JP2004163378A/en
Application granted granted Critical
Publication of JP4022752B2 publication Critical patent/JP4022752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、空気圧シリンダ等からの漏れ流量を、リークテスタによる漏れ流量の測定のシミュレーションにより計測する方法に関する。
【0002】
【従来の技術】
空気圧シリンダ等の容積形の構成要素にとって、密閉性は製品品質に関する最も重要な指標の一つである。同一の初期圧力のもとで、漏れのない標準容器(マスタ)と漏れのある被測定容器(ワーク)との間の差圧の変化を差圧センサにより測定して、被測定容器の漏れ流量を計算することが行われてきた。この測定方法は測定装置が簡単であり、検出信号を採取し易く、操作が手軽であるという多くの利点を有する。差圧比較原理による漏出空気の従来の測定モデルが図1に示されている。図1において、空気圧源と標準容器1との間の管路に止め弁V1が配設され、空気圧源と被測定容器2との間の管路に止め弁V2が配設されている。そして標準容器1と被測定容器2とを連通させる管路に差圧センサ3が配設されている。
【0003】
前述のように、標準容器1は漏れのない容器であり、被測定容器2は極少量の漏れがある容器である。検出にあたり、止め弁V1とV2が開かれ、圧縮空気が2つの容器に同時に流入される。2つの容器の空気圧力が安定すると同時に2つの止め弁V1とV2が閉じられる。被測定容器2には漏れがあるので、内圧は連続的に降下する。従って、2つの容器間の差圧は連続的に増加する。そして、漏れ流量が多くなればなるほど、差圧の変化は早くなる。この方法を用い、後述の計算方法により被測定容器2の漏れ流量が決定される。
【0004】
従来の漏れ流量の計算方法は、差圧の変化が線形であると仮定され、内圧の連続的な降下による漏れの影響は無視されている。漏れ流量は次式(1)により簡単に計算できる。
【数4】

Figure 0004022752
なお、測定条件についての実際の経験により、測定時間Δtは予め与えられている。ΔP/Δtは差圧の変化量である。
【0005】
【発明が解決しようとする課題】
従来の方法は、差圧の変化が線形であると仮定しているが、実際には線形ではなく測定値と実際の漏れとの間に相当の誤差があった。
本発明の課題は、精度の高い漏れ流量の計測方法をによってその漏れ流量及び誤差の計測を行うことを可能にすることにある。
【0006】
【課題を解決するための手段】
まず、本発明の計算に用いる記号について説明する。
:差圧センサの係数 tζ :初期検出時間(検出時は未知)
l :漏れ穴の長さ V :被測定容器の等価容積
m :空気の質量 V :漏れ空気容積
n :試験品の資料番号 V :標準容器の容積
:大気圧 Vm0:標準容器の初期容積
:標準容器内の空気圧力 V :差圧センサの内容積
:テスト圧力 V :被測定容器の容積
:被測定容器内の空気圧力 Vw0:被測定容器の初期容積
:大気圧下での漏れ流量 ΔP:検出時間Δt内での差圧の変化量
R :空気定数 ΔP :差圧
r :漏れ穴の半径 Δt :測定時間
T :空気温度 μ :空気の動粘性係数
t :時間
【0007】
本発明の計算方法は、空気漏れ流量の測定のために行われる。漏れ穴(外周に小穴があると仮定される)の空気流れの原理に基づいて、未知のパラメーターを有する漏れ流量の理論式が得られる。統計的解析により、差圧の数学モデル中の未知のパラメーター、換言すれば漏出流の理論式中の未知のパラメーターが、差圧の実験により推定することができる。これによって、漏出流は計算でき、漏出流の誤差は同様に推定できる。
従来方法の不利な点は、差圧の変化量が初期検出時からの測定時間の経過に従って影響を受けることである。また、実際の検出条件では、被測定容器の圧力の変化は線形ではない。理論面から、流れている漏れ空気は、等温の流れであると考えられる。ハーゲン・ポアズイユの法則(Hagen−Poiseuille’law)に基づき、漏れ流量は次の理論式で示される。
【数5】
Figure 0004022752
【0008】
漏れ穴を位置探索して確認することは困難であり、同様にパラメーターrとlを測定することは困難であるので、上記方程式中の不変のパラメーターrとlを、次の方法により推測する。
容器中のある空気量の状態方程式は、次のように表現できる。
PV=mRT (3)
漏出中の空気温度は一定であると考えられる。
式(3)を微分すると次の方程式が導かれる。
標準容器側:
【数6】
Figure 0004022752
被測定容器側:
【数7】
Figure 0004022752
【0009】
2つの容器間の差圧の方程式は、次のように現すことができる。
ΔP=P−P (6)
漏れが生じている間の容積変化の微分方程式は、次のとおりである。
【数8】
Figure 0004022752
式(2)を参照すると、漏れ流量方程式は次のように書くことができる。
【数9】
Figure 0004022752
【0010】
微小漏れであるので、計算に際して次のように仮定することができる。
=P,P=P,V =Vm0 ,V=Vw0
前記微分方程式を初期検出時間tζ から積分すると、差圧ΔPは次の通りとなる。
【数10】
Figure 0004022752
ここに
【数11】
Figure 0004022752
【0011】
検出時間に沿って差圧ΔPを測定し、LSD(最小有意差・Least Significant Difference)の原理を適用する。パラメーターtζとCは未知である。簡便にするため式(9)を式(11)に置換する。
y=a+C (11)
ここに
【数12】
Figure 0004022752
一次回帰分析法によって、未知のパラメーターtζとCを式(14)と式(15)から推定することができる。
【数13】
Figure 0004022752
なお、式(14)中のyは、式 (12) に示されたものであり、各時刻t及びその時刻で測定した差圧△Pを用いて、一次回帰分析法によって式 (14) からパラメーターCを推定する。
【0012】
上記分析に基づいて、実際の測定では、容器の漏れ流量は被測定容器の内圧力の連続的低下に従って減少する。しかし、容器の漏れ流量は、あるテスト圧力のもとでは容器の内部から容器の外部への空気流量として通例は考えられる。従って、漏れ流量の計算式は次のように書くことができる。
【数14】
Figure 0004022752
式(14)を式(16)に代入する。
【数15】
Figure 0004022752
ここに
【数16】
Figure 0004022752
である。
前記課題を解決するための本発明の方法は、初期容積V m0 の漏れのない標準容器と初期容積V w0 の被測定容器とを連通させる管路に差圧センサを配設し、標準容器と被測定容器とに圧縮空気の圧力がテスト圧力P になるまで流入させた後、被測定容器からの漏れ流量を上記差圧センサの出力の変化に基づいて計測するところの、リークテスタによる漏れ流量の測定をシミュレーションして、該漏れ流量を計測する計測方法であって、漏れ空気流量Q を上記式 (17) により演算する第1の演算手段を備え、当該式 (17) におけるパラメーターCは、各時刻t及びその時刻に測定した差圧△Pから一次回帰分析法によって式 (14) により与えられるものとし、上記第1の演算手段による演算結果として、上記シミュレーションによる漏れ流量を得ることを特徴とするものである。
また、式(17)は、あるテスト圧力のもとでの容器からの現実の漏れ空気流量である。式(17)からこの方法の系統誤差は式(19)により決められる。
【数17】
Figure 0004022752
【0013】
圧力センサの系統誤差δPによる誤差は、約±0.0112MPである。被測定容器及び標準容器の容積測定値に起因する誤差δVw0及びδVm0は、±2cmと考えられる。δCは、未知のパラメーターCの統計的計算誤差であり、δCは次式で示される。
【数18】
Figure 0004022752
なお、δCは0にほぼ等しい。上記誤差を総計すると、系統誤差は8.2パーセント(P=0.5MP)に近似する。
【0014】
【発明の実施の形態】
容器の空気漏れ流量を測定するための実験装置が図2に示されており、これは本発明の計算方法による結果と比較するためのものである。図2において、空気圧源10からの圧縮空気は調圧弁11により調圧され、調圧後の圧縮空気は圧力計12で測定され、A/D変換器14に入力される。また、調圧後の圧縮空気は切換弁13を通り、開閉弁15を通して標準容器17に流入可能であり、同時に開閉弁16を通して被測定容器18に流入可能である。標準容器17と被測定容器18を連通させる管路に差圧センサ19が配設され、差圧センサ19の出力信号はA/D変換器14に入力される。被測定容器18からの漏れ流量は流量計20で測定され、微少流量アダプター21を通して大気に放出される。流量計20の出力信号はA/D変換器14に入力される。
【0015】
大容量流量計(Mass flow meter:MFM)は内径測定器と考えられる。コンピューター22及びA/D変換器14はテスト圧力、2容器間の差圧及び微少漏れ流量を測定するために用いられる。標準容器17と被測定容器18の初期容積は、それぞれ310.3cm及び376.8cmである。
図2に示す実験装置を使用して、同一テスト圧力(0.5MP)のもとでテストが実行された。実験データ及び対応するシミュレーションの結果から、図3及び図4が得られる。本発明の計算方法に基づくシミュレーションの結果は、実験データとよく適合していることが分かる。
本発明の計算方法の精度を確認するために、異なる漏れ穴と異なるテスト圧力の条件下でより多くのテストが行われた。測定結果が図5に示されている。この表から、本発明の計算方法は、従来方法よりも精度が高いことが明白である。
【0016】
差圧比較法により容器からの空気漏れ流量を測定して、差圧変化が非線形であることが証明された。このように、従来の計算方法は空気漏れ流量の測定方法としての精確さが十分ではないことが分かる。
空気漏れ流量を測定するための本発明の計算方法は、実際の微少流量方程式及び統計手法を用いて提案されている。本発明の計算方法と実際の漏れ流量との間には、より多くの一致がある。従来の計算方法よりも空気漏れ流量の測定精度が改善される。
【0017】
【発明の効果】
本発明の漏れ流量の計測方法によれば、精度の高い漏れ流量及び誤差の計測を行うことができる。
【図面の簡単な説明】
【図1】従来のリークテスタの測定モデルを示す説明図である。
【図2】容器の空気漏れ流量を測定するための実験装置の説明図である。
【図3】ある条件での、漏れ流量と差圧についての実験データとシミュレーションを示す図表である。
【図4】他の条件での、漏れ流量と差圧についての実験データとシミュレーションを示す図表である。
【図5】本発明の計算方法の精度を確認するための実験結果を示し、図5(a)はテスト圧力0.2MPでの実験、図5(b)はテスト圧力0.5MPでの実験、図5(c)はある漏れ穴での実験の結果をそれぞれ示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring a leakage flow rate from a pneumatic cylinder or the like by a simulation of leakage flow rate measurement by a leak tester .
[0002]
[Prior art]
For positive displacement components such as pneumatic cylinders, hermeticity is one of the most important indicators of product quality. Under the same initial pressure, the change in the differential pressure between the standard container (master) without leakage and the measured container (work) with leakage is measured by the differential pressure sensor, and the leakage flow rate of the measured container Has been calculated. This measuring method has many advantages that the measuring device is simple, the detection signal is easily collected, and the operation is easy. A conventional measurement model of leaked air according to the differential pressure comparison principle is shown in FIG. In FIG. 1, a stop valve V <b> 1 is provided in a pipe line between the air pressure source and the standard container 1, and a stop valve V <b> 2 is provided in a pipe line between the air pressure source and the container 2 to be measured. A differential pressure sensor 3 is disposed on a conduit that communicates the standard container 1 and the container 2 to be measured.
[0003]
As described above, the standard container 1 is a container with no leakage, and the measured container 2 is a container with a very small amount of leakage. For detection, stop valves V1 and V2 are opened, and compressed air flows into the two containers simultaneously. The two stop valves V1 and V2 are closed at the same time as the air pressure in the two containers is stabilized. Since there is a leak in the container 2 to be measured, the internal pressure drops continuously. Therefore, the differential pressure between the two containers increases continuously. And the more the leakage flow rate, the faster the differential pressure changes. Using this method, the leakage flow rate of the container 2 to be measured is determined by a calculation method described later.
[0004]
In the conventional calculation method of the leakage flow rate, it is assumed that the change in the differential pressure is linear, and the influence of leakage due to the continuous drop of the internal pressure is ignored. The leakage flow rate can be easily calculated by the following equation (1).
[Expression 4]
Figure 0004022752
Note that the measurement time Δt is given in advance based on actual experience with measurement conditions. ΔP t / Δt is a change amount of the differential pressure.
[0005]
[Problems to be solved by the invention]
The conventional method assumes that the change in the differential pressure is linear, but in practice it was not linear and there was a considerable error between the measured value and the actual leakage.
An object of the present invention is to make it possible to measure a leakage flow rate and an error by a highly accurate method for measuring a leakage flow rate.
[0006]
[Means for Solving the Problems]
First, symbols used in the calculation of the present invention will be described.
k s : coefficient of differential pressure sensor t ζ : initial detection time (unknown at the time of detection)
l: length V e of the leak hole: equivalent volume of the container to be measured m: air mass V l: air leakage volume n: Document No. V m specimens: the volume of the standard container P a: atmospheric pressure V m0: Standard Initial volume P m of the container: air pressure in the standard container V s : inner volume of the differential pressure sensor P T : test pressure V w : volume of the container to be measured P w : air pressure in the container to be measured V w0 : measured Container initial volume Q l : Leakage flow rate under atmospheric pressure ΔP t : Change amount of differential pressure within detection time Δt R: Air constant ΔP: Differential pressure r: Radius of leak hole Δt: Measurement time T: Air temperature μ: Kinematic viscosity coefficient of air t: Time
The calculation method of the present invention is performed for measuring the air leakage flow rate. Based on the principle of air flow in the leak hole (assuming that there is a small hole in the outer periphery), a theoretical formula for the leak flow with unknown parameters is obtained. Through statistical analysis, unknown parameters in the mathematical model of differential pressure, in other words, unknown parameters in the theoretical formula of leakage flow, can be estimated by differential pressure experiments. Thereby, the leakage flow can be calculated and the error of the leakage flow can be estimated as well.
A disadvantage of the conventional method is that the amount of change in the differential pressure is affected as the measurement time elapses from the initial detection. Further, under actual detection conditions, the change in pressure of the container to be measured is not linear. From the theoretical point of view, the flowing leaked air is considered to be an isothermal flow. Based on Hagen-Poiseuille's law, the leakage flow rate is expressed by the following theoretical formula.
[Equation 5]
Figure 0004022752
[0008]
It is difficult to locate and confirm the leak hole, and similarly it is difficult to measure the parameters r and l. Therefore, the invariant parameters r and l in the above equation are estimated by the following method.
The equation of state of a certain amount of air in the container can be expressed as follows.
PV = mRT (3)
The air temperature during leakage is considered constant.
Differentiating equation (3) leads to the following equation:
Standard container side:
[Formula 6]
Figure 0004022752
Container to be measured:
[Expression 7]
Figure 0004022752
[0009]
The differential pressure equation between the two vessels can be expressed as:
ΔP = P m −P w (6)
The differential equation for the volume change during the leak is as follows:
[Equation 8]
Figure 0004022752
Referring to equation (2), the leakage flow equation can be written as:
[Equation 9]
Figure 0004022752
[0010]
Since it is a minute leak, it can be assumed in the calculation as follows.
P m = P T , P w = P T , V m = V m0 , V w = V w0
When the differential equation is integrated from the initial detection time , the differential pressure ΔP is as follows.
[Expression 10]
Figure 0004022752
Here [Equation 11]
Figure 0004022752
[0011]
The differential pressure ΔP is measured along the detection time, and the principle of LSD (Least Significant Difference) is applied. The parameters tζ and C are unknown. For simplicity, formula (9) is replaced with formula (11).
y = a + C t (11)
Here [Equation 12]
Figure 0004022752
The unknown parameters and C can be estimated from the equations (14) and (15) by the linear regression analysis method.
[Formula 13]
Figure 0004022752
Incidentally, y in the equation (14) has been shown in equation (12), using a differential pressure △ P measured at each time t and the time, from equation (14) by linear regression analysis Estimate parameter C.
[0012]
Based on the above analysis, in the actual measurement, the leakage flow rate of the container decreases as the internal pressure of the measured container decreases continuously. However, the leakage flow rate of the container is usually considered as the air flow rate from the inside of the container to the outside of the container under a certain test pressure. Therefore, the leakage flow rate calculation formula can be written as follows.
[Expression 14]
Figure 0004022752
Substituting equation (14) into equation (16).
[Expression 15]
Figure 0004022752
Here [Equation 16]
Figure 0004022752
It is.
The method of the present invention for solving the above-described problem is that a differential pressure sensor is disposed in a pipe line that communicates a standard container having an initial volume V m0 with no leakage and a container to be measured having an initial volume V w0. After the compressed air pressure flows into the measurement container until the test pressure PT is reached, the leakage flow rate from the measurement container is measured based on the change in the output of the differential pressure sensor. simulate the measurement, a measuring method for measuring a該漏Re flow, leakage air flow rate Q l comprises a first calculating means for calculating the above equation (17), parameter C in the formula (17) Each time t and the differential pressure ΔP measured at that time are given by equation (14) by the linear regression analysis method, and the leakage flow rate by the simulation is obtained as the calculation result by the first calculation means. It is characterized by that.
Further, equation (17) is a real leakage air flow from the container under certain test pressure. From equation (17), the systematic error of this method is determined by equation (19).
[Expression 17]
Figure 0004022752
[0013]
Error due to systematic error δP of the pressure sensor is about ± 0.0112MP a. Errors δV w0 and δV m0 due to the volume measurement values of the container to be measured and the standard container are considered to be ± 2 cm 3 . δC is a statistical calculation error of an unknown parameter C, and δC is expressed by the following equation.
[Expression 18]
Figure 0004022752
Note that δC is approximately equal to 0. Summing up the above errors, the systematic error approximates 8.2 percent (P T = 0.5 MP a ).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An experimental device for measuring the air leakage flow rate of the container is shown in FIG. 2, which is for comparison with the results of the calculation method of the present invention. In FIG. 2, the compressed air from the air pressure source 10 is regulated by the pressure regulating valve 11, and the compressed air after the regulation is measured by the pressure gauge 12 and input to the A / D converter 14. In addition, the compressed air after pressure adjustment can flow through the switching valve 13 and flow into the standard container 17 through the opening / closing valve 15, and simultaneously flow into the measured container 18 through the opening / closing valve 16. A differential pressure sensor 19 is disposed in a conduit that communicates the standard container 17 and the container 18 to be measured, and an output signal of the differential pressure sensor 19 is input to the A / D converter 14. The leakage flow rate from the container 18 to be measured is measured by the flow meter 20 and released to the atmosphere through the micro flow rate adapter 21. The output signal of the flow meter 20 is input to the A / D converter 14.
[0015]
A mass flow meter (MFM) is considered an inner diameter measuring device. The computer 22 and the A / D converter 14 are used to measure the test pressure, the differential pressure between the two containers, and the minute leakage flow rate. The initial volume of the standard container 17 and the container to be measured 18 are respectively 310.3Cm 3 and 376.8cm 3.
Using the experimental apparatus shown in FIG. 2, the test was performed under the same test pressure (0.5 MPa a). 3 and 4 are obtained from the experimental data and the corresponding simulation results. It can be seen that the simulation results based on the calculation method of the present invention are well matched with the experimental data.
To confirm the accuracy of the calculation method of the present invention, more tests were performed under conditions of different leak holes and different test pressures. The measurement results are shown in FIG. From this table, it is clear that the calculation method of the present invention is more accurate than the conventional method.
[0016]
The flow rate of air leakage from the container was measured by the differential pressure comparison method, and it was proved that the differential pressure change was non-linear. Thus, it can be seen that the conventional calculation method is not sufficiently accurate as a method for measuring the air leakage flow rate.
The calculation method of the present invention for measuring the air leakage flow rate has been proposed using actual micro flow equation and statistical techniques. There is more agreement between the calculation method of the present invention and the actual leakage flow rate. The measurement accuracy of the air leakage flow rate is improved as compared with the conventional calculation method.
[0017]
【The invention's effect】
According to the leakage flow rate measuring method of the present invention, it is possible to measure the leakage flow rate and error with high accuracy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a measurement model of a conventional leak tester.
FIG. 2 is an explanatory diagram of an experimental apparatus for measuring the air leakage flow rate of a container.
FIG. 3 is a chart showing experimental data and simulation for leakage flow rate and differential pressure under certain conditions.
FIG. 4 is a chart showing experimental data and simulation for leakage flow rate and differential pressure under other conditions.
Figure 5 shows the results of experiments to confirm the accuracy of the calculation method of the present invention, FIG. 5 (a) Experiments with test pressure 0.2MP a, FIG. 5 (b) test pressure 0.5 MPa a FIG. 5C shows the result of the experiment in a certain leak hole.

Claims (2)

初期容積VInitial volume V m0m0 の漏れのない標準容器と初期容積VStandard container with no leakage and initial volume V w0w0 の被測定容器とを連通させる管路に差圧センサを配設し、標準容器と被測定容器とに圧縮空気の圧力がテスト圧力PA differential pressure sensor is disposed in a pipe line that communicates with the container to be measured, and the pressure of the compressed air is applied to the standard container and the container to be measured. T になるまで流入させた後、被測定容器からの漏れ流量を上記差圧センサの出力の変化に基づいて計測するところの、リークテスタによる漏れ流量の測定をシミュレーションして、該漏れ流量を計測する計測方法であって、The flow rate is measured by simulating the leakage flow rate measured by the leak tester, and measuring the leakage flow rate from the measured container based on the change in the output of the differential pressure sensor. A method,
差圧センサの係数をk  The coefficient of the differential pressure sensor is k S 、大気圧をP, P is the atmospheric pressure a 、被測定容器の等価容積をV, The equivalent volume of the container to be measured is V e 、各時刻をt、及びその時刻で測定した差圧を△Pとするとき、漏れ空気流量QWhen each time is t and the differential pressure measured at that time is ΔP, the leakage air flow rate Q l を次式The following formula (17)(17) により演算する第1の演算手段を備え、A first calculating means for calculating by:
当該式  The formula (17)(17) におけるパラメーターCは、各時刻t及びその時刻に測定した差圧△Pから一次回帰分析法によって式The parameter C in the equation is obtained by linear regression analysis from each time t and the differential pressure ΔP measured at that time. (14)(14) により与えられるものとし、Shall be given by
上記第1の演算手段による演算結果として、上記シミュレーションによる漏れ流量を得る、  As a calculation result by the first calculation means, a leakage flow rate by the simulation is obtained.
ことを特徴とする漏れ流量の計測方法。A leakage flow rate measuring method characterized by the above.
Figure 0004022752
Figure 0004022752
Figure 0004022752
Figure 0004022752
次式Next formula (19)(19) により、δCを0に等しいものとして漏れ流量の誤差を演算する第2の演算手段を備え、該第2の演算手段による演算結果として、シミュレーションによる漏れ流量の誤差を得る、Thus, the second calculation means for calculating the error of the leakage flow rate with δC equal to 0 is obtained, and the error of the leakage flow rate by simulation is obtained as the calculation result by the second calculation means.
ことを特徴とする請求項1に記載の漏れ流量の計測方法。The method for measuring a leakage flow rate according to claim 1.
Figure 0004022752
Figure 0004022752
JP2002361461A 2002-11-11 2002-11-11 Leakage flow measurement method Expired - Lifetime JP4022752B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002361461A JP4022752B2 (en) 2002-11-11 2002-11-11 Leakage flow measurement method
CNA031526454A CN1499183A (en) 2002-11-11 2003-08-04 Calculation method for leakage flow of leakage tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361461A JP4022752B2 (en) 2002-11-11 2002-11-11 Leakage flow measurement method

Publications (2)

Publication Number Publication Date
JP2004163378A JP2004163378A (en) 2004-06-10
JP4022752B2 true JP4022752B2 (en) 2007-12-19

Family

ID=32809733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361461A Expired - Lifetime JP4022752B2 (en) 2002-11-11 2002-11-11 Leakage flow measurement method

Country Status (2)

Country Link
JP (1) JP4022752B2 (en)
CN (1) CN1499183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020109357A (en) * 2018-12-28 2020-07-16 株式会社キーエンス Flowmeter
JP2020109358A (en) * 2018-12-28 2020-07-16 株式会社キーエンス Flowmeter

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4684300B2 (en) * 2005-02-02 2011-05-18 モコン・インコーポレーテッド Apparatus and method for detecting and reporting the magnitude of a leak in a hermetically sealed package
JP4923957B2 (en) * 2006-10-30 2012-04-25 アイシン精機株式会社 Leak inspection device
CN102147316A (en) * 2011-01-29 2011-08-10 平湖美嘉保温容器工业有限公司 Tightness tester
CN102778338A (en) * 2012-07-26 2012-11-14 黑龙江建龙钢铁有限公司 Method for measuring leakage of fractionating column through pressure meter
CN105282674B (en) * 2014-06-26 2019-03-15 惠州超声音响有限公司 Sealed loudspeaker gas leakage test macro and method
CN104215392B (en) * 2014-09-12 2016-06-15 天津博益气动股份有限公司 The transduction factor detecting device of a kind of differential pressure pick-up and detection method
CN104865024A (en) * 2015-06-16 2015-08-26 中信戴卡股份有限公司 Device and method for measuring airtightness of aluminium alloy hub or tire
CN105806570A (en) * 2016-05-16 2016-07-27 沈阳紫微机电设备有限公司 Gas leak-checking detecting device
CN106441743A (en) * 2016-10-12 2017-02-22 神华集团有限责任公司 Measuring device of evaporation pool leakage and measuring method of the evaporation pool leakage
CN107677429A (en) * 2017-08-18 2018-02-09 湖南军成科技有限公司 A kind of air-tightness detection device and its detection method
CN108561757B (en) * 2018-03-19 2020-01-10 创尔特热能科技(中山)有限公司 Parameter setting method of gas leakage detection device
CN108534964A (en) * 2018-04-23 2018-09-14 苏州阡晨金属包装设备有限公司 A kind of metal top pop tank air-tightness detection device
JP7037466B2 (en) * 2018-10-09 2022-03-16 株式会社コスモ計器 Control device, flow sensitivity correction method, program
JP6614389B1 (en) * 2019-07-12 2019-12-04 ダイキン工業株式会社 Refrigeration equipment indoor unit
CN111572524B (en) * 2020-05-07 2021-03-23 武汉理工大学 Method and device for measuring change rate of vehicle air pressure brake pressure
CN115326314B (en) * 2022-10-10 2023-01-13 西南医科大学附属医院 Machine control leakage test control system of anesthesia machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020109357A (en) * 2018-12-28 2020-07-16 株式会社キーエンス Flowmeter
JP2020109358A (en) * 2018-12-28 2020-07-16 株式会社キーエンス Flowmeter
JP7160674B2 (en) 2018-12-28 2022-10-25 株式会社キーエンス Flowmeter
JP7160673B2 (en) 2018-12-28 2022-10-25 株式会社キーエンス Flowmeter

Also Published As

Publication number Publication date
CN1499183A (en) 2004-05-26
JP2004163378A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4022752B2 (en) Leakage flow measurement method
US7594424B2 (en) Automated timer and setpoint selection for pneumatic test equipment
CA1279498C (en) System for measuring the pore volume and permeability of very tight core plugs and method therefor
JPS60501331A (en) Measuring device and method for measuring pore size characteristics
CN104236816B (en) A kind of leakage detecting instrument on-line calibration device and method
KR20090003195A (en) Leakage inspecting method and leakage inspecting device for pipe lines
CN105004480B (en) A kind of quick dynamic vacuum calibration method of vacuum meter
US5544520A (en) Bridge permeameter
JP2824235B2 (en) How to test for pipe leaks
CN105842273A (en) Acquiring method and system for compression factor
CN106525333A (en) Simple micro-pressure instrument calibration device
US1098247A (en) Apparatus for indicating or measuring the rate of flow of fluid through pipes, or for detecting leakage.
CN104729974B (en) A kind of gas gaging hole porosity measuring method for considering temperature effect
CN109115454A (en) The simulation experiment system of piping lane ventilating system safety detection
JP2003065814A (en) Instrument and method for measuring flow characteristic of equipment for gas
CN103674800B (en) A kind of measurement mechanism of hyposmosis rock sample permeability and measuring method thereof
US10113863B2 (en) Viscosity measuring method
KR102008889B1 (en) Gas Meter Performance Tester
JP2018009955A (en) Leak inspection method and leak inspection device
JP2014081366A (en) Volume measurement method
JP3715543B2 (en) Airtight performance test method
JP2018072262A (en) Leak tester, leakage coefficient calculation method and program
CN103411724B (en) A kind of measuring method of pressure of constant-volume quick inflation/deflation air cavity
Fu et al. A concise method for determining a valve flow coefficient of a valve under compressible gas flow
NL2032223B1 (en) An apparatus arranged for measuring a rheological property and a method for measuring a rheological property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4022752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term