JP4020230B2 - Method for producing lime nitrogenous fertilizer - Google Patents

Method for producing lime nitrogenous fertilizer Download PDF

Info

Publication number
JP4020230B2
JP4020230B2 JP20459199A JP20459199A JP4020230B2 JP 4020230 B2 JP4020230 B2 JP 4020230B2 JP 20459199 A JP20459199 A JP 20459199A JP 20459199 A JP20459199 A JP 20459199A JP 4020230 B2 JP4020230 B2 JP 4020230B2
Authority
JP
Japan
Prior art keywords
lime
nitrogen
water
fertilizer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20459199A
Other languages
Japanese (ja)
Other versions
JP2001031485A (en
Inventor
洋一郎 古川
誠 冨田
拓司 直川
文義 白山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP20459199A priority Critical patent/JP4020230B2/en
Publication of JP2001031485A publication Critical patent/JP2001031485A/en
Application granted granted Critical
Publication of JP4020230B2 publication Critical patent/JP4020230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C7/00Fertilisers containing calcium or other cyanamides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石灰窒素単独からなる、或いは前記石灰窒素に他の窒素、カリ、リン酸等の含有成分を複合して得られる石灰窒素質肥料に関する。
【0002】
石灰窒素肥料は、カルシウムシアナミドを主成分とする緩効性肥料であり、農薬効果をも有することから、長年にわたって賞用されているが、その組成中に生石灰(CaO)や消石灰(Ca(OH))を含有するのが一般的である。生石灰は、主に水分と反応して発熱、膨張するために、生石灰(CaO)を多く含有する石灰窒素肥料は過熱、特に粒状の場合には粒崩壊などが発生し、取り扱い上、注意を必要としている。
【0003】
このため、生石灰を予め水と反応させ消石灰(Ca(OH))とする消和処理を施した石灰窒素が提供されている。そして、このような観点から生石灰を未消和石灰とも呼んでいる。しかし、水を用いて消和する場合、消和に長時間を要することなどの理由で生産性や製造コストの点で問題があり、また消和操作において、生石灰とともに石灰窒素自身も部分的に加水分解されて、シアナミド態窒素などの有効窒素成分量が低下するという欠点があった。未消和石灰を迅速に消和終了させ、また石灰窒素の加水分解を可能な限り低く抑える消和技術が望まれている。
【0004】
【従来の技術】
従来、粉状肥料を原料として使用し、賦型して粒状肥料を製造する際、或いは、粉状石灰窒素のみを原料として粒状石灰窒素を製造する際に、含水有機物などの水溶液或いは水そのものなど、水を含むバインダーを用いることが経済的に有利であるため一般的な方法として用いられている。
【0005】
石灰窒素は工業的にはカルシウムカーバイドを窒化して製造され、通常約13重量%〜20重量%程度のCaOを含有している。粉状の石灰窒素を原料に用いて粒状肥料を製造した場合には、造粒後においてもなおCaOが残存している場合があり、このときには造粒時に使用するバインダーの水分や石灰窒素以外の肥料が含む水分、長期的には空気中の水分と反応して体積膨張を起こし、最終的には造粒した肥料を崩壊せしめたり、風化粉が発生するという不都合が生じることがある。
【0006】
このため、賦型時にCaOを消和するか、または賦型前の原料の段階で石灰窒素のCaOを消和することが重要であり、粉状石灰窒素のみを原料に用いて粒状石灰窒素を製造する場合では、石灰窒素に対しCaO含量を、少なくとも2.0重量%以下、望ましくは1.0重量%以下にまで低減する必要がある。
【0007】
CaOを消和するに当たっては、消和反応時の温度条件は高温である方が効率的ではあるが、反面、石灰窒素の主成分であるカルシウムシアナミド自体の反応も進みアンモニアとして揮散したり、肥料成分として好ましくないジシアンジアミドやメラミンといった副生物の産生が無視できなくなる問題がある。逆に、副成物の生成が少ない低温では、消和反応が進みにくいという問題点を抱えている。
【0008】
消和に必要とされる水分量は、理論的にはCaOとモル等量であるが、理論量では消和に伴う発熱で蒸発する損失が生じるため充分に消和ができず、多すぎるときにはカルシウムシアナミドからアンモニアの揮散が生じて窒素を減ずるほか、余剰の付着水分を乾燥しなければ一層の窒素の損失を招き、酷いときには、消和工程でシアナミド態窒素などの有効窒素成分量の損失率は10重量%を超えるという問題があった。なお、付着水は、石灰窒素の重量100部に対して1.5部以下であれば実用上の問題はない。
【0009】
上記事情のために、石灰窒素の消和方法に関して、消和温度、水の添加量、水添加のタイミング、及びこれらを組み合わせて各種の提案がなされている。
【0010】
特公昭34−6211号公報には、消和反応の第一段階として混合装置内で70℃未満の温度で部分的に消和を行い、第二段階として回転胴内で175℃までの高温での消和反応を行う方法が開示されている。この方法では、造粒後の崩壊等の原因となるCaOをほぼ完全に消和できるという点で優れているものの、消和に要する装置が二台以上必要であり、また、水との緩慢な反応の終結するまでに放置のための敷地面積を必要とすることや、製造時間が長期化するという問題点がある。
【0011】
特公昭32−7725号公報には、数分間で水添混練造粒を行い、直ちに70℃以下で消和を行うというものであるが、消和反応時にジシアンジアミドやメラミン態窒素の副成が小さく、装置がコンパクトに済むという点で優れているものの、消和に2〜3時間もの時間を要し生産効率が悪い上、消和条件が穏やか過ぎるため、肝心のCaOの消和が必ずしも充分に進まないという欠点がある。
【0012】
特公昭34−6211号公報には、消和反応時の温度制御に水蒸気を利用する方法が開示されているが、完全に消和反応が終了するためには90分から120分もの時間が必要である。
【0013】
特公昭35−3815号公報には、水による消和反応にハロゲン化水素を添加することにより比較的低温でも効率よく消和をすすめられる点で優れているが、腐食性のあるハロゲン化水素を用いるために消和反応装置等を耐腐食性材料で構成しなければならないという欠点がある。
【0014】
【発明が解決しようとする課題】
本発明は、上記の事情に鑑みてなされたものであって、その目的は、副成物の生成を実用上問題のない程度まで減少させ、石灰窒素の窒素含有量を低下させない、しかも消和に要する時間を短縮して、生産性に優れる石灰窒素質肥料の製造方法を提供することにある。
【0015】
【課題を解決するための手段】
即ち、本発明は、ミキサーに、石灰窒素と、石灰窒素100重量部に対し7〜15重量部の消和水とを入れ、撹拌した後ミキサーを密閉し、該撹拌混合物の温度を80℃以上に保持しながら、石灰窒素中の生石灰を発生した水蒸気で消和することを特徴とする石灰窒素質肥料の製造方法である。本発明においては、製造される石灰窒素質肥料の生石灰の含有率が0.8重量%以下、付着水が0.2重量%以下であることが好ましい。
0016
【発明の実施の形態】
下記の化学反応で示すとおり、石灰窒素に含まれる未消和石灰(CaO)は、主に空気中の水分と反応して加水分解する際、発熱を伴うために粒状から粉状への崩壊などが起こり、肥料としての保管や取り扱いに注意を要する。このため、あらかじめ未消和石灰(CaO)を水で消和した消和処理品が流通している。
0017
CaO+HO→Ca(OH) ΔH=15.3Kcal
CaCN+HO→Ca(OH)+HCN ΔH= 3.4Kcal
0018
上記反応式からわかる様に、水は生石灰、石灰窒素の両者に作用するが、ΔHの大きいCaOに優先的に使用される。しかし、一部の水はCaCNにも接触し加水分解がおこり、肥料の有効成分が低下する問題がある。HCN+2HO→CO+2NH
0019
また、生石灰を水で消和させるときに、その反応温度が70℃より高いときには、ジシアンジアミドやメラミン等を副成し、有効な肥料成分が失われ易いという問題もある。
0020
本発明者らは、上記事情に鑑みて、いろいろ実験を重ねた結果、石灰窒素中の生石灰を80℃以上の温度に保ちながら水蒸気で消和するときに、驚くべきことにジシアンジアミドやメラミン等を実質的に副成することなく、また、石灰窒素自身の極端な加水分解を起こすこと無く、石灰窒素中の生石灰を短時間で消和することができることを見いだし、本発明に至ったものである。
0021
即ち、本発明は、石灰窒素中の生石灰を、水蒸気で消和することを本質としている。この特定な条件で消和させることで、有効窒素成分の高い消和された石灰窒素肥料を得ることができる。消和時の反応温度が80℃未満であると、短時間での消和反応が進行しなかったり、石灰窒素粉末内に水を凝集したりしてジシアンジアミド等が副成する場合がある。消和温度については、本発明者らの実験的検討によれば、80℃以上であることが必要であるが、100〜150℃とすることが一層好ましい。100℃以上では、石灰窒素粉体内部に水が凝集されることがなく、本発明の特徴である水蒸気による生石灰の消和を確保できるからである。しかし、150℃を超える温度になると、石灰窒素自体の分解反応が次第に発生してきて、得られる消和後の石灰窒素の有効窒素含有量が低下してしまう。尚、前記消和温度領域での保持時間に就いては、30〜80分あれば十分である。
0022
和する際の温度を80℃以上とする具体的方法としては、実施例に示すように、ミキサーに石灰窒素と消和水の所定量を入れ、撹拌して混合物(撹拌混合物)とした後ミキサーを密閉することである。これによって、消和反応で生じる熱水蒸気により生石灰を消和することが一層確実となるので、品質の安定した肥料を得ることができる。ことに、消和反応で発生する熱が多量であるため石灰窒素中の生石灰量を予め知った上で、適量の水を加え断熱性に優れた装置を使用して混合保管すれば、ことさらに石灰窒素の予熱することなく前記撹拌混合物を80℃以上の温度で保持することができ、その結果として品質の安定した肥料を得ることができる。
0023
石灰窒素100重量部に対する消和水の量7〜15重量部である。5重量部では、前記撹拌混合物を80℃以上に温度保持するために熱発生が不足することがあるし、20重量部を超える場合には、一般に石灰窒素中の生石灰に対し水が過量となることが多い。
0024
【実施例】
〔実施例1〕直径1m深さ40cmのコンクリート用ミキサーに石灰窒素40kgを入れ、次に消和水4.0kg(石灰窒素100重量部に対して10重量部)を如雨露で添加してから、直径5cmの穴を穿った円錐形の蓋をしてミキサーを密閉し、直ちに3分間撹拌を行い、そのまま放置した。前記穴より温度計を差し込み品温(撹拌混合物の温度)を計測した。攪拌後10分後に品温が80℃に達し、更にその10分後には120℃に達し、その後はほぼ一定の品温であった。80℃に達してから40分後に分析用サンプルを採取した。
0025
〔比較例1〕実施例1において、ミキサー底部外壁面並びに側部外壁面に冷却水を散布し、3分間攪拌3分間停止の間欠運転を行い、品温が60℃で保持されるようにした。また、分析用試料は、第1回の攪拌開始から50分後に採取した。
0026
〔実施例2〕卓上万能ミキサー(丸菱科学機械製作所製、型式50)の撹拌槽部分を60℃に湯煎した。この状態で、石灰窒素1kgと消和水150g(石灰窒素100重量部に対して15重量部)を撹拌槽に入れ、1分間撹拌後直ちに撹拌槽を脱着し、再度湯煎した上、撹拌槽上部開口部を発泡スチロール樹脂板で覆い、ミキサーを密閉してから静置した。静置85分後に分析用試料を取得し分析に供試した。尚、発泡スチロールから温度計を差し込み品温を計測したが、静置後5分で品温が80℃に達し、その後は80〜90℃の品温が保持された。
0027
〔比較例2〕消和水添加量を40g(石灰窒素100重量部に対して4重量部)としたこと以外は実施例2と同じ処理を行った。この場合は、品温の上昇は60℃程度にとどまっていた。
0028
比較例3消和水添加量を250g(石灰窒素100重量部に対して25重量部)としたこと以外は、実施例2と同じ処理を行った。静置後5分で品温が80℃に達し、その後は80〜90℃の品温が保持された。
0029
分析用サンプルを用いて以下の分析を行った。それらの結果を表1示す。
<全窒素の分析方法>「養賢堂」発行「第二改訂詳解肥料分析法」記載の硫酸法に依った。
<シアナミド態窒素の分析方法>「養賢堂」発行「第二改訂詳解肥料分析法」記載の硝酸銀法に依った。
<石灰窒素中の生石灰の分析方法>X線回折装置を用い、生石灰のピーク強度より定量した。検量線は予め十分に消和した石灰窒素に炭酸カルシウムを焼成した生石灰を標準添加し作成した。
<石灰窒素中の付着水の分析方法>「養賢堂」発行「第二改訂詳解肥料分析法」記載の遊離水分通風法に依った。
0030
【表1】

Figure 0004020230
0031
【発明の効果】
本発明によれば、石灰窒素中の生石灰が本質的には水蒸気で消和されるので、低温の水が介在するときに発生し易いジシアンジアミドやメラミン等の副成が防止でき、その結果として、窒素含有量の高い消和された石灰窒素質肥料を容易に製造でき、産業上極めて有用である。
0032
本発明によれば、消和水の添加量及び品温を適正な範囲に管理することにより、前記の消和反応を短時間に達成できるので、従来の設備、工程の大幅な変更を必要とせずに、全窒素量の高い消和された石灰窒素質肥料を生産できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lime-nitrogenous fertilizer made of lime nitrogen alone or obtained by combining other components such as nitrogen, potassium and phosphoric acid with the lime nitrogen.
[0002]
Lime nitrogen fertilizer is a slow-acting fertilizer mainly composed of calcium cyanamide and has an agrochemical effect, and has been used for many years. However, quick lime (CaO) and slaked lime (Ca (OH 2 ) It is common to contain 2 ). Because quick lime reacts mainly with moisture and generates heat and expands, lime nitrogen fertilizers containing a large amount of quick lime (CaO) are overheated, especially when they are granular, they cause grain collapse, etc., and must be handled with care. It is said.
[0003]
For this reason, the lime nitrogen which gave the sacrificial treatment which made quick lime react with water beforehand and made it into slaked lime (Ca (OH) 2 ) is provided. And from such a viewpoint, quick lime is also called unslaked lime. However, when using water to saponify, there is a problem in terms of productivity and manufacturing cost due to the fact that it takes a long time to saponify. There is a drawback that the amount of effective nitrogen components such as cyanamide nitrogen is reduced by hydrolysis. There has been a demand for a decontamination technique that quickly unconsolidates uncalculated lime and suppresses hydrolysis of lime nitrogen as low as possible.
[0004]
[Prior art]
Conventionally, when producing granular fertilizer by using powdered fertilizer as a raw material and shaping, or when producing granular lime nitrogen using only powdered lime nitrogen as a raw material, an aqueous solution of water-containing organic matter or water itself, etc. Since it is economically advantageous to use a binder containing water, it is used as a general method.
[0005]
Lime nitrogen is industrially produced by nitriding calcium carbide and usually contains about 13 to 20% by weight of CaO. When granular fertilizer is produced using powdered lime nitrogen as a raw material, CaO may still remain after granulation. In this case, other than moisture and lime nitrogen of the binder used during granulation It may react with the moisture contained in the fertilizer, or in the long term, the moisture in the air, causing volume expansion, and eventually the granulated fertilizer may be collapsed or weathered powder may be generated.
[0006]
For this reason, it is important to eliminate CaO at the time of shaping, or to eliminate CaO of lime nitrogen at the stage of the raw material before shaping. In the case of production, it is necessary to reduce the CaO content with respect to lime nitrogen to at least 2.0 wt% or less, desirably 1.0 wt% or less.
[0007]
In order to eliminate CaO, it is more efficient if the temperature condition during the elimination reaction is higher, but on the other hand, the reaction of calcium cyanamide itself, which is the main component of lime nitrogen, proceeds and volatilizes as ammonia, or fertilizer There is a problem that production of by-products such as dicyandiamide and melamine, which are undesirable as components, cannot be ignored. On the other hand, there is a problem that the soaking reaction is difficult to proceed at a low temperature with little by-product formation.
[0008]
The amount of water required for refining is theoretically equivalent to that of CaO, but the theoretical amount cannot be sufficiently reconstituted due to loss of evaporation due to heat generated by refining. In addition to the reduction of nitrogen caused by the volatilization of ammonia from calcium cyanamide, further loss of nitrogen will occur if excess adhering moisture is not dried. In severe cases, the loss rate of effective nitrogen components such as cyanamide nitrogen in the decontamination process Has a problem of exceeding 10% by weight. In addition, there is no practical problem if the adhering water is 1.5 parts or less with respect to 100 parts by weight of lime nitrogen.
[0009]
For the above-described circumstances, various proposals have been made regarding the method for eliminating lime nitrogen, combining the soaking temperature, the amount of water added, the timing of water addition, and combinations thereof.
[0010]
Japanese Examined Patent Publication No. 34-6211 discloses that as a first step of the decontamination reaction, partial decontamination is carried out at a temperature of less than 70 ° C. in a mixing apparatus, and as a second step in a rotating drum at a high temperature up to 175 ° C. A method for conducting the elimination reaction is disclosed. Although this method is excellent in that CaO that causes disintegration after granulation and the like can be almost completely eliminated, two or more devices are required for the elimination, and it is slow with water. There are problems in that it requires a site area for neglecting the reaction and the manufacturing time is prolonged.
[0011]
Japanese Patent Publication No. 32-7725 discloses that hydrogenation kneading and granulation is carried out for several minutes, and immediate decontamination is carried out at 70 ° C. or less. However, by-products of dicyandiamide and melamine nitrogen are small during the decontamination reaction. Although it is excellent in that the device can be compact, it takes 2 to 3 hours to dissipate, the production efficiency is poor, and the dissatisfaction conditions are too mild, so that the essential CaO reconstitution is not always sufficient. There is a drawback of not progressing.
[0012]
Japanese Examined Patent Publication No. 34-6221 discloses a method of using water vapor for temperature control during the decontamination reaction, but it takes 90 to 120 minutes to complete the decontamination reaction. is there.
[0013]
Japanese Examined Patent Publication No. 35-3815 is excellent in that it can be efficiently eliminated even at relatively low temperatures by adding hydrogen halide to the water elimination reaction. In order to use it, there exists a fault that a soaking | reducing reaction apparatus etc. must be comprised with a corrosion-resistant material.
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its purpose is to reduce the production of by-products to a practically unproblematic level, and not to reduce the nitrogen content of lime nitrogen. It is in providing the manufacturing method of the lime nitrogenous fertilizer which is shortening time required for and is excellent in productivity.
[0015]
[Means for Solving the Problems]
That is, in the present invention , lime nitrogen and 7 to 15 parts by weight of dehydrated water with respect to 100 parts by weight of lime nitrogen are added to the mixer, and after stirring, the mixer is sealed, and the temperature of the stirring mixture is 80 ° C. or higher. The lime nitrogenous fertilizer production method is characterized in that the quick lime in the lime nitrogen is sublimated with the generated water vapor while being held in the lime nitrogen. In this invention, it is preferable that the content rate of quick lime of the lime nitrogenous fertilizer manufactured is 0.8 weight% or less, and adhesion water is 0.2 weight% or less.
[ 0016 ]
DETAILED DESCRIPTION OF THE INVENTION
As shown in the following chemical reaction, unconsolidated lime (CaO) contained in lime nitrogen mainly decomposes from granular to powdery form due to heat generation when it is hydrolyzed by reacting with moisture in the air. Occurs and care is required for storage and handling as fertilizer. For this reason, the decontamination processed goods which preliminarily dehydrated the uncalculated lime (CaO) with water are distribute | circulating.
[ 0017 ]
CaO + H 2 O → Ca (OH) 2 ΔH = 15.3 Kcal
CaCN 2 + H 2 O → Ca (OH) 2 + H 2 CN 2 ΔH = 3.4 Kcal
[ 0018 ]
As can be seen from the above reaction formula, water acts on both quicklime and lime nitrogen, but is preferentially used for CaO having a large ΔH. However, there is a problem that some water also comes into contact with CaCN 2 and undergoes hydrolysis, resulting in a decrease in the active ingredient of the fertilizer. H 2 CN 2 + 2H 2 O → CO 2 + 2NH 3
[ 0019 ]
In addition, when quick lime is soaked with water, if the reaction temperature is higher than 70 ° C., there is a problem that dicyandiamide, melamine and the like are formed as a by-product and effective fertilizer components are easily lost.
[ 0020 ]
In view of the above circumstances, the present inventors have conducted various experiments. The present inventors have found that quick lime in lime nitrogen can be sublimated in a short time without being substantially by-produced and without causing extreme hydrolysis of lime nitrogen itself. .
[ 0021 ]
That is, the essence of the present invention is that the quick lime in the lime nitrogen is dehydrated with water vapor. Be to slaked in this particular condition, it is possible to obtain the lime nitrogen fertilizer, which is highly slaked for effective nitrogen component. If the reaction temperature during slaking is less than 80 ° C., or not proceed slaked reaction in a short time, there Ru if dicyandiamide with or agglomerated water into nitrolime powder is-product. The soaking temperature needs to be 80 ° C. or higher according to the experimental study by the present inventors, but is more preferably 100 to 150 ° C. This is because when the temperature is 100 ° C. or higher, water is not aggregated inside the lime nitrogen powder and the quick lime can be secured by water vapor, which is a feature of the present invention. However, when the temperature exceeds 150 ° C., the decomposition reaction of lime nitrogen itself gradually occurs, and the effective nitrogen content of the obtained lime nitrogen after decontamination is reduced. Incidentally, in regard to the retention time of the previous SL slaking temperature region, it is sufficient 30-80 minutes.
[ 0022 ]
As a specific method for setting the temperature at the time of soaking to 80 ° C. or more, as shown in the Examples, after putting a predetermined amount of lime nitrogen and soaking water into a mixer and stirring to make a mixture (stirring mixture) The mixer is sealed. Thus, since it is slaking quicklime by heat and steam generated by the slaking reaction is more reliably, it is possible to obtain a stable fertilizer quality. To and this, in terms of heat generated by the slaking reaction is previously know the quicklime content in lime nitrogen for a large amount, by mixing stored using apparatus having excellent thermal insulation adding an appropriate amount of water, it Furthermore, the said stirring mixture can be hold | maintained at the temperature of 80 degreeC or more, without preheating lime nitrogen, As a result, the fertilizer with stable quality can be obtained.
[ 0023 ]
The amount of slaking water for 100 parts by weight of lime nitrogen is 7 to 15 parts by weight. In 5 parts by weight, heat generation may be insufficient in order to keep the stirring mixture at a temperature of 80 ° C. or higher, and when it exceeds 20 parts by weight, water is generally excessive with respect to quick lime in lime nitrogen. There are many cases.
[ 0024 ]
【Example】
Example 1 was placed lime nitrogen 40kg concrete mixer 1m diameter depth 40 cm, and then slaked water 4.0kg (10 parts by weight relative to calcium cyanamide 100 parts by weight) after the addition with Watering, seal the mixer with the lid of the conical bored holes with a diameter of 5 cm, immediately followed by agitating for 3 minutes, and was allowed to stand. A thermometer was inserted from the hole, and the product temperature ( temperature of the stirring mixture) was measured. The product temperature reached 80 ° C. 10 minutes after stirring, and further reached 120 ° C. 10 minutes later, and thereafter the product temperature was almost constant. An analytical sample was taken 40 minutes after reaching 80 ° C.
[ 0025 ]
[Comparative Example 1] In Example 1, cooling water was sprayed on the outer wall surface of the bottom of the mixer and the outer wall surface of the side, and the operation was stopped for 3 minutes and stopped intermittently for 3 minutes so that the product temperature was maintained at 60 ° C. . An analytical sample was collected 50 minutes after the start of the first stirring.
[ 0026 ]
[Example 2] The stirring tank portion of a tabletop universal mixer (manufactured by Maruhishi Kagaku Seisakusho, Model 50) was bathed at 60 ° C. In this state, lime nitrogen 1kg and slaked water 150 g (15 parts by weight relative to calcium cyanamide 100 parts by weight) was placed in a stirred tank, immediately desorbed stirred tank after stirring for 1 minute, after having hot water again, stirred tank top The opening was covered with a foamed polystyrene resin plate, and the mixer was sealed and allowed to stand. A sample for analysis was obtained 85 minutes after standing and used for analysis. In addition, although the thermometer was inserted from the polystyrene foam and the product temperature was measured, the product temperature reached 80 degreeC in 5 minutes after standing, and the product temperature of 80-90 degreeC was hold | maintained after that.
[ 0027 ]
Except that the Comparative Example 2 slaking water amount was 40 g (4 parts by weight relative to calcium cyanamide 100 parts by weight) was subjected to the same treatment as in Example 2. In this case, the increase in the product temperature was only about 60 ° C.
[ 0028 ]
The Comparative Example 3 slaking water amount except that a (25 parts by weight per 100 parts by weight calcium cyanamide) 250 g, was subjected to the same treatment as in Example 2. The product temperature reached 80 ° C in 5 minutes after standing, and thereafter the product temperature of 80 to 90 ° C was maintained.
[ 0029 ]
The following analysis was performed using the sample for analysis. Table 1 shows the results.
<Analytical Method of Total Nitrogen> Relied on the sulfuric acid method described in “Yokendo” “Second Revised Detailed Fertilizer Analysis Method”.
<Analytical Method of Cyanamide Nitrogen> Relied on the silver nitrate method described in “Second Revised Detailed Fertilizer Analysis Method” issued by “Yokendo”.
<Analytical method of quicklime in lime nitrogen> Using an X-ray diffractometer, it was quantified from the peak intensity of quicklime. A calibration curve was prepared by adding, as standard, quick lime obtained by calcining calcium carbonate to lime nitrogen that had been sufficiently sunk beforehand.
<Analyzing Method of Adherent Water in Lime Nitrogen> Relying on the free water ventilation method described in “Second Revised Detailed Fertilizer Analysis Method” issued by “Yokendo”.
[ 0030 ]
[Table 1]
Figure 0004020230
[ 0031 ]
【The invention's effect】
According to the present invention, quick lime in lime nitrogen is essentially dehydrated with water vapor, so that by-product formation such as dicyandiamide or melamine that is likely to occur when low-temperature water is present can be prevented, and as a result, A lime nitrogen fertilizer with a high nitrogen content can be easily produced and is extremely useful in industry.
[ 0032 ]
According to the present invention, by managing the addition amount of slaked water and product temperature in a proper range, it is possible to achieve in a short time slaking reaction of the, not require conventional equipment, significant changes in the process Without any problem, it can produce lime nitrogenous fertilizer with high total nitrogen content.

Claims (2)

ミキサーに、石灰窒素と、石灰窒素100重量部に対し7〜15重量部の消和水とを入れ、撹拌した後ミキサーを密閉し、該撹拌混合物の温度を80℃以上に保持しながら、石灰窒素中の生石灰を発生した水蒸気で消和することを特徴とする石灰窒素質肥料の製造方法。Lime nitrogen and 7 to 15 parts by weight of slaked water with respect to 100 parts by weight of lime nitrogen are put into a mixer, and after stirring, the mixer is sealed, while the temperature of the stirring mixture is maintained at 80 ° C. or higher. A method for producing a lime-nitrogenous fertilizer, characterized in that quicklime in nitrogen is sublimated with generated steam. 石灰窒素質肥料の生石灰の含有率が0.8重量%以下、付着水が0.2重量%以下であることを特徴とする請求項1記載の石灰窒素質肥料の製造方法。The method for producing lime-nitrogenous fertilizer according to claim 1, wherein the content of quick lime in the lime-nitrogenous fertilizer is 0.8 wt% or less and the amount of attached water is 0.2 wt% or less.
JP20459199A 1999-07-19 1999-07-19 Method for producing lime nitrogenous fertilizer Expired - Fee Related JP4020230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20459199A JP4020230B2 (en) 1999-07-19 1999-07-19 Method for producing lime nitrogenous fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20459199A JP4020230B2 (en) 1999-07-19 1999-07-19 Method for producing lime nitrogenous fertilizer

Publications (2)

Publication Number Publication Date
JP2001031485A JP2001031485A (en) 2001-02-06
JP4020230B2 true JP4020230B2 (en) 2007-12-12

Family

ID=16493014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20459199A Expired - Fee Related JP4020230B2 (en) 1999-07-19 1999-07-19 Method for producing lime nitrogenous fertilizer

Country Status (1)

Country Link
JP (1) JP4020230B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129840B2 (en) * 2012-08-06 2017-05-17 デンカ株式会社 Lime nitrogen-containing granular fertilizer and production method thereof
JP6339815B2 (en) * 2014-02-06 2018-06-06 デンカ株式会社 Lime nitrogen-containing granular fertilizer

Also Published As

Publication number Publication date
JP2001031485A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US4026696A (en) Particulate multicomponent soil additive
US4026695A (en) Particulate multicomponent soil additive
JP4020230B2 (en) Method for producing lime nitrogenous fertilizer
US5308373A (en) Metal ammonium phosphate-alkylene urea buffered fertilizer
US7833385B2 (en) Processes of making monohydrate form of magnesium ammonium phosphate and processes of making paper using same
JP2005272218A (en) Method for manufacturing granular compound fertilizer
US3954939A (en) Method for preparing monocalcium phosphate compositions with reduced caking tendencies
JPH0243708B2 (en)
JP6129840B2 (en) Lime nitrogen-containing granular fertilizer and production method thereof
US1893946A (en) Production of calcium nitrate
US4812170A (en) Process for producing an inorganic foam
US1420596A (en) Fertilizer and process of making the same
JP2015147710A (en) Granular fertilizer containing lime nitrogen
JPS5830273B2 (en) Method for producing fertilizer by solidifying fermentation waste liquid
SU1437362A1 (en) Method of producing slow-action fertilizers
JPH10195435A (en) Oxygen-generating material for soil and its production
JPH0159240B2 (en)
JPH0651608B2 (en) Agricultural oxygen supply
JPH024555B2 (en)
US1053761A (en) Process of treating commercial calcium cyanamid.
RU2478086C1 (en) Method of producing nitrate-free liquid compound fertiliser from ammonium nitrate (versions)
JP2001019577A (en) Granular material containing lime nitrogen and its production
JP4337534B2 (en) Granular composite fertilizer composition and method for producing the same
RU2225384C1 (en) Nitrogen-potassium fertilizer production method
SU1728211A1 (en) Method for preparation organic-mineral manure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees