JP4018066B2 - New hexaperihexabenzocoronene derivatives - Google Patents

New hexaperihexabenzocoronene derivatives Download PDF

Info

Publication number
JP4018066B2
JP4018066B2 JP2004028157A JP2004028157A JP4018066B2 JP 4018066 B2 JP4018066 B2 JP 4018066B2 JP 2004028157 A JP2004028157 A JP 2004028157A JP 2004028157 A JP2004028157 A JP 2004028157A JP 4018066 B2 JP4018066 B2 JP 4018066B2
Authority
JP
Japan
Prior art keywords
och
general formula
compound
alkyl group
derivative according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004028157A
Other languages
Japanese (ja)
Other versions
JP2005220047A (en
Inventor
武松 金
孝典 福島
ピー ヒル ジョナサン
敦子 小川
卓三 相田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004028157A priority Critical patent/JP4018066B2/en
Publication of JP2005220047A publication Critical patent/JP2005220047A/en
Application granted granted Critical
Publication of JP4018066B2 publication Critical patent/JP4018066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、ナノスケール分子を構築する新規な置換様式を有するヘキサペリヘキサベンゾコロネン誘導体とその自己組織化により形成されるナノサイズの構造体に関する。   The present invention relates to hexaperihexabenzocoronene derivatives having a novel substitution mode for constructing nanoscale molecules and nano-sized structures formed by self-assembly thereof.

へキサペリヘキサベンゾコロネンは1nm程度の直径を有するディスク状分子である。平面性の高い円盤状のパイ電子系化合物は、しばしばディスコティック液晶相を発現することは良く知られている。へキサペリヘキサベンゾコロネンの分子に6つの長鎖アルキル基を導入した誘導体(HBC)は、このような性質を有する化合物群の代表的な分子であり、高温まで安定なディスコティック液晶相を示し、且つ、発光性や高いキャリア移動能などを有することが知られている。
HBCは、π−π相互作用により、分子が一次元に積み重なったカラム構造を形成しやすく、また、このカラムを通してキャリアが容易に移動できるため高い移動度を示す。この分子の液晶相では、この一次元カラムがへキサゴナルの規則性をもって詰まった状態であるが、仮に、このカラムのみを切り出すことができれば、これは、一次元に分子が集積したナノサイズのワイヤと見なすことができる。このようなナノスケールの分子集合体の構築は、基礎科学ばかりでなく、分子デバイスなどへの応用的側面からも重要であり、構成分子の特性や構造を反映したユニークな機能を発現することが期待されている。
様々な物性を有するHBC誘導体は.このような観点から有望な分子であるが、その誘導体の数は限られている。特に、数種の独立した分子ユニットをHBCに導入すれば.さらなる機能化が期待されるが、そのような非対称置換体はこれまであまり知られていない。
Hexaperhexabenzocoronene is a disk-like molecule having a diameter of about 1 nm. It is well known that a disk-shaped pi-electron compound with high planarity often exhibits a discotic liquid crystal phase. Derivatives (HBC) in which six long-chain alkyl groups are introduced into the molecule of hexaperhexabenzocoronene are representative molecules of a group of compounds having such properties and exhibit a discotic liquid crystal phase that is stable up to high temperatures. In addition, it is known to have luminous properties, high carrier mobility, and the like.
HBC easily forms a column structure in which molecules are stacked one-dimensionally due to π-π interaction, and shows high mobility because carriers can easily move through this column. In the liquid crystal phase of this molecule, this one-dimensional column is packed with hexagonal regularity, but if only this column can be cut out, this means that a nano-sized wire in which molecules are integrated in one dimension. Can be considered. The construction of such nanoscale molecular assemblies is important not only for basic science, but also for application to molecular devices, etc., and may exhibit unique functions that reflect the characteristics and structure of the constituent molecules. Expected.
HBC derivatives having various physical properties are: Although it is a promising molecule from this point of view, the number of its derivatives is limited. In particular, if several independent molecular units are introduced into the HBC. Although further functionalization is expected, such asymmetric substitutions are not well known so far.

近年、HBCの上記した如き光、電子的特性を利用し、有機光電子デバイスなどに利用する試みも盛んになされている。また、このような全対称置換体に加えて、中心骨格をベンゼンで例えれば、パラ型(下記HBC1)やオルト型(下記HBC2)のように対称性を低下させた誘導体の合成も検討されているが、メタ型の置換様式を有する誘導体はこれまで報告例がない。一方、メタ位に置換基を有するベンゼン誘導体は、デンドリマーや大環状化合物、また螺旋高分子などのナノスケール分子を構築する上で最適なユニットの一つとして頻繁に用いられている。従って、へキサペリヘキサベンゾコロネンにおいても、メタ型の置換様式を有する新規ユニットを開発することにより、特異な高次構造や、新たな機能性を示す構造体の構築が期待できる。
In recent years, attempts have been actively made to use the above-described light and electronic characteristics of HBC for organic optoelectronic devices and the like. In addition to such totally symmetric substituents, if the central skeleton is compared with benzene, synthesis of derivatives with reduced symmetry such as para type (below HBC1) and ortho type (below HBC2) has been studied. However, there has been no report on a derivative having a meta-type substitution pattern. On the other hand, benzene derivatives having a substituent at the meta position are frequently used as one of the optimum units for constructing nanoscale molecules such as dendrimers, macrocyclic compounds, and helical polymers. Therefore, for hexaperhexabenzocoronene, by developing a new unit having a meta-type substitution pattern, it is possible to expect the construction of a unique higher-order structure and a structure exhibiting new functionality.

本発明は、上記した如き現状に鑑みなされたもので、メタ置換ベンゼンと類似の対称性を有する新規なへキサペリヘキサベンゾコロネン誘導体と、その自己組織化により形成されるナノサイズの構造体を提供することを目的とする。   The present invention has been made in view of the current situation as described above, and includes a novel hexaperihexabenzocoronene derivative having symmetry similar to that of a meta-substituted benzene, and a nano-sized structure formed by the self-assembly. The purpose is to provide.

本発明は、下記一般式[1]
[式中、Rはアルキル基を表し、RはCOR又はCOCHCH(OCHCHORを表し(但し、Rは水素原子又はアルキル基を表し、nは正の整数を表す。)、Xはハロゲン原子を表す。]
で表されるヘキサペリヘキサベンゾコロネン誘導体に関する。
The present invention provides the following general formula [1]
[Wherein R 1 represents an alkyl group, R 2 represents C 6 H 4 OR 3 or C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OR 3 (provided that R 3 represents a hydrogen atom or Represents an alkyl group, n represents a positive integer), and X represents a halogen atom. ]
It is related with the hexaperihexabenzocoronene derivative represented by these.

また、本発明は、上記一般式[1]で表される化合物と1以上の溶剤とからなる溶液中で形成されるナノサイズの自己集積体に関する。   The present invention also relates to a nano-sized self-assembled body formed in a solution comprising the compound represented by the general formula [1] and one or more solvents.

更に、本発明は、下記一般式[2]
[式中、Rはアルキル基を表し、RはCOR又はCOCHCH(OCHCHORを表し(但し、Rは水素原子又はアルキル基を表し、nは正の整数を表す。)、Rは−A−COを表す(但し、Aは2価の炭化水素基を表し、Rは水素原子又はアルキル基を表す。)。]
で表されるヘキサペリヘキサベンゾコロネン誘導体に関する。
Furthermore, the present invention provides the following general formula [2]
[Wherein R 1 represents an alkyl group, R 2 represents C 6 H 4 OR 3 or C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OR 3 (provided that R 3 represents a hydrogen atom or Represents an alkyl group, n represents a positive integer.), R 4 represents -A-CO 2 R 5 (where A represents a divalent hydrocarbon group, R 5 represents a hydrogen atom or an alkyl group). To express.). ]
It is related with the hexaperihexabenzocoronene derivative represented by these.

更にまた、本発明は、上記一般式[2]で表される化合物と1以上の溶剤とからなる溶液中で形成されるナノサイズの自己集積体に関する。   Furthermore, the present invention relates to a nano-sized self-assembly formed in a solution comprising the compound represented by the general formula [2] and one or more solvents.

即ち、本発明者らは、上記したように、メタ位に置換基を有するベンゼン誘導体がデンドリマーや大環状化合物、また螺旋高分子などのナノスケール分子を構築する上で最適なユニットの一つとして頻繁に用いられていることから、へキサペリヘキサベンゾコロネンにおいても、メタ型の置換様式を有する新規ユニットを開発することにより、特異な高次構造や、新たな機能性を示す構造体の構築が期待できると考え、メタ置換ベンゼンと類似の対称性を有する新しいへキサペリヘキサベンゾコロネン誘導体の合成につき鋭意研究を重ねた結果、溶剤溶液中でリボン状又はチューブ状のナノサイズの自己集積体を形成する上記一般式[1]で表される化合物、並びに該化合物から容易に誘導される、同様にリボン状又はチューブ状のナノサイズの自己集積体を形成し得る上記一般式[2]で表される化合物を創製し、本発明を完成するに到った。   That is, as described above, the present inventors, as described above, are benzene derivatives having a substituent at the meta position as one of the optimal units for constructing nanoscale molecules such as dendrimers, macrocyclic compounds, and helical polymers. Due to its frequent use, hexaperhexabenzocoronene also has a unique higher-order structure and a structure that exhibits new functionality by developing a new unit with a meta-type substitution pattern. As a result of intensive research on the synthesis of a new hexaperhexabenzobenzocorene derivative having similar symmetry to that of meta-substituted benzene, ribbon-like or tube-like nano-sized self-assembly in solvent solution And a compound represented by the above general formula [1], which is also derived from the compound and is also easily derived from the compound in the form of a ribbon or tube. In the above general formula may form a self-assembled body represented by [2] to create the compound, and have completed the present invention.

本発明の上記一般式[1]で表されるヘキサペリヘキサベンゾコロネン誘導体(以下、HBC誘導体と言うこともある。)は、それ自身でリボン状又はチューブ状のナノサイズの自己集積体を形成することも出来るが、様々なメタ型の置換様式のHBC誘導体を合成する上で、最も基本となる前駆体として広く利用できる分子であり、上記一般式[2]で表されるHBC誘導体は、該前駆体から誘導される有用なHBC誘導体群の一例である。本発明の上記一般式[1]で表されるHBC誘導体、及び該化合物から誘導される一般式[2]で表されるHBC誘導体を始めとする各種メタ型の置換様式のHBC誘導体は、例えば、これらに親水性及び疎水性置換基を導入して両親媒性とすることにより、両親煤性と疎水効果とπ−πスタッキングの共同効果を介して自己集積し、ナノスケールの集積体を形成することができる。従って、共有結合ばかりでなく非共有結合性の相互作用によっても構造形成が可能である利点も有する。   The hexaperihexabenzocoronene derivative represented by the above general formula [1] of the present invention (hereinafter sometimes referred to as HBC derivative) forms a nano-sized self-assembled body in the form of a ribbon or tube itself. Although it is a molecule that can be widely used as the most basic precursor in synthesizing HBC derivatives of various meta-type substitution modes, the HBC derivative represented by the general formula [2] It is an example of a group of useful HBC derivatives derived from the precursor. The HBC derivative represented by the above general formula [1] of the present invention and the HBC derivative of various meta types including the HBC derivative represented by the general formula [2] derived from the compound include, for example, , By introducing hydrophilic and hydrophobic substituents into these to make them amphiphilic, self-assembly through the joint effect of amphiphilicity, hydrophobic effect and π-π stacking forms nanoscale aggregates can do. Therefore, the structure can be formed not only by covalent bonds but also by non-covalent interactions.

上記一般式[1]及び一般式[2]において、Rで表されるアルキル基としては、例えば、炭素数が1〜30、好ましくは10〜30、より好ましくは10〜20の直鎖状、分枝状又は環状のアルキル基が挙げられ、好ましい具体例としては、例えば、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシルル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基などが挙げられ、これらは直鎖状、分枝状又は環状の何れであってもよい。また、炭素数が10以下のアルキル基の場合は、例えばt−ブチル基のような嵩高い基が好ましい。
また、Rで表されるCOCHCH(OCHCHORにおけるRで表されるアルキル基としては、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状、分枝状又は環状のアルキル基が挙げられ、具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二級ブチル基、第三級ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
nは任意の正の整数であるが、2以上の整数がより好ましい。
の好ましい具体例としては、例えば、COH、COCH、COCHCH(OCHCHOH、COCHCH(OCHCHOCH等が挙げられ、CH(OCHCHOH及びCOCHCH(OCHCHOCHの更なる好ましい例としては、例えば、COCHCH(OCHCHOH、COCHCH(OCHCHOH、COCHCH(OCHCHOH、COCHCH(OCHCHOCH、COCHCH(OCHCHOCH、COCHCH(OCHCHOCH等が挙げられるが、勿論これらに限定されるものではない。
In the general formula [1] and the general formula [2], the alkyl group represented by R 1 is, for example, a straight chain having 1 to 30, preferably 10 to 30, more preferably 10 to 20 carbon atoms. A branched or cyclic alkyl group, and preferred specific examples include, for example, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, and a nonadecyl group. These may be linear, branched or cyclic. In the case of an alkyl group having 10 or less carbon atoms, a bulky group such as a t-butyl group is preferable.
The alkyl group represented by R 3 in C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) n OR 3 represented by R 2, for example, 1 to 20 carbons, preferably 1 to 10, more preferably 1-6 linear, branched or cyclic alkyl groups, and specific examples include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, Secondary butyl group, tertiary butyl group, pentyl group, hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like can be mentioned.
n is an arbitrary positive integer, but an integer of 2 or more is more preferable.
Preferable specific examples of R 2 include, for example, C 6 H 4 OH, C 6 H 4 OCH 3 , C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OH, C 6 H 4 OCH 2 CH 2 ( OCH 2 CH 2 ) n OCH 3 and the like, and further preferable examples of CH 2 (OCH 2 CH 2 ) n OH and C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OCH 3 include, for example, , C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 2 OH, C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 3 OH, C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 4 OH, C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 2 OCH 3, C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) 3 OCH 3, C 6 H 4 OCH 2 CH (OCH 2 CH 2) 4 is OCH 3 and the like, but the invention is not of course limited thereto.

上記一般式[1]において、Xで表されるハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子、フッ素原子が挙げられるが、様々なメタ型の置換様式のHBC誘導体を合成する上での前駆体として考えた場合には、より反応性のよい臭素原子及びヨウ素原子が好ましい。   In the general formula [1], examples of the halogen atom represented by X include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom. In synthesizing HBC derivatives in various meta-type substitution modes, When considered as a precursor, more reactive bromine and iodine atoms are preferred.

上記一般式[2]において、Rで表される−A−COにおけるRで表されるアルキル基としては、上記Rで表されるアルキル基と同様、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状、分枝状又は環状のアルキル基が挙げられ、具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二級ブチル基、第三級ブチル基、ペンチル基、ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
また、Aで表される2価の炭化水素基としては、例えば、フェニレン基、ビフェニレン基、ナフチレン基、アルキレン基等が挙げられる。これらの炭化水素基は反応及び使用に際して悪影響を及ぼさない置換基であればこれら置換基を1以上有していてもよい。
の好ましい具体例としては、例えば、−C−COOH、−C−COCH3、−C−CO等が挙げられるが、勿論これらに限定されるものではない。
In the general formula [2], the alkyl group represented by R 5 in -A-CO 2 R 5, represented by R 4, same as the alkyl group represented by R 3, for example, carbon atoms Examples include 1-20, preferably 1-10, more preferably 1-6 linear, branched or cyclic alkyl groups. Specific examples include, for example, methyl group, ethyl group, propyl group, isopropyl group. Group, butyl group, isobutyl group, secondary butyl group, tertiary butyl group, pentyl group, hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
Examples of the divalent hydrocarbon group represented by A include a phenylene group, a biphenylene group, a naphthylene group, and an alkylene group. These hydrocarbon groups may have one or more of these substituents as long as they do not adversely affect the reaction and use.
Preferable specific examples of R 4 include, for example, —C 6 H 4 —COOH, —C 6 H 4 —CO 2 CH 3, —C 6 H 4 —CO 2 C 2 H 5, etc. It is not limited to.

上記一般式[1]で表される化合物の合成方法を、XがBrで、RがC1225で、RがCOCH又はCOHの場合を例にして反応スキームで示すと以下のようになる。
なお、反応の操作手順等の詳細については、後述する実施例の記載を参照されたい。
The method for synthesizing the compound represented by the general formula [1] is exemplified by the case where X is Br, R 1 is C 12 H 25 , and R 2 is C 6 H 4 OCH 3 or C 6 H 4 OH. The reaction scheme is as follows.
For details of the reaction operation procedure and the like, refer to the description of Examples described later.

また、上記一般式[2]で表される化合物の合成方法を、Rが−C−CO又は−C−COOHで、RがC1225で、RがCOCHの場合を例にして反応スキームで示すと以下のようになる。
なお、反応の操作手順等の詳細については、後述する実施例の記載を参照されたい。
In the method for synthesizing the compound represented by the general formula [2], R 4 is —C 6 H 4 —CO 2 C 2 H 5 or —C 6 H 4 —COOH, and R 1 is C 12 H 25. In the reaction scheme, R 2 is C 6 H 4 OCH 3 as an example.
For details of the reaction operation procedure and the like, refer to the description of Examples described later.

更に、上記一般式[2]において、RがC1225で、RがCOCHCH(OCHCHOCHで、Rが−C−CO又は−C−COOHの化合物の合成法を反応スキームで示すと以下のようになる。
Further, in the above general formula [2], R 1 is C 12 H 25 , R 2 is C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) 2 OCH 3 , and R 4 is —C 6 H 4 —. A synthesis method of a compound of CO 2 C 2 H 5 or —C 6 H 4 —COOH is shown in a reaction scheme as follows.

本発明の上記一般式[1]で表される化合物並びに一般式[2]で表される化合物は、これを1以上の溶剤に溶解することにより溶液中でナノサイズの自己集積体を形成する。該自己集積体は、通常、リボン状又はチューブ状である。   The compound represented by the general formula [1] and the compound represented by the general formula [2] of the present invention forms a nano-sized self-assembled body in a solution by dissolving the compound in one or more solvents. . The self-assembly is usually in the form of a ribbon or a tube.

次に、本発明の新規ヘキサペリヘキサベンゾコロネン誘導体である、上記反応スキーム中に記載の化合物12aの溶液中の会合挙動について、紫外−可視光及び蛍光スペクトルを用いて検討を行った結果について述べる。
化合物12aは、THF、クロロホルム、ベンゼンなど有機溶媒中、紫外吸収スペクトルにおいて大きな変化が見られなかったが、蛍光スペクトルで溶媒によって、異なる結果が見られた。例えば、25℃でTHF中ではモノマーに由来するピークが現れるが、ベンゼン中では主にエキシマーに帰属するピークが観測された(図1及び図2参照)。また、ベンゼン溶媒中蛍光特性には強い温度依存性を示し、高温でモノマー発光を与えるが、低温で再びエキシマー発光を示した。
一方、化合物12aからメチル基を外した形の化合物12bはクロロホルムをゲル化し、電界放射型走査型電子顕微鏡(FE−SEM)の観察よりナノファイバー構造が観測された(図3参照)。化合物12aはクロロホルム中でゲル化しないことから、化合物12bの分子間の相互作用はπ−πスタッキング以外に、フェノール間の水素結合によってより強くなったと考えられる。
Next, the results of examination of the association behavior in solution of the compound 12a described in the above reaction scheme, which is the novel hexaperihexabenzocoronene derivative of the present invention, using ultraviolet-visible light and fluorescence spectrum will be described. .
Compound 12a showed no significant change in the ultraviolet absorption spectrum in an organic solvent such as THF, chloroform or benzene, but the fluorescence spectrum showed different results depending on the solvent. For example, a peak derived from a monomer appears in THF at 25 ° C., but a peak mainly attributed to an excimer was observed in benzene (see FIGS. 1 and 2). In addition, the fluorescence characteristics in benzene solvent showed a strong temperature dependence, giving monomer luminescence at high temperature, but again exhibiting excimer luminescence at low temperature.
On the other hand, Compound 12b in the form of removing the methyl group from a compound 12a is chloroform gelled nanofiber structure than observation field emission scanning electron microscope (FE-SEM) was observed (see Figure 3). Since the compound 12a does not gel in chloroform, it is considered that the intermolecular interaction of the compound 12b is strengthened by the hydrogen bond between phenols in addition to π-π stacking.

そこで、HBCの横方向のもっと強い構造制御によって新しい会合体を形成させるために、メタ位置にフェニルアセチレン誘導体を導入し、センター位置に親水性のトリエチレングリコールを導入した本発明化合物19aを合成し、溶液中の会合性について検討した。その結果、化合物19aではTHF−水(3:1)混合液中、直径300ナノメートルのカプセル様構造体がFE−SEMにより観測された(図4参照)。
即ち、メタ置換ベンゼンと類似の対称性を有する、本発明に係る新しいへキサペリヘキサベンゾコロネン骨格に、親水性及び疎水性置換基を導入した両親媒性誘導体分子は、極めて平面性高い大きなパイ電子系化合物にも関わらず、直径が数百ナノメートルの球状の構造体(ベシクル)が生成する興味深い自己会合挙動を示すことが判った。
一方、このエステル体(化合物19a)を加水分解して得られたフリー体の化合物19bは、同条件で直径約20ナノメートル、長さ数マイクロメートルのファイバーの生成がFE−SEMにより確認できた(図5参照)。
また、メタ位置にフェニルアセチレン誘導体を導入し、センター位置に4−メトキシフェニル基を導入した本発明化合物15bを合成し、溶液中の会合性について検討したところ、化合物15bはTHF中でナノファイバー構造体を形成することがFE−SEMにより確認された(図6参照)。
このようにHBCの分子構造の微細な修飾によって自己会合挙動を制御でき、異なるナノ構造体が得られることも明らかとなった。
Therefore, in order to form a new aggregate by stronger structural control in the lateral direction of HBC, a compound 19a of the present invention in which a phenylacetylene derivative was introduced at the meta position and hydrophilic triethylene glycol was introduced at the center position was synthesized. The association property in the solution was examined. As a result, in the compound 19a , a capsule-like structure having a diameter of 300 nanometers was observed by FE-SEM in a THF-water (3: 1) mixed solution (see FIG. 4).
That is, an amphiphilic derivative molecule having hydrophilic and hydrophobic substituents introduced into the new hexaperhexabenzocoronene skeleton according to the present invention, which has symmetry similar to that of meta-substituted benzene, is a large pi In spite of the electronic compounds, it has been found that a spherical structure (vesicle) having a diameter of several hundred nanometers produces an interesting self-association behavior.
On the other hand, in the free compound 19b obtained by hydrolyzing this ester (compound 19a ), formation of fibers having a diameter of about 20 nanometers and a length of several micrometers was confirmed by FE-SEM under the same conditions. (See FIG. 5).
Further, by introducing a phenylacetylene derivative in the meta position, to synthesize a compound of the present invention 15b introduced with a 4-methoxyphenyl group to the center position, were examined associative in solution, the compound 15b is nanofiber structure in THF Forming a body was confirmed by FE-SEM (see FIG. 6).
Thus, it was also revealed that the self-association behavior can be controlled by fine modification of the molecular structure of HBC, and different nanostructures can be obtained.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples.

2,8−ジブロモ−11,14,17−ドデシル−(4−メトキシフェニル)ヘキサペリヘキサベンゾコロネン(化合物12a)の合成
(1)4−ドデシルベンジルアルコール(化合物)の合成
アルゴン雰囲気下、4−ブロモドデシルベンゼン(3.25g,10.0mmol)をテトラヒドロフラン(THF,100mL)に溶解させ −78℃に冷却した。この溶液にn−ブチルリチウム(7ml,1.6Mヘキサン溶液)を加えて1時間攪拌後、ジメチルホルムアミド(20mL)を加えて更に1時間攪拌した。反応混合物を室温まで昇温し、水に注ぎエーテルで抽出、有機層を水、次いで飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒留去後得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、4−ブロモドデシルベンズアルデヒドを無色油状物として得た。このアルデヒドをエタノール(30mL)に溶解し、水素化ホウ素ナトリウム(2.77g,73.2mmol)を加え、室温で3時間攪拌した。溶媒を留去後、ジクロロメタンを加え、1M塩酸、水、次いで飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物を無色固体として得た(2.13g,収率77%)。
HNMR(500MHz,CDCl):δ=7.25(d,J=8.0Hz,2H),7.15(d,J=8.0Hz,2H),4.62(d,J=6.5Hz,2H),2.58(t,J=7.5Hz,2H),1.58(m,2H),1.19−1.27(m,18H),0.86(t,J=7.0Hz,3H)。
Synthesis of 2,8-dibromo-11,14,17-dodecyl- (4-methoxyphenyl) hexaperhexabenzocoronene (Compound 12a) (1) Synthesis of 4-dodecylbenzyl alcohol (Compound 1 ) Under argon atmosphere, 4 -Bromodecylbenzene (3.25 g, 10.0 mmol) was dissolved in tetrahydrofuran (THF, 100 mL) and cooled to -78 ° C. N-Butyllithium (7 ml, 1.6 M hexane solution) was added to this solution and stirred for 1 hour, and then dimethylformamide (20 mL) was added and further stirred for 1 hour. The reaction mixture was warmed to room temperature, poured into water and extracted with ether. The organic layer was washed with water and then with saturated brine, and then dried over anhydrous sodium sulfate. The residue obtained after evaporation of the solvent was purified by silica gel column chromatography to give 4-bromododecylbenzaldehyde as a colorless oil. This aldehyde was dissolved in ethanol (30 mL), sodium borohydride (2.77 g, 73.2 mmol) was added, and the mixture was stirred at room temperature for 3 hr. After distilling off the solvent, dichloromethane was added, washed with 1M hydrochloric acid, water and then saturated brine, and dried over anhydrous sodium sulfate. The residue obtained by evaporating the solvent was purified by silica gel column chromatography to obtain Compound 1 as a colorless solid (2.13 g, yield 77%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.25 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.62 (d, J = 6) .5 Hz, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.58 (m, 2H), 1.19-1.27 (m, 18H), 0.86 (t, J = 7.0 Hz, 3H).

(2)4−ドデシルベンジルブロマイド(化合物)の合成
アルゴン雰囲気下、化合物(1.11g,4.02mmol)のTHF(15mL)溶液を0℃に冷却し、四臭化炭素(1.60g,4.82mmol)とトリフェニルホスフィン(1.26g,4.02mmol)を加え30分間攪拌した。反応混合物を水に注ぎ、ジクロロメタンで抽出し、有機層を水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物を無色固体として得た(1.25g,収率85%)。
HNMR(500MHz,CDCl):δ=7.29(d,J=8.0Hz,2H),7.14(d,J=8.0Hz,2H),4.47(s,2H),2.59(t,J=7.5Hz,2H),1.59(m,2H),1.24−1.28(m,18H),0.88(t,J=6.5Hz,3H)。
(2) Synthesis of 4-dodecylbenzyl bromide (Compound 2 ) Under an argon atmosphere, a THF (15 mL) solution of Compound 1 (1.11 g, 4.02 mmol) was cooled to 0 ° C., and carbon tetrabromide (1.60 g). , 4.82 mmol) and triphenylphosphine (1.26 g, 4.02 mmol) were added and stirred for 30 minutes. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was purified by silica gel column chromatography to obtain Compound 2 as a colorless solid (1.25 g, yield 85%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.29 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 4.47 (s, 2H), 2.59 (t, J = 7.5 Hz, 2H), 1.59 (m, 2H), 1.24-1.28 (m, 18H), 0.88 (t, J = 6.5 Hz, 3H) ).

(3)1−(4−ブロモフェニル)−3−(4−ドデシルフェニル)プロパノン(化合物)の合成
アルゴン雰囲気下、トシルメチルイソシアニド(402mg,2.06mmol)及びヨウ化テトラブチルアンモニウム(38.10mg,0.10mmol)をジクロロメタン/40%水酸化ナトリウム水溶液(1:1,20mL)に溶解し、これに4−ブロモベンジルブロマイド(514mg,2.06mmol)を加えて室温で90分間攪拌し、続いて化合物(700mg,2.06mmol)を加え、更に室温で16時間攪拌した。反応混合物を水に注ぎ、ジクロロメタンで抽出、有機層を水、次いで飽和食塩水で洗浄した後、溶媒を減圧留去した。得られた残渣をエーテル(9mL)とジクロロメタン(3mL)に溶解させ、35%濃塩酸(1mL)で処理した。反応混合物を水に注ぎ、ジクロロメタンで抽出し、1N水酸化ナトリウム水溶液、水、飽和食塩水で洗浄した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物を無色固体として得た(424mg,収率45%)。
HNMR(500MHz,CDCl):δ=7.41(d,J=8.0Hz,2H),7.12(d,J=8.0Hz,2H),7.05(d,J=8.0Hz,2H),6.97(d,J=8.0Hz,2H),3.74(s,2H),3.66(s,2H),2.58(t,J=8.0Hz,2H),1.85(m,2H),1.24−1.29(m,18H),0.87(t,J=7.5Hz,3H)。
MALDI−TOF−MS:[M+Na](calcd.480.48):found.480.94。
(3) Synthesis of 1- (4-bromophenyl) -3- (4-dodecylphenyl) propanone (Compound 3 ) Tosylmethyl isocyanide (402 mg, 2.06 mmol) and tetrabutylammonium iodide (38. 10 mg, 0.10 mmol) was dissolved in dichloromethane / 40% aqueous sodium hydroxide solution (1: 1, 20 mL), 4-bromobenzyl bromide (514 mg, 2.06 mmol) was added thereto, and the mixture was stirred at room temperature for 90 minutes. Subsequently, Compound 2 (700 mg, 2.06 mmol) was added, and the mixture was further stirred at room temperature for 16 hours. The reaction mixture was poured into water, extracted with dichloromethane, the organic layer was washed with water and then with saturated brine, and the solvent was evaporated under reduced pressure. The resulting residue was dissolved in ether (9 mL) and dichloromethane (3 mL) and treated with 35% concentrated hydrochloric acid (1 mL). The reaction mixture was poured into water, extracted with dichloromethane, and washed with 1N aqueous sodium hydroxide solution, water and saturated brine. The residue obtained by evaporating the solvent was purified by silica gel column chromatography to obtain Compound 3 as a colorless solid (424 mg, yield 45%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.41 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8 0.0 Hz, 2H), 6.97 (d, J = 8.0 Hz, 2H), 3.74 (s, 2H), 3.66 (s, 2H), 2.58 (t, J = 8.0 Hz) , 2H), 1.85 (m, 2H), 1.24-1.29 (m, 18H), 0.87 (t, J = 7.5 Hz, 3H).
MALDI-TOF-MS: [M + Na] + (calcd. 480.48): found.

(4)2−(4’−ブロモ−ビフェニル−4−イルオキシ)テトラヒドロ−2H−ピラン(化合物)の合成
4,4’−ジブロモビフェニル(9.96g,40.0mmol)及びp−トルエンスルホン酸一水和物(50mg)をジクロロメタンに溶解し氷冷した。この溶液に3,4−ジヒドロ−2H−ピラン(6.0mL,65.8mmol)を滴下後、0℃で1時間、その後室温で1時間攪拌した後、10%水酸化ナトリウム水溶液に注ぎ、ジクロロメタンで抽出した。有機層を水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物を無色固体として得た(12.3g,収率93%)。
HNMR(500MHz,CDCl):δ=7.53(d,J=8.5Hz,2H),7.48(d,J=8.5Hz,2H),7.42(d,J=8.5Hz,2H),7.13(d,J=8.5Hz,2H),5.46(t,J=3.0Hz,1H),3.90−3.95(m,1H),3.60−3.64(m,1H),1.99−2.06(m,1H),1.87−1.90(m,2H),1.60−1.74(m,3H)。
(4) Synthesis of 2- (4′-bromo-biphenyl-4-yloxy) tetrahydro-2H-pyran (compound 4 ) 4,4′-dibromobiphenyl (9.96 g, 40.0 mmol) and p-toluenesulfonic acid Monohydrate (50 mg) was dissolved in dichloromethane and cooled on ice. 3,4-Dihydro-2H-pyran (6.0 mL, 65.8 mmol) was added dropwise to this solution, followed by stirring at 0 ° C. for 1 hour and then at room temperature for 1 hour, and then poured into a 10% aqueous sodium hydroxide solution. Extracted with. The organic layer was washed with water and dried over anhydrous magnesium sulfate, and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography to obtain compound 4 as a colorless solid (12.3 g, yield 93%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.53 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8 .5 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 5.46 (t, J = 3.0 Hz, 1H), 3.90-3.95 (m, 1H), 3 .60-3.64 (m, 1H), 1.99-2.06 (m, 1H), 1.87-1.90 (m, 2H), 1.60-1.74 (m, 3H) .

(5)2−メチル−4−[4’−(テトラヒドロ−2H−ピラン−2−イルオキシ)ビフェニル−4−イル]−3−ブチン−2−オール(化合物)の合成
2−メチル−3−ブチン−2−オール(4.0mL,41.2mmol)、ジクロロビストリフェニルホスフィンパラジウム(1.02g,1.45mmol)、ヨウ化銅(554mg,2.91mmol)、化合物(9.69g,29.1mmol)、トリエチルアミン(50mL)及びベンゼン(50mL)の混合物をアルゴン雰囲気下、60℃で32時間加熱攪拌した。放冷後、生じた沈殿を濾去し、これをジクロロメタンで洗浄して、有機層を合わせ、溶媒を留去した。残渣をジクロロメタンから再結晶して化合物を無色固体として得た(7.97g,収率81%)。
HNMR(500MHz,CDCl):δ=7.52(d,J=8.5Hz,2H),7.50(d,J=8.5Hz,2H),7.46(d,J=8.5Hz,2H),7.13(d,J=8.5Hz,2H),5.47(m,1H),3.90−3.95(m,1H),3.60−3.64(m,1H),2.01−2.04(m,1H),1.60−1.72(m,6H)。
(5) Synthesis of 2-methyl-4- [4 ′-(tetrahydro-2H-pyran-2-yloxy) biphenyl-4-yl] -3-butyn-2-ol (Compound 5 ) 2-methyl-3- Butyn-2-ol (4.0 mL, 41.2 mmol), dichlorobistriphenylphosphine palladium (1.02 g, 1.45 mmol), copper iodide (554 mg, 2.91 mmol), compound 4 (9.69 g, 29. 1 mmol), triethylamine (50 mL) and benzene (50 mL) were heated and stirred at 60 ° C. for 32 hours under an argon atmosphere. After allowing to cool, the resulting precipitate was filtered off, washed with dichloromethane, the organic layers were combined, and the solvent was distilled off. The residue was recrystallized from dichloromethane to obtain Compound 5 as a colorless solid (7.97 g, yield 81%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.52 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8 .5 Hz, 2H), 7.13 (d, J = 8.5 Hz, 2H), 5.47 (m, 1H), 3.90-3.95 (m, 1H), 3.60-3.64. (M, 1H), 2.01-2.04 (m, 1H), 1.60-1.72 (m, 6H).

(6)2−(4’−エチニル−ビフェニル−4−イルオキシ)テトラヒドロ−2H−ピラン(化合物)の合成
アルゴン雰囲気下、化合物(7.90g,23.48mmol)をトルエン(200mL)に溶解し、水酸化カリウム(1.97g,35.2mmol)を加えた後、3時間加熱還流させた。反応混合物を水に注ぎ、トルエンで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物を淡黄色固体として得た(6.05g,収率93%)。
HNMR(500MHz,CDCl):δ=7.48−7.52(m,6H),7.12(d,J=8.5Hz,2H),5.45(t,J=3.0Hz,1H),3.88−3.93(m,1H),3.59−3.63(m,1H),3.09(s,1H),1.97−2.03(m,1H),1.85−1.88(m,2H),1.58−1.70(m,3H)。
(6) Synthesis of 2- (4′-ethynyl-biphenyl-4-yloxy) tetrahydro-2H-pyran (Compound 6 ) Compound 5 (7.90 g, 23.48 mmol) was dissolved in toluene (200 mL) under an argon atmosphere. After adding potassium hydroxide (1.97 g, 35.2 mmol), the mixture was heated to reflux for 3 hours. The reaction mixture was poured into water and extracted with toluene. The organic layer was washed with water and saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated. The obtained residue was purified by silica gel column chromatography to obtain compound 6 as a pale yellow solid (6.05 g, yield 93%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.48-7.52 (m, 6H), 7.12 (d, J = 8.5 Hz, 2H), 5.45 (t, J = 3.0 Hz) , 1H), 3.88-3.93 (m, 1H), 3.59-3.63 (m, 1H), 3.09 (s, 1H), 1.97-2.03 (m, 1H) ), 1.85-1.88 (m, 2H), 1.58-1.70 (m, 3H).

(7)2−[(4’−(4−ブロモ−フェニルエチニル)ビフェニル−4−イルオキシ)テトラヒドロ−2H−ピラン(化合物)の合成
アルゴン雰囲気下、化合物(6.00g,21.6mmol)、4−ヨードブロモベンゼン(6.85g,24.2mmol)、ヨウ化銅(410mg,2.16mmol)及びテトラキストリフェニルホスフィンパラジウム(0)(998mg,0.863mmol)をトルエン(150mL)に懸濁させ、これにトリエチルアミン(20mL)を加えて、50℃で12時間加熱攪拌した。生じた沈殿を濾取し、メタノールで良く洗浄した。得られた固体をトルエンから繰り返し再結晶することにより、化合物を無色固体として得た(8.47g,収率91%)。
HNMR(500MHz,CDCl):δ=7.52−7.55(m,6H),7.49(d,J=8.0Hz,2H),7.14(d,J=9.0Hz,2H),5.48(t,J=3.0Hz,1H),3.90−3.95(m,1H),3.62−3.64(m,1H),2.01−2.03(m,1H),1.87−1.90(m,2H),1.61−1.74(m,3H)。
(7) Synthesis of 2-[(4 ′-(4-Bromo-phenylethynyl) biphenyl-4-yloxy) tetrahydro-2H-pyran (Compound 7 ) Compound 6 (6.00 g, 21.6 mmol) under argon atmosphere 4-iodobromobenzene (6.85 g, 24.2 mmol), copper iodide (410 mg, 2.16 mmol) and tetrakistriphenylphosphine palladium (0) (998 mg, 0.863 mmol) suspended in toluene (150 mL). Triethylamine (20 mL) was added thereto, and the mixture was stirred with heating at 50 ° C. for 12 hours. The resulting precipitate was collected by filtration and washed thoroughly with methanol. The obtained solid was repeatedly recrystallized from toluene to obtain Compound 7 as a colorless solid (8.47 g, yield 91%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.52-7.55 (m, 6H), 7.49 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 9.0 Hz) , 2H), 5.48 (t, J = 3.0 Hz, 1H), 3.90-3.95 (m, 1H), 3.62-3.64 (m, 1H), 2.01-2 .03 (m, 1H), 1.87-1.90 (m, 2H), 1.61-1.74 (m, 3H).

(8)1−(4−ブロモフェニル)−2−[4’−(テトラヒドロ−2H−ピラン−2−イルオキシ)ビフェニル−4−イル]エタン−1,2−ジオン(化合物)の合成
四塩化炭素/アセトニトリル/水(120mL:120mL:240mL)の混合溶液に化合物(8.97g,20.7mmol)を懸濁させ、過ヨウ素酸ナトリウム(18.2g,85.1mmol)を加え、室温で激しく攪拌反応させた。次いで、これに酸化ルテニウム一水和物(60mg,0.45mmol)を加え3時間攪拌した後、水に注ぎ、ジクロロメタンで抽出した、有機層を水で洗浄後、無水硫酸ナトリウムで乾燥した。反応混合物をセライト濾過し、濃縮後、残渣をシリカゲルカラムクロマトグラフィーにより精製して、化合物を淡黄色固体として得た(7.37g,収率77%)。
HNMR(500MHz,CDCl):δ=7.99(d,J=8.5Hz,2H),7.86(d,J=8.5Hz,2H),7.69(dd,J=8.5Hz,J=8.5Hz,4H),7.56(d,J=8.5Hz,2H),7.15(d,J=8.5Hz,2H),5.47(t,J=3Hz,1H),3.87−3.92(m,1H),3.59−3.63(m,1H),1.97−2.03(m,1H),1.86−1.89(m,2H),1.59−1.73(m,3H)。
MALDI−TOF−MS:[M+H](calcd.465.34):found.465.34。
(8) Synthesis of 1- (4-bromophenyl) -2- [4 ′-(tetrahydro-2H-pyran-2-yloxy) biphenyl-4-yl] ethane-1,2-dione (compound 8 ) Compound 7 (8.97 g, 20.7 mmol) was suspended in a mixed solution of carbon / acetonitrile / water (120 mL: 120 mL: 240 mL), sodium periodate (18.2 g, 85.1 mmol) was added, and at room temperature. The reaction was vigorously stirred. Next, ruthenium oxide monohydrate (60 mg, 0.45 mmol) was added thereto, stirred for 3 hours, poured into water and extracted with dichloromethane. The organic layer was washed with water and dried over anhydrous sodium sulfate. The reaction mixture was filtered through celite, concentrated, and the residue was purified by silica gel column chromatography to give compound 8 as a pale yellow solid (7.37 g, yield 77%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.99 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 7.69 (dd, J = 8 .5 Hz, J = 8.5 Hz, 4H), 7.56 (d, J = 8.5 Hz, 2H), 7.15 (d, J = 8.5 Hz, 2H), 5.47 (t, J = 3 Hz, 1H), 3.87-3.92 (m, 1H), 3.59-3.63 (m, 1H), 1.97-2.03 (m, 1H), 1.86-1. 89 (m, 2H), 1.59-1.73 (m, 3H).
MALDI-TOF-MS: [M + H] + (calcd.465.34): found.465.34.

(9)2,4−ビス(4−ブロモフェニル)−5−(4−ドデシルフェニル)−3−[4’−(テトラヒドロ−2H−ピラン−2−イルオキシ)ビフェニル−4−イル]シクロペンタ−2,4−ジエノン(化合物9a)の合成
アルゴン雰囲気下、化合物(1.97g,4.30mmol)と化合物(2.0g,4.30mmol)を1,4−ジオキサン(4mL)に溶解し、加熱還流させた。これにテトラブチルアンモニウムヒドロキシドのメタノール溶液(1.0M,2.15mL,2.15mmol)を加えて更に15分間還流させた後、反応混合液を水に注いだ。ジクロロメタンで抽出し、有機層を水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、異性体を含まない化合物9aを茶色固体として得た(1.0g,収率26%)。
HNMR(500MHz,CDCl):δ=7.52(d,J=8.5Hz,2H),7.41(d,J=8.5Hz,2H),7.37(d,J=8.5Hz,2H),7.31(d,J=8.5Hz,2H),7.09−7.16(m,6H),7.06(d,J=8.5Hz,2H),6.92(d,J=8.5Hz,2H),6.82(d,J=8.5Hz,2H),5.46(t,J=3Hz,1H),3.90(m,1H),3.61(m,1H),2.54(m,2H),2.02(m,1H),1.85−1.88(m,2H),1.57−1.68(m,4H),1.24−1.28(m,18H),0.86(t,J=7.0Hz,3H)。
MALDI−TOF−MS:[M+Na](calcd.909.80):found.909.82。
(9) 2,4-bis (4-bromophenyl) -5- (4-dodecylphenyl) -3- [4 ′-(tetrahydro-2H-pyran-2-yloxy) biphenyl-4-yl] cyclopenta-2 Synthesis of 1,4-dienone (Compound 9a ) In an argon atmosphere, Compound 3 (1.97 g, 4.30 mmol) and Compound 8 (2.0 g, 4.30 mmol) were dissolved in 1,4-dioxane (4 mL). Heated to reflux. To this was added a methanol solution of tetrabutylammonium hydroxide (1.0 M, 2.15 mL, 2.15 mmol) and the mixture was further refluxed for 15 minutes, and then the reaction mixture was poured into water. Extraction was performed with dichloromethane, and the organic layer was washed with water and then dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was purified by silica gel column chromatography to obtain Compound 9a containing no isomer as a brown solid (1.0 g, yield 26%).
1 HNMR (500 MHz, CDCl 3 ): δ = 7.52 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8 .5 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.09-7.16 (m, 6H), 7.06 (d, J = 8.5 Hz, 2H), 6 .92 (d, J = 8.5 Hz, 2H), 6.82 (d, J = 8.5 Hz, 2H), 5.46 (t, J = 3 Hz, 1H), 3.90 (m, 1H) , 3.61 (m, 1H), 2.54 (m, 2H), 2.02 (m, 1H), 1.85-1.88 (m, 2H), 1.57-1.68 (m , 4H), 1.24-1.28 (m, 18H), 0.86 (t, J = 7.0 Hz, 3H).
MALDI-TOF-MS: [M + Na] + (calcd. 909.80): found. 909.82.

(10)1,3−ビス(4−ブロモフェニル)−4,5,6−トリス(4−ドデシルフェニル)−2−[4’−メトキシビフェニル−4−イル]ベンゼン(化合物11)の合成
アルゴン雰囲気下、化合物9a(220mg,0.25mmol)と4,4’−ジドデシルフェニルアセチレン(127mg,0.25mmol)をジフェニルエーテル(1.5mL)に溶解させ、20時間加熱還流させた。室温まで冷却後、シリカゲルカラムクロマトグラフィーにより精製し、化合物10を無色固体として得た(200mg,収率63%)。このアルコール体10(200mg,0.16mmol)と、炭酸カリウム(53.6mg,0.39mmol)及び18−クラウン−6−エーテル(21mg,0.078mmol)をTHF(20mL)に溶解し、これにヨードメタン(110mg,0.78mmol)を加えた後、3時間加熱還流させた。反応混合物を水に注ぎ、ジクロロメタンで抽出、有機層を水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物11を無色固体として得た(200mg,収率99%)。
[化合物10
HNMR(500MHz,CDCl):δ=7.36(d,J=8.5Hz,2H),7.10(d,J=8.5Hz,2H),6.96(d,J=8.5Hz,4H),6.77−6.82(dd,J=8.5Hz,J=8.5Hz,4H),6.68(d,J=8.5Hz,4H),6.61−6.65(m,12H),4.73(s,1H),2.30−2.36(m,6H),1.09−1.42(m,60H),0.86(t,J=6.5Hz,9H)。
MALDI−TOF−MS:[M+H](calcd.1289.53):found.1289.53。
[化合物11
HNMR(500MHz,CDCl):δ=7.41(d,J=9.0Hz,2H),7.12(d,J=8.5Hz,2H),6.96(d,J=8.5Hz,4H),6.90(d,J=9.0Hz,2H),6.80(d,J=8.5Hz,4H),6.69(d,J=8.5Hz,4H),6.60−6.66(m,12H),3.80(s,3H),2.31−2.37(m,6H),1.09−1.43(m,60H),0.85−0.88(m,9H)。
MALDI−TOF−MS:[M+H](calcd.1303.56):found.1303.64。
(10) Synthesis of 1,3-bis (4-bromophenyl) -4,5,6-tris (4-dodecylphenyl) -2- [4′-methoxybiphenyl-4-yl] benzene (Compound 11 ) Argon Under an atmosphere, compound 9a (220 mg, 0.25 mmol) and 4,4′-didodecylphenylacetylene (127 mg, 0.25 mmol) were dissolved in diphenyl ether (1.5 mL) and heated to reflux for 20 hours. After cooling to room temperature, the product was purified by silica gel column chromatography to obtain compound 10 as a colorless solid (200 mg, yield 63%). This alcohol 10 (200 mg, 0.16 mmol), potassium carbonate (53.6 mg, 0.39 mmol) and 18-crown-6-ether (21 mg, 0.078 mmol) were dissolved in THF (20 mL). After adding iodomethane (110 mg, 0.78 mmol), the mixture was heated to reflux for 3 hours. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was purified by silica gel column chromatography to obtain Compound 11 as a colorless solid (200 mg, yield 99%).
[Compound 10 ]
1 HNMR (500 MHz, CDCl 3 ): δ = 7.36 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8 .5 Hz, 4H), 6.77-6.82 (dd, J = 8.5 Hz, J = 8.5 Hz, 4H), 6.68 (d, J = 8.5 Hz, 4H), 6.61- 6.65 (m, 12H), 4.73 (s, 1H), 2.30-2.36 (m, 6H), 1.09-1.42 (m, 60H), 0.86 (t, J = 6.5 Hz, 9H).
MALDI-TOF-MS: [M + H] + (calcd. 1289.53): found.
[Compound 11 ]
1 HNMR (500 MHz, CDCl 3 ): δ = 7.41 (d, J = 9.0 Hz, 2H), 7.12 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8 .5 Hz, 4H), 6.90 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 8.5 Hz, 4H), 6.69 (d, J = 8.5 Hz, 4H) 6.60-6.66 (m, 12H), 3.80 (s, 3H), 2.31-2.37 (m, 6H), 1.09-1.43 (m, 60H), 0 .85-0.88 (m, 9H).
MALDI-TOF-MS: [M + H] + (calcd. 1303.56): found. 1303.64.

(11)2,8−ジブロモ−11,14,17−トリドデシル−(4−メトキシフェニル)ヘキサペリヘキサベンゾコロネン(化合物12a)の合成
塩化鉄(III)(1.10g,6.77mmol)のニトロメタン(7mL)溶液を、化合物11(490mg,0.38mmol)のジクロロメタン(70mL)溶液に、アルゴンガスを通じながら滴下した。引き続きアルゴンを反応混合物に通じながら室温で20分間攪拌した後、過剰のメタノール中に注ぎ、生成した沈殿を濾取した。シリカゲルカラムクロマトグラフィーにより精製し、本発明のHBC誘導体(化合物12a)を黄色固体として得た(420mg,収率87%)。
HNMR(500MHz,THF−d):δ=6.07−6.76(m,16H),3.72(s,3H),1.96−2.73(m,6H),1.18−1.35(m,60H),0.83−0.86(m,9H)。
MALDI−TOF−MS:[M+H](calcd.1291.46):found.1291.04。
(11) Synthesis of 2,8-dibromo-11,14,17-tridodecyl- (4-methoxyphenyl) hexaperihexabenzocoronene (compound 12a ) Nitromethane of iron (III) chloride (1.10 g, 6.77 mmol) The (7 mL) solution was added dropwise to a solution of Compound 11 (490 mg, 0.38 mmol) in dichloromethane (70 mL) while passing argon gas. Subsequently, the mixture was stirred at room temperature for 20 minutes while passing argon through the reaction mixture, poured into excess methanol, and the resulting precipitate was collected by filtration. Purification by silica gel column chromatography gave the HBC derivative of the present invention (Compound 12a ) as a yellow solid (420 mg, yield 87%).
1 HNMR (500 MHz, THF-d 8 ): δ = 6.07-6.76 (m, 16H), 3.72 (s, 3H), 1.96-2.73 (m, 6H), 1. 18-1.35 (m, 60H), 0.83-0.86 (m, 9H).
MALDI-TOF-MS: [M + H] + (calcd. 1291.46): found.

ブロモ置換HBC誘導体(化合物12a)から他のメタ型置換様式のHBC誘導体への誘導化(化合物15aの合成)
アルゴン雰囲気下、化合物12a(140mg,0.1mmol)、ヨウ化銅(6mg.0.08mmol)及びジクロロビストリフェニルホスフィンパラジウム(40mg,0.05mmol)をピペリジン(20mL)に溶解し、これにトリイソプロピルシリルアセチレン(2mL)を加えた。反応混合物を80℃で24時間攪拌した後、飽和塩化アンモニウム水溶液に注ぎ、ジクロロメタンで抽出した。有機層を飽和塩化アンモニウム水溶液、水、次いで飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、トリイソプロピルシリルエチニル誘導体(化合物13)を86%の収率で得た。次いで、この化合物13(40mg,0.09mol)をTHF(10mL)に溶解し、テトラブチルアンモニウムフルオリド(74mg,0.19mmol)を加えて、室温で1時間攪拌した後、ジクロロメタンと水を加えて分液した。有機層を水と飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、エチニル誘導体(化合物14)を91%の収率で得た。このエチニル誘導体から、更に種々の置換基を導入することができる。
即ち、例えば、化合物14をTHF/ピペリジン混合溶媒中で、ヨウ化銅とテトラキストリフェニルホスフィンパラジウムを触媒とした薗頭反応を用いて、4−ヨード安息香酸エチルとカップリングさせたところ、化合物15aが96%の収率で得られた。
Derivation from bromo-substituted HBC derivatives (compound 12a) to other meta-type substitutional HBC derivatives (synthesis of compound 15a)
Under an argon atmosphere, compound 12a (140 mg, 0.1 mmol), copper iodide (6 mg.0.08 mmol) and dichlorobistriphenylphosphine palladium (40 mg, 0.05 mmol) were dissolved in piperidine (20 mL), and triisopropyl was dissolved therein. Silylacetylene (2 mL) was added. The reaction mixture was stirred at 80 ° C. for 24 hours, poured into a saturated aqueous ammonium chloride solution, and extracted with dichloromethane. The organic layer was washed with a saturated aqueous ammonium chloride solution, water, and then saturated brine, and then dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent was purified by silica gel column chromatography to obtain a triisopropylsilylethynyl derivative (compound 13 ) in a yield of 86%. Next, this compound 13 (40 mg, 0.09 mol) was dissolved in THF (10 mL), tetrabutylammonium fluoride (74 mg, 0.19 mmol) was added, and the mixture was stirred at room temperature for 1 hour, and then dichloromethane and water were added. And separated. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was purified by silica gel column chromatography to obtain an ethynyl derivative (compound 14 ) in a yield of 91%. Various substituents can be further introduced from this ethynyl derivative.
That is, for example, compound 14 in THF / piperidine mixed solvent, where the copper iodide and tetrakis triphenylphosphine palladium using Sonogashira reaction as a catalyst was ethyl coupled 4-iodobenzoic acid, compound 15a Was obtained in 96% yield.

ブロモ置換HBC誘導体(化合物12a)から他のメタ型置換様式のHBC誘導体への誘導化(化合物19aの合成)
(1)化合物12bの合成
アルゴン雰囲気下、化合物12a(70mg,0.054mmol)を乾燥ジクロロメタン(15mL)に溶解し、三臭化硼素(27mg,0.084mmol)を加えた。反応混合物を室温で一晩攪拌した後、氷−水溶液に注ぎ、ジクロロメタンで抽出した。有機層を水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去して化合物12bの黄色い粗生成物をほぼ定量的に得た(68mg,収率99%)。
MALDI−TOF−MS:[M+H](calcd.1277.44):found.1277.18。
Derivation of bromo-substituted HBC derivatives (compound 12a) into other meta-type substitutional HBC derivatives (synthesis of compound 19a)
(1) Synthesis of Compound 12b Under an argon atmosphere, Compound 12a (70 mg, 0.054 mmol) was dissolved in dry dichloromethane (15 mL), and boron tribromide (27 mg, 0.084 mmol) was added. The reaction mixture was stirred at room temperature overnight, then poured into ice-water solution and extracted with dichloromethane. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. The solvent was distilled off to obtain a yellow crude product of Compound 12b almost quantitatively (68 mg, yield 99%).
MALDI-TOF-MS: [M + H] + (calcd. 1277.44): found. 1277.18.

(2)化合物16の合成
上記(1)で得られた化合物12b(68mg,0.053mmol)と炭酸カリウム(40mg,0.29mmol)及び18−クラウン−6−エーテル(20mg,0.076mmol)をTHF(20mL)に溶解し、これにトリエチレングリコールメチルトシルエーテル(1mL)を加えて、60時間加熱還流させた。反応混合物を水に注ぎ、ジクロロメタンで抽出、有機層を水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、化合物16を黄色固体として得た(62mg,収率82%)。
HNMR(500MHz,CDCl):δ=6.09−6.72(m,16H),4.09(br,2H),3.38(m,2H),3.67−3.76(m,6H),3.57(m,2H),3.39(s,3H),2.12(br,2H),1.98(br,4H),1.11−1.26(m,60H),0.80−0.87(m,9H)。
MALDI−TOF−MS:[M+H](calcd.1423.62):found.1423.10。
(2) Synthesis of Compound 16 Compound 12b (68 mg, 0.053 mmol) obtained in (1) above, potassium carbonate (40 mg, 0.29 mmol) and 18-crown-6-ether (20 mg, 0.076 mmol) were combined. It melt | dissolved in THF (20 mL), Triethylene glycol methyl tosyl ether (1 mL) was added to this, and it was made to heat and reflux for 60 hours. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with water and then dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent was purified by silica gel column chromatography to obtain Compound 16 as a yellow solid (62 mg, yield 82%).
1 HNMR (500 MHz, CDCl 3 ): δ = 6.09-6.72 (m, 16H), 4.09 (br, 2H), 3.38 (m, 2H), 3.67-3.76 ( m, 6H), 3.57 (m, 2H), 3.39 (s, 3H), 2.12 (br, 2H), 1.98 (br, 4H), 1.11-1.26 (m , 60H), 0.80-0.87 (m, 9H).
MALDI-TOF-MS: [M + H] + (calcd. 1423.62): found.1423.10.

(3)化合物17の合成
アルゴン雰囲気下、上記(2)で得られた化合物16(62mg,0.043mmol)とヨウ化銅(6mg,0.08mmol)及びジクロロビストリフェニルホスフィンパラジウム(40mg,0.05mmol)をピペリジン(10mL)に溶解し、これにトリイソプロピルシリルアセチレン(1mL)を加えた。反応混合物を80℃で24時間攪拌した後、飽和塩化アンモニウム水溶液に注ぎ、ジクロロメタンで抽出した。有機層を、飽和塩化アンモニウム水溶液、水、次いで飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、トリイソプロピルシリルエチニル誘導体(化合物17)62mgを得た(収率88%)。
MALDI−TOF−MS:[M+H](calcd.1626.55):found.1626.72。
(3) Synthesis of Compound 17 Compound 16 (62 mg, 0.043 mmol) obtained in (2) above, copper iodide (6 mg, 0.08 mmol) and dichlorobistriphenylphosphine palladium (40 mg, 0. 0) under an argon atmosphere. (05 mmol) was dissolved in piperidine (10 mL), and triisopropylsilylacetylene (1 mL) was added thereto. The reaction mixture was stirred at 80 ° C. for 24 hours, poured into a saturated aqueous ammonium chloride solution, and extracted with dichloromethane. The organic layer was washed with a saturated aqueous ammonium chloride solution, water, and then with saturated brine, and then dried over anhydrous magnesium sulfate. The residue obtained by evaporating the solvent was purified by silica gel column chromatography to obtain 62 mg of a triisopropylsilylethynyl derivative (Compound 17 ) (yield 88%).
MALDI-TOF-MS: [M + H] + (calcd. 1626.25): found. 1626.72.

(4)化合物18の合成
上記(3)で得られた化合物17(50mg,0.03mol)をTHF(20mL)に溶解させ、これにテトラブチルアンモニウムフルオリド(74mg,0.19mmol)を加えて室温で1時間攪拌した。反応後、反応液にジクロロメタンと水を加えて分液し、有機層を水と飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィーにより精製し、エチニル誘導体(化合物18)32mgを得た(収率79%)。
HNMR(500MHz,CDCl):δ=6.95−7.33(m,16H),4.28(br,2H),4.01(m,2H),3.74−3.81(m,6H),3.63(m,2H),3.43(s,3H),3.09(s,2H),2.33−2.37(m,6H),1.17−1.38(m,60H),0.81−0.87(m,9H)。 MALDI−TOF−MS:[M+H](calcd.1313.87):found.1313.32。
(4) Synthesis of Compound 18 Compound 17 (50 mg, 0.03 mol) obtained in (3) above was dissolved in THF (20 mL), and tetrabutylammonium fluoride (74 mg, 0.19 mmol) was added thereto. Stir at room temperature for 1 hour. After the reaction, dichloromethane and water were added to the reaction solution for liquid separation, and the organic layer was washed with water and saturated brine, and then dried over anhydrous magnesium sulfate. The residue obtained by distilling off the solvent was purified by silica gel column chromatography to obtain 32 mg of an ethynyl derivative (compound 18 ) (yield 79%).
1 HNMR (500 MHz, CDCl 3 ): δ = 6.95-7.33 (m, 16H), 4.28 (br, 2H), 4.01 (m, 2H), 3.74-3.81 ( m, 6H), 3.63 (m, 2H), 3.43 (s, 3H), 3.09 (s, 2H), 2.33-2.37 (m, 6H), 1.17-1 .38 (m, 60H), 0.81-0.87 (m, 9H). MALDI-TOF-MS: [M + H] + (calcd. 1313.87): found.

(5)化合物19aの合成
上記(4)で得られたエチニル誘導体(化合物18)から、更に種々の置換基を導入することができる。即ち、例えば、化合物18をTHF/ピペリジン混合溶媒中で、ヨウ化銅とテトラキストリフェニルホスフィンパラジウムを触媒とした薗頭反応を用いて、4−ヨード安息酸エチルとカップリングさせることにより、化合物19aが96%の収率で得られた。
HNMR(500MHz,THF−d):δ=7.99(d,J=7.5Hz,4H),6.83−7.53(m,20H),4.38(m,4H),4.07(m,2H),3.86(m,2H),3.60−3.70(m,8H),3.33(s,3H),2.21(m,2H),1.18−1.49(m,70H),0.83−0.84(m,9H)。 MALDI−TOF−MS:[M+H](calcd.1610.19):found.1610.42。
(5) Synthesis of Compound 19a Various substituents can be further introduced from the ethynyl derivative (Compound 18 ) obtained in (4) above. That is, for example, the compound 18 in THF / piperidine mixture solvent, by copper iodide and tetrakis triphenylphosphine palladium using Sonogashira reaction as a catalyst is 4-iodo repose ethyl coupling, compound 19a Was obtained in 96% yield.
1 HNMR (500 MHz, THF-d 8 ): δ = 7.99 (d, J = 7.5 Hz, 4H), 6.83-7.53 (m, 20H), 4.38 (m, 4H), 4.07 (m, 2H), 3.86 (m, 2H), 3.60-3.70 (m, 8H), 3.33 (s, 3H), 2.21 (m, 2H), 1 18-1.49 (m, 70H), 0.83-0.84 (m, 9H). MALDI-TOF-MS: [M + H] + (calcd. 1610.19): found. 1610.42.

ベシクル状ナノ構造体形成
化合物19a(0.16mg,0.1×10−3mmol)をTHF(0.75mL)に溶解させ、イオン交換水(0.25mL)を加えて、超音波を1時間照射した。この混合物を室温で1時間以上放置すると、ベシクル状構造体が生成した。その電界放射型走査型電子顕微鏡(FE−SEM)画像を図4に示す。
Vesicle-like nanostructure-forming compound 19a (0.16 mg, 0.1 × 10 −3 mmol) was dissolved in THF (0.75 mL), ion-exchanged water (0.25 mL) was added, and ultrasonic waves were applied for 1 hour. Irradiated. When this mixture was allowed to stand at room temperature for 1 hour or longer, a vesicle-like structure was produced. The field emission scanning electron microscope (FE-SEM) image is shown in FIG.

本発明の一般式[1]で表されるヘキサペリヘキサベンゾコロネン誘導体、及び該化合物から誘導される、一般式[2]で表されるヘキサペリヘキサベンゾコロネン誘導体を始めとする種々のヘキサペリヘキサベンゾコロネン誘導体は、有機溶剤のゲル化剤、光電子デバイス材料、非線形光学材料、無機有機複合材料の鋳型材料、太陽電池材料、燃料電池用材料等、種々の用途が期待される。   The hexaperihexabenzocoronene derivative represented by the general formula [1] of the present invention and various hexaperiper derivatives derived from the compound, such as a hexaperihexabenzocoronene derivative represented by the general formula [2]. Hexabenzocoronene derivatives are expected to have various uses such as gelling agents for organic solvents, optoelectronic device materials, nonlinear optical materials, inorganic / organic composite material mold materials, solar cell materials, fuel cell materials, and the like.

本発明の一般式[1]で表されるヘキサペリヘキサベンゾコロネン誘導体の一つである化合物12aの紫外吸収スペクトルである。It is an ultraviolet absorption spectrum of the compound 12a which is one of the hexaperihexabenzocoronene derivatives represented by the general formula [1] of the present invention. 本発明の一般式[1]で表されるヘキサペリヘキサベンゾコロネン誘導体の一つである化合物12aの蛍光スペクトルである。It is a fluorescence spectrum of the compound 12a which is one of the hexaperihexabenzocoronene derivatives represented by the general formula [1] of the present invention. 本発明の一般式[1]で表されるヘキサペリヘキサベンゾコロネン誘導体の一つである化合物12bの自己集積体のFE−SEM画像(図面に代わる写真)である。It is a FE-SEM image (photograph replaced with drawing) of the self-assembly body of the compound 12b which is one of the hexaperihexabenzocoronene derivatives represented by General formula [1] of this invention. 本発明の一般式[2]で表されるヘキサペリヘキサベンゾコロネン誘導体の一つである化合物19aの自己集積体のFE−SEM画像(図面に代わる写真)である。(実施例4)It is a FE-SEM image (photograph replaced with drawing) of the self-assembly body of the compound 19a which is one of the hexaperihexabenzocoronene derivatives represented by General formula [2] of this invention. (Example 4) 本発明の一般式[2]で表されるヘキサペリヘキサベンゾコロネン誘導体の一つである化合物19bの自己集積体のFE−SEM画像(図面に代わる写真)である。It is a FE-SEM image (photograph replaced with drawing) of the self-assembly body of the compound 19b which is one of the hexaperihexabenzocoronene derivatives represented by General formula [2] of this invention. 本発明の一般式[2]で表されるヘキサペリヘキサベンゾコロネン誘導体の一つである化合物15bの自己集積体のFE−SEM画像(図面に代わる写真)である。It is a FE-SEM image (photograph replaced with drawing) of the self-assembly body of the compound 15b which is one of the hexaperihexabenzocoronene derivatives represented by General formula [2] of this invention.

Claims (25)

下記一般式[1]
[式中、Rはアルキル基を表し、RはCOR又はCOCHCH(OCHCHORを表し(但し、Rは水素原子又はアルキル基を表し、nは正の整数を表す。)、Xはハロゲン原子を表す。]
で表されるヘキサペリヘキサベンゾコロネン誘導体。
The following general formula [1]
[Wherein R 1 represents an alkyl group, R 2 represents C 6 H 4 OR 3 or C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OR 3 (provided that R 3 represents a hydrogen atom or Represents an alkyl group, n represents a positive integer), and X represents a halogen atom. ]
A hexaperihexabenzocoronene derivative represented by:
一般式[1]において、Xが臭素原子又はヨウ素原子である、請求項1に記載のヘキサペリヘキサベンゾコロネン誘導体。   The hexaperihexabenzocoronene derivative according to claim 1, wherein, in the general formula [1], X is a bromine atom or an iodine atom. 一般式[1]において、Xが臭素原子である、請求項1に記載のヘキサペリヘキサベンゾコロネン誘導体。   The hexaperihexabenzocoronene derivative according to claim 1, wherein, in the general formula [1], X is a bromine atom. 一般式[1]において、Rが炭素数10〜30のアルキル基である、請求項1〜3の何れかに記載のヘキサペリヘキサベンゾコロネン誘導体。 The hexaperihexabenzocoronene derivative according to any one of claims 1 to 3, wherein in the general formula [1], R 1 is an alkyl group having 10 to 30 carbon atoms. 一般式[1]において、Rが炭素数10〜20のアルキル基である、請求項1〜3の何れかに記載のヘキサペリヘキサベンゾコロネン誘導体。 The hexaperihexabenzocoronene derivative according to any one of claims 1 to 3, wherein in the general formula [1], R 1 is an alkyl group having 10 to 20 carbon atoms. 一般式[1]において、Rが嵩高いアルキル基である、請求項1〜3の何れかに記載のヘキサペリヘキサベンゾコロネン誘導体。 The hexaperihexabenzocoronene derivative according to any one of claims 1 to 3, wherein in the general formula [1], R 1 is a bulky alkyl group. 一般式[1]において、RがCOH、COCH、COCHCH(OCHCHOH又はCOCHCH(OCHCHOCHである、請求項1〜6の何れかに記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [1], R 2 is C 6 H 4 OH, C 6 H 4 OCH 3 , C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OH, or C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) a n OCH 3, hexa peri hexabenzocoronene derivative according to any one of claims 1 to 6. 請求項1に記載のヘキサペリヘキサベンゾコロネン誘導体と1以上の溶剤とからなる溶液中で形成されるナノサイズの自己集積体。   A nano-sized self-assembly formed in a solution comprising the hexaperihexabenzocoronene derivative according to claim 1 and one or more solvents. リボン状又はチューブ状である、請求項8に記載の自己集積体。   The self-assembly body according to claim 8, which is in the form of a ribbon or a tube. 下記一般式[2]
[式中、Rはアルキル基を表し、RはCOR又はCOCHCH(OCHCHORを表し(但し、Rは水素原子又はアルキル基を表し、nは正の整数を表す。)、Rは−A−COを表す(但し、Aは2価の炭化水素基を表し、Rは水素原子を表す。)。]
で表されるヘキサペリヘキサベンゾコロネン誘導体。
The following general formula [2]
[Wherein R 1 represents an alkyl group, R 2 represents C 6 H 4 OR 3 or C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OR 3 (provided that R 3 represents a hydrogen atom or Represents an alkyl group, and n represents a positive integer.), R 4 represents -A-CO 2 R 5 (wherein A represents a divalent hydrocarbon group, and R 5 represents a hydrogen atom). . ]
A hexaperihexabenzocoronene derivative represented by:
一般式[2]において、Rが−C≡C−C−COOH、−C≡C−C−COCH又は−C≡C−C−COである、請求項10に記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 4 is —C≡C—C 6 H 4 —COOH, —C≡C—C 6 H 4 —CO 2 CH 3 or —C≡C—C 6 H 4 —CO 2 C. a 2 H 5, hexa peri hexabenzocoronene derivative according to claim 10. 一般式[2]において、Rが炭素数10〜30のアルキル基である、請求項10又は11に記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 1 is an alkyl group having 10 to 30 carbon atoms, hexa peri hexabenzocoronene derivative according to claim 10 or 11. 一般式[2]において、Rが炭素数10〜20のアルキル基である、請求項10又は11に記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 1 is an alkyl group having 10 to 20 carbon atoms, hexa peri hexabenzocoronene derivative according to claim 10 or 11. 一般式[2]において、Rが嵩高いアルキル基である、請求項10又は11に記載のヘキサペリヘキサベンゾコロネン誘導体。 The hexaperihexabenzocoronene derivative according to claim 10 or 11, wherein in general formula [2], R 1 is a bulky alkyl group. 一般式[2]において、RがCOH、COCH、COCHCH(OCHCHOH又はCOCHCH(OCHCHOCHである、請求項10〜14の何れかに記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 2 is C 6 H 4 OH, C 6 H 4 OCH 3 , C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OH, or C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2) a n OCH 3, hexa peri hexabenzocoronene derivative according to any one of claims 10 to 14. 請求項10に記載のヘキサペリヘキサベンゾコロネン誘導体と1以上の溶剤とからなる溶液中で形成されるナノサイズの自己集積体。   A nano-sized self-assembled body formed in a solution comprising the hexaperihexabenzocoronene derivative according to claim 10 and one or more solvents. リボン状又はチューブ状である、請求項16に記載の自己集積体。   The self-assembly body according to claim 16, which is in the form of a ribbon or a tube. 下記一般式[2]
[式中、Rはアルキル基を表し、RはCOR又はCOCHCH(OCHCHORを表し(但し、Rは水素原子又はアルキル基を表し、nは正の整数を表す。)、Rは−A−COを表す(但し、Aは2価の炭化水素基を表し、Rはアルキル基を表す。)。]
で表されるヘキサペリヘキサベンゾコロネン誘導体。
The following general formula [2]
[Wherein R 1 represents an alkyl group, R 2 represents C 6 H 4 OR 3 or C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OR 3 (provided that R 3 represents a hydrogen atom or Represents an alkyl group, and n represents a positive integer.), R 4 represents -A-CO 2 R 5 (where A represents a divalent hydrocarbon group, and R 5 represents an alkyl group). . ]
A hexaperihexabenzocoronene derivative represented by:
一般式[2]において、Rが−C≡C−C−COOH、−C≡C−C−COCH又は−C≡C−C−COである、請求項18に記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 4 is —C≡C—C 6 H 4 —COOH, —C≡C—C 6 H 4 —CO 2 CH 3 or —C≡C—C 6 H 4 —CO 2 C. a 2 H 5, hexa peri hexabenzocoronene derivative according to claim 18. 一般式[2]において、Rが炭素数10〜30のアルキル基である、請求項18又は19に記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 1 is an alkyl group having 10 to 30 carbon atoms, hexa peri hexabenzocoronene derivative according to claim 18 or 19. 一般式[2]において、Rが炭素数10〜20のアルキル基である、請求項18又は19に記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 1 is an alkyl group having 10 to 20 carbon atoms, hexa peri hexabenzocoronene derivative according to claim 18 or 19. 一般式[2]において、Rが嵩高いアルキル基である、請求項18又は19に記載のヘキサペリヘキサベンゾコロネン誘導体。 The hexaperihexabenzocoronene derivative according to claim 18 or 19, wherein, in the general formula [2], R 1 is a bulky alkyl group. 一般式[2]において、RがCOH、COCH、COCHCH(OCHCHOH又はCOCHCH(OCHCHOCHである、請求項18〜22の何れかに記載のヘキサペリヘキサベンゾコロネン誘導体。 In the general formula [2], R 2 is C 6 H 4 OH, C 6 H 4 OCH 3 , C 6 H 4 OCH 2 CH 2 (OCH 2 CH 2 ) n OH, or C 6 H 4 OCH 2 CH 2 (OCH a 2 CH 2) n OCH 3, hexa peri hexabenzocoronene derivative according to any one of claims 18 to 22. 請求項18に記載のヘキサペリヘキサベンゾコロネン誘導体と1以上の溶剤とからなる溶液中で形成されるナノサイズの自己集積体。   A nano-sized self-assembled body formed in a solution comprising the hexaperihexabenzocoronene derivative according to claim 18 and one or more solvents. 球状又はカプセル様である、請求項24に記載の自己集積体。   25. Self-assembled body according to claim 24, which is spherical or capsule-like.
JP2004028157A 2004-02-04 2004-02-04 New hexaperihexabenzocoronene derivatives Expired - Fee Related JP4018066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028157A JP4018066B2 (en) 2004-02-04 2004-02-04 New hexaperihexabenzocoronene derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028157A JP4018066B2 (en) 2004-02-04 2004-02-04 New hexaperihexabenzocoronene derivatives

Publications (2)

Publication Number Publication Date
JP2005220047A JP2005220047A (en) 2005-08-18
JP4018066B2 true JP4018066B2 (en) 2007-12-05

Family

ID=34995960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028157A Expired - Fee Related JP4018066B2 (en) 2004-02-04 2004-02-04 New hexaperihexabenzocoronene derivatives

Country Status (1)

Country Link
JP (1) JP4018066B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1883950B1 (en) * 2005-05-21 2012-07-25 Merck Patent GmbH Oligomeric polyacene and semiconductor formulation
JP5004151B2 (en) * 2006-03-10 2012-08-22 独立行政法人科学技術振興機構 Novel hexabenzocoronene derivative and photoconductive nanotube comprising the same
JP5200523B2 (en) * 2007-12-18 2013-06-05 株式会社豊田中央研究所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2005220047A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
Kanie et al. Self-assembly of thermotropic liquid-crystalline folic acid derivatives: hydrogen-bonded complexes forming layers and columnsBasis of a presentation given at Materials Discussion No. 4, 11–14 September 2001, Grasmere, UK.
TW200305574A (en) Process for the preparation of ring compounds
JP3985025B2 (en) Amphiphilic compound, soluble carbon nanotube composite
JP4005571B2 (en) Amphiphilic hexaperihexabenzocoronene derivatives
JP2007502251A (en) Monomers, oligomers, and polymers of 2-functionalized and 2,7-difunctionalized carbazoles
JP6369656B2 (en) Method for producing 2-hydrazinobenzothiazole derivative
JP4099526B2 (en) Separation and purification of porphyrin dimer derivatives and carbon nanotubes using them
JP4018066B2 (en) New hexaperihexabenzocoronene derivatives
Su et al. Synthesis and self-assembly of dichalcone substituted carbazole-based low-molecular mass organogel
Guan et al. Synthesis and properties of novel liquid crystalline materials with super high birefringence: styrene monomers bearing diacetylenes, naphthyl, and nitrogen-containing groups
Dobarro et al. Synthesis of symmetric and asymmetric carbazolyl monomers and their siloxane polymers. Effect of the 2, 3, 6, 7, 9‐substitution in the carbazole unit on its mesomorphic behaviour
Nishii et al. Thermotropic liquid–crystalline peptide derivatives: oligo (glutamic acid) s forming hydrogen-bonded columns
Zhang et al. Design, synthesis, and characterisation of symmetrical bent-core liquid crystalline dimers with diacetylene spacer
JP5381976B2 (en) Liquid porphyrin derivative and method for producing the same
JP4884284B2 (en) Tubular nano-sized self-assembled body in which hexaperihexabenzocoronene (HBC) derivatives substituted with fluorine-containing groups are oriented in the plane direction, and method for producing the same
US5641431A (en) Silacyclohexanone compound and a method of preparing a silacyclohexane-type liquid crystal composition containing it
He et al. Ultrasound-promoted chiral fluorescent organogel
JP2011068635A (en) Composite comprising liquid porphyrin derivative and nanocarbon material, manufacturing method of the same, charge-transporting material and electronic article
JP5277776B2 (en) Method for producing liquid crystal compound
JP4339207B2 (en) Amphiphilic porphyrin-fullerene dimer and nanotube structure formed by self-assembly thereof
Wang et al. Influence of monohalogenated flexible tails on the mesomorphism of triphenylene-based discotics
JPH0341473B2 (en)
JP2788037B2 (en) Liquid crystal device
JP2012051862A (en) Liquid crystalline compound, oriented monomolecular film and method for producing oriented monomolecular film
JP4210753B2 (en) Metal complex dendrimer and its use

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees