JP4017297B2 - Variable valve operating device for internal combustion engine - Google Patents

Variable valve operating device for internal combustion engine Download PDF

Info

Publication number
JP4017297B2
JP4017297B2 JP24134099A JP24134099A JP4017297B2 JP 4017297 B2 JP4017297 B2 JP 4017297B2 JP 24134099 A JP24134099 A JP 24134099A JP 24134099 A JP24134099 A JP 24134099A JP 4017297 B2 JP4017297 B2 JP 4017297B2
Authority
JP
Japan
Prior art keywords
variable mechanism
control
engine
variable
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24134099A
Other languages
Japanese (ja)
Other versions
JP2001065321A (en
Inventor
信 中村
直樹 岡本
信一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP24134099A priority Critical patent/JP4017297B2/en
Publication of JP2001065321A publication Critical patent/JP2001065321A/en
Application granted granted Critical
Publication of JP4017297B2 publication Critical patent/JP4017297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の可変動弁装置、とりわけ、吸気弁や排気弁である機関弁のリフト特性を制御する第1可変機構とバルブタイミングを制御する第2可変機構とを備えた可変動弁装置に関する。
【0002】
【従来の技術】
周知のように、例えば吸気弁のバルブリフト特性を可変にする可変リフト機構とバルブタイミング特性を可変にする可変バルブタイミング機構とを併用してバルブリフト特性の自由度を向上させて機関運転性能を大幅に高める可変動弁装置が従来から種々提供されている(特開平8−177434号公報等参照)。
【0003】
すなわち、この可変動弁装置は、カムシャフトに設けられた低速用カムと高速用カムを、機関運転状態に応じて選択的に切り換えて、機関弁である吸気弁あるいは排気弁のカムリフトを可変制御するバルブリフト制御機構と、カムシャフトとクランクシャフトの相対回動位相を機関運転状態に応じて変換して機関弁の開閉時期を可変制御するバルブタイミング制御機構とを備えている。
【0004】
また、この装置は、例えば前記バルブタイミング制御機構が故障した場合に、バルブリフト制御機構によって低速用カム側に強制的に切り換えるか、あるいはバルブリフト制御機構が故障した場合には、バルブタイミング制御機構によって機関弁の開閉時期を制御してバルブリフト作動中心が上死点から離れる方向にそれぞれ制御することにより、吸気弁と排気弁との干渉を回避する制御機構を備えている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記従来の可変動弁装置にあっては、前述のように各制御機構が故障した際には、吸気弁と排気弁との干渉などを回避するなどのメカニカルな不都合は回避できるものの、かかる故障時における機関性能についての配慮が不十分であった。
【0006】
つまり、一方の制御機構が故障した際には、バルブリフト制御機構によって一律に低速用カムに選択的に切り換えるか、あるいはバルブリフト制御機構によってバルブリフト作動中心を一律に上死点から離れる方向に制御するため、必ず吸気弁と排気弁のいわゆるバルブオーバラップが小さくなってしまう。したがって、機関高回転の運転領域では機関の出力が大幅に低下してしまい、機関性能を十分に発揮することが困難になる。
【0007】
【課題を解決するための手段】
本発明は、前記従来の可変動弁装置の実情に鑑みて案出されたもので、請求項1記載の発明は、機関弁の少なくともリフト特性を機関運転状態に応じて連続的に可変制御する第1可変機構と、機関弁の少なくとも開閉タイミング特性を機関運転状態に応じて連続的に可変制御する第2可変機構と、前記第1可変機構あるいは第2可変機構の現在の作動位置を検出する位置検出手段と、現在の機関運転状態に基づいて前記第1可変機構あるいは第2可変機構の制御目標値を決定する制御目標値決定手段と、前記第1可変機構あるいは第2可変機構のいずれか一方が故障した際に、前記位置検出手段によって検出された一方の可変機構の故障時の位置に基づいて他方の可変機構の制御範囲を所定の範囲に設定すると共に、この設定された所定の制御範囲内で前記検出手段によって検出した前記他方の可変機構の作動位置と前記制御目標値決定手段によって決定された制御目標値とに基づいて、前記他方の可変機構を連続的あるいは段階的にフィードバック制御する制御手段と、を備えたことを特徴としている。
【0008】
この発明によれば、機関の所定の運転領域で、例えば第1可変機構が故障した場合は、位置検出手段がその故障時の位置を検出してその情報信号を制御手段に出力する。これにより、制御手段は、従来のように第1可変機構により単に固定的な低速用カムを選択制御させるのではなく、第1可変機構の故障時の位置に応じてメカニカルな各機関弁間の干渉等を回避できる所定範囲内において第2可変機構を可及的に制御する。したがって、機関性能を機関運転状態に応じて可能な限り発揮させることができる。
請求項2記載の発明は、機関弁の少なくともリフト特性を機関運転状態に応じて連続的に可変制御する第1可変機構と、機関弁の少なくとも開閉タイミング特性を機関運転状態に応じて連続的に可変制御する第2可変機構と、前記第1可変機構の現在の作動位置を検出する第1位置検出手段と、前記第2可変機構の現在の作動位置を検出する第2位置検出手段と、現在の機関運転状態に基づいて前記第1可変機構の制御目標値を決定する第1制御目標値決定手段と、前記第2可変機構が故障した際に、前記第2位置検出手段によって検出された第2可変機構の故障時の位置に基づいて前記第1可変機構の制御範囲を所定の制御範囲に設定すると共に、この設定された所定の制御範囲内で、前記第1位置検出手段で検出した作動位置と前記第1制御目標値決定手段によって決定された制御目標値とに基づいて、前記第1可変機構を連続的あるいは段階的にフィードバック制御する制御手段と、を備えたことを特徴としている。
【0009】
請求項3記載の発明は、機関弁の少なくともリフト特性を機関運転状態に応じて連続的に可変制御する第1可変機構と、機関弁の少なくとも開閉タイミング特性を機関運転状態に応じて連続的に可変制御する第2可変機構と、前記第1可変機構の現在の作動位置を検出する第1位置検出手段と、前記第2可変機構の現在の作動位置を検出する第2位置検出手段と、現在の機関運転状態に基づいて前記第2可変機構の制御目標値を決定する第2制御目標値決定手段と、前記第1可変機構が故障した際に、前記第1位置検出手段によって検出された第1可変機構の故障時の位置に基づいて前記第2可変機構の制御範囲を所定の制御範囲に設定すると共に、この設定した所定の制御範囲内で、前記第2位置検出手段によって検出した作動位置と前記第2制御目標値決定手段によって決定された制御目標値とに基づいて、前記第2可変機構を連続的あるいは段階的にフィードバック制御する制御手段と、を備えたことを特徴としている。
【0010】
請求項4記載の発明は、前記第1可変機構が、外周に駆動カムを有する駆動軸と、支軸に揺動自在に支持されて、揺動することによって機関弁を開閉作動する揺動カムと、一端部が前記駆動カムに回動自在に連係すると共に、他端部が前記揺動カムに回転自在に連係し、揺動中心が制御カムによって可変制御されるロッカアームとを備えたことを特徴としている。
【0011】
請求項5記載の発明は、前記第1可変機構が、外周に駆動カムを有する駆動軸と、一端部が前記駆動カムの外周に回転自在に連係するリンクアームと、一端部がリンクアームの他端部に回転自在に連係しかつ揺動中心が制御カムによって可変制御されるロッカアームと、機関弁を開閉作動する揺動カムと、該揺動カムとロッカアームの他端部とを機械的に回転自在に連係し、前記揺動カムの最大揺動範囲をロッカアームの揺動範囲内に規制する連係部材と、前記制御カムを機関運転状態に応じて制御軸を介して回転制御するアクチュエータとを備えていることを特徴としている。
【0012】
【発明の実施の形態】
図1は本発明に係る可変動弁装置を吸気側に適用した実施形態を示し、シリンダヘッド11に図外のバルブガイドを介して摺動自在に設けられた1気筒あたり2つの吸気弁12,12を備え、かつ該各吸気弁12,12のバルブリフトを機関運転状態に応じて可変にする第1可変機構1と、各吸気弁12,12のバルブタイミングを機関運転状態に応じて可変にする第2可変機構2とを備えている。
【0013】
前記第1可変機構1は、図1〜図3に示すように、シリンダヘッド11上部の軸受14に回転自在に支持された中空状の駆動軸13と、該駆動軸13に圧入などによって固設された偏心回転カムである2つの駆動カム15,15と、駆動軸13に揺動自在に支持されて、各吸気弁12,12の上端部に配設されたバルブリフター16,16の平坦な上面16a,16aに摺接して各吸気弁12,12を開作動させる揺動カム17,17と、駆動カム15と揺動カム17,17との間に連係されて、駆動カム15の回転力を揺動カム17,17の揺動力として伝達する伝達機構18と、該伝達機構18の作動位置を可変制御にする制御機構19とを備えている。
【0014】
前記駆動軸13は、機関前後方向に沿って配置されていると共に、一端部に設けられた後述する可変機構2のタイミングスプロケット40に巻装された図外のタイミングチェーン等を介して機関のクランク軸から回転力が伝達されている。
【0015】
前記軸受14は、図1に示すようにシリンダヘッド11の上端部に設けられて、駆動軸13の上部を支持するメインブラケット14aと、該メインブラケット14aの上端部に設けられて、後述する制御軸32を回転自在に支持するサブブラケット14bとを有し、両ブラケット14a,14bが一対のボルト14c,14cによって上方から共締め固定されている。
【0016】
前記両駆動カム15は、図1〜図3に示すようにほぼリング状を呈し、カム本体15aと、該カム本体15aの外端面に一体に設けられた筒状部15bとからなり、内部軸方向に駆動軸挿通孔15cが貫通形成されていると共に、カム本体15aの軸心Xが駆動軸13の軸心Yから径方向へ所定量だけオフセットしている。また、この各駆動カム15は、駆動軸13に対し前記両バルブリフター16,16に干渉しない両外側に駆動軸挿通孔15cを介して圧入固定されていると共に、両方のカム本体15a,15aの外周面15d,15dが同一のカムプロフィールに形成されている。
【0017】
前記揺動カム17は、図2に示すようにほぼ横U字形状を呈し、一端部側の円環状の基端部20には駆動軸13が嵌挿されて回転自在に支持される支持孔20aが貫通形成されていると共に、他端部のカムノーズ部21にピン孔21aが貫通形成されている。また、揺動カム17の下面には、カム面22が形成され、基端部20側の基円面22aと該基円面22aからカムノーズ部21側に円弧状に延びるランプ面22bと該ランプ面22bの先端側に有するリフト面22cとが形成されており、該基円面22aとランプ面22b及びリフト面22cとが、揺動カム17の揺動位置に応じて各バルブリフター16の上面16a所定位置に当接するようになっている。
【0018】
前記伝達機構18は、図2に示すように駆動軸13の上方に配置されたロッカアーム23と、該ロッカアーム23の一端部23aと駆動カム15とを連係するリンクアーム24と、ロッカアーム23の他端部23bと揺動カム17とを連係する連係部材であるリンクロッド25とを備えている。
【0019】
前記各ロッカアーム23は、図3に示すように、平面からみてほぼクランク状に折曲形成され、中央に有する筒状基部23cが後述する制御カム33に回転自在に支持されている。また、各基部23cの各外端部に突設された前記一端部23aには、図2及び図3にも示すように、リンクアーム24と相対回転自在に連結するピン26が挿通されるピン孔23dが貫通形成されている一方、各基部23cの各内端部に夫々突設された前記他端部23bには、各リンクロッド25の一端部25aと相対回転自在に連結するピン27が挿通されるピン孔23eが形成されている。
【0020】
また、前記リンクアーム24は、比較的大径な円環状の基部24aと、該基部24aの外周面所定位置に突設された突出端24bとを備え、基部24aの中央位置には、前記駆動カム15のカム本体15aの外周面に回転自在に嵌合する嵌合孔24cが形成されている一方、突出端24bには、前記ピン26が回転自在に挿通するピン孔24dが貫通形成されている。
【0021】
さらに、前記リンクロッド25は、図2にも示すように所定長さのほぼく字形状に折曲形成され、両端部25a,25bには、図3にも示すようにピン挿通孔25c,25dが形成されており、この各ピン挿通孔25c,25dに、前記ロッカアーム23の他端部23bに有するピン孔23eと揺動カム17のカムノーズ部21に有するピン孔21aにそれぞれ挿通した各ピン27,28の端部が回転自在に挿通している。
【0022】
そして、このリンクロッド25は、前記揺動カム17の最大揺動範囲を前記ロッカアーム23の揺動範囲内に規制するようになっている。
【0023】
尚、各ピン26,27,28の一端部には、リンクアーム24やリンクロッド25の軸方向の移動を規制するスナップリング29,30,31が設けられている。
【0024】
前記制御機構19は、機関前後方向に配設された前記制御軸32と、該制御軸32の外周に固定されてロッカアーム23の揺動支点となる制御カム33と、制御軸32の回転位置を制御する電動アクチュエータである電動モータ34とから構成されている。
【0025】
前記制御軸32は、駆動軸13と並行に設けられて、前述のように軸受14のメインブラケット14a上端部の軸受溝とサブブラケット14bとの間に回転自在に支持されている。一方、前記各制御カム33は、夫々円筒状を呈し、図2に示すように軸心P1位置が制御軸32の軸心P2からα分だけ偏倚している。
【0026】
前記電動モータ34は、駆動シャフト34aの先端部に設けられた第1平歯車35と制御軸32の後端部に設けられた第2平歯車36との噛合いを介して、制御軸32に回転力を伝達するようになっていると共に、機関の運転状態を検出するコントローラ37からの制御信号によって駆動するようになっている。
【0027】
一方、前記第2可変機構2は、図1に示すように前記駆動軸13の先端部側に設けられ、図外のタイミングチェーンによって機関のクランク軸から回転力が伝達されるタイミングスプロケット40と、駆動軸13の先端部にボルト41によって軸方向から固定されたスリーブ42と、タイミングスプロケット40とスリーブ42との間に介装された筒状歯車43と、該筒状歯車43を駆動軸13の前後軸方向へ駆動させる駆動機構である油圧回路44とから構成されている。
【0028】
前記タイミングスプロケット40は、筒状本体40aの後端部にチェーンが巻装されるスプロケット部40bがボルト45により固定されていると共に、筒状本体40aの前端開口がフロントカバー40cによって閉塞されている。また、筒状本体40aの内周面には、はす歯形のインナ歯46が形成されている。
【0029】
前記スリーブ42は、後端側に駆動軸13の先端部が嵌合する嵌合溝が形成されていると共に、前端部の保持溝内にはフロントカバー40cを介してタイミングスプロケット40を前方に付勢するコイルスプリング47が装着されている。また、スリーブ42の外周面には、はす歯形のアウタ歯48が形成されている。
【0030】
前記筒状歯車43は、軸直角方向から2分割されて前後の歯車構成部がピンとスプリングによって互いに接近する方向に付勢されていると共に、内外周面には前記各インナ歯46とアウタ歯48に噛合いするはす歯形の内外歯が形成されており、前後に形成された第1,第2油圧室49,50へ相対的に供給される油圧によって各歯間を摺接しながら前後軸方向へ移動するようになっている。また、この筒状歯車43は、フロントカバー40cに突当った最大前方移動位置で吸気弁12を最遅角位置に制御する一方、最大後方移動位置で最進角位置に制御するようになっている。さらに、第2油圧室50内に弾装されたリターンスプリング51によって第1油圧室49の油圧が供給されない場合に最大前方移動位置に付勢されるようになっている。
【0031】
前記油圧回路44は、図外のオイルパンと連通するオイルポンプ52の下流側に接続されたメインギャラリ53と、該メインギャラリ53の下流側で分岐して前記第1,第2油圧室49,50に接続された第1,第2油圧通路54,55と、前記分岐位置に設けられたソレノイド型の流路切換弁56と、該流路切換弁56に接続されたドレン通路57とから構成されている。
【0032】
前記流路切換弁56は、前記第1可変機構1の電動モータ34を駆動制御する同じコントローラ37からの制御信号によって切換駆動されるようになっている。
【0033】
前記コントローラ37は、クランク角センサからの機関回転数信号、エアフローメータからの吸気流量信号(負荷)及び機関油温センサなどの各種のセンサからの検出信号に基づいて現在の機関運転状態を演算等により検出すると共に、制御軸32の現在の回転位置を検出する第1位置検出センサ58や駆動軸13とタイミングスプロケット40との相対回動位置を検出する第2位置検出センサ59からの検出信号に基づいて、前記電動モータ34及び流路切換弁56に制御信号を出力していると共に、いずれか一方の可変機構1、2が故障してロックしてしまった場合に、該一方の可変機構のロック位置に応じて他方の可変機構を所定範囲内で連続的に可変制御する制御手段である制御回路を備えている。
【0034】
すなわち、コントローラ37が、機関回転数、負荷、油温、機関始動後の経過時間などの情報信号から吸気弁12の目標リフト特性、つまり制御軸32の目標回転位置を決定して、この指令信号に基づき電動モータ34を回転させることにより制御軸32を介して制御カム33を所定回転角度位置まで回転制御する。また、第1位置検出センサ58により、制御軸32の実際の回転位置をモニターし、フィードバック制御により制御軸32を目標位相に回転させるようになっている。
【0035】
具体的には、機関始動初期のクランキング時及びアイドリング時には、コントローラ37からの制御信号によって電動モータ34を介して制御軸32が一方向へ回転制御されて、図4に示すように制御カム33の軸心P1が制御軸32の軸心P2から図示のように左上方の回動位置に保持され、厚肉部33aが駆動軸13から上方向へ離間回動する。これにより、ロッカアーム23は、全体が駆動軸13に対して上方向へ移動し、このため各揺動カム17はリンクロッド25を介して強制的に引き上げられて反時計方向へ回動する。したがって、駆動カム15が回転してリンクアーム24を介してロッカアーム23の一端部23aを押し上げると、そのリフト量がリンクロッド25を介して揺動カム17及びバルブリフター16に伝達されるが、そのリフト量Lは、図4及び図7に示すように小さくなる。このため、ガス流動が強化されて燃焼が改善されて、燃費の向上と機関回転の安定化が図れる。
【0036】
特に、クランキング時には、バルブリフト量を図7に示すように零または零に近い極小リフト(Lmin)になるように設定されているため、後述するように機関回転の立ち上がりが良好になる。
【0037】
一方、高回転高負荷域では、コントローラ37からの制御信号によって電動モータ34により制御軸32が今度は他方向に回転して制御カム33を図2,図6に示す位置に回転させて厚肉部33aを下方向へ回動させる。このため、ロッカアーム23は、全体が駆動軸13方向(下方向)へ移動して他端部23bが揺動カム17をリンクアーム25を介して下方向へ押圧して揺動カム17全体を所定量だけ図示の位置(時計方向)に回動させる。したがって、駆動カム15が回転してリンクアーム24を介してロッカアーム23の一端部23aを押し上げると、そのリフト量がリンクロッド25を介して揺動カム17及びバルブリフター16に伝達されるが、そのリフト量Lは図6に示すように最も大きくなる(Lmax)。そして、その最小リフト(Lmin)から最大(Lmax)までのリフト量変化は、制御カム33の回動位置により図7に示すような特性(L1〜L6)となる。なお、図7におけるLminは零に近い極小リフトとなっているが、制御軸を前記一方にさらに回転させれば零とすることも可能である。
【0038】
一方流路切換弁56側は、前述と同じく各センサからの情報信号から吸気弁12の目標進角量を決定して、この指令信号に基づき流路切換弁56により、第1油圧通路54とメインギャラリ53とを所定時間連通させると共に、第2油圧通路55とドレン通路57とを所定時間連通させる。これによって、筒状歯車43を介してタイミングスプロケット40と駆動軸13との相対回動位置を変換して進角側に制御する。また、この場合も第2位置検出センサ59により予め駆動軸13の実際の相対回動位置をモニターして、フィードバック制御により駆動軸を目標相対回動位置すなわち目標進角量に回転させるようになっている。
【0039】
具体的には、機関始動時から所定時間つまり油温が所定温度Toに達するまでは、流路切換弁56により第2油圧室50のみに油圧が供給されて第1油圧室49には油圧が供給されない。したがって、図1に示すように筒状歯車43は、リターンスプリング51のばね力で、最大前方位置に保持されて、駆動軸13が最大遅角の回転位置に保持されている。その後、油温が所定温度Toを越えると、運転条件に応じて、コントローラ37からの制御信号により流路切換弁56を駆動させて第1油圧通路54とメインギャラリ53を連通させて、第2油圧通路55とドレン通路57を連通させる時間が連続的に変化する。これにより、筒状歯車43は、最前方位置から最後方位置までを移動し、したがって、吸気弁12の開閉タイミングは、図7に示すように実線の最遅角状態から、破線の最進角まで連続的に可変制御される。
【0040】
尚、前記吸気弁12は、第1可変機構1により最大リフトに制御されかつ第2可変機構2により最大遅角位置に制御された状態において、シリンダ内のピストンや対向する排気弁と干渉しないような配置構成に設定されている。
【0041】
以下、コントローラ37による第1可変機構1と第2可変機構2との具体的な駆動制御を図8及び図9に示すフローチャートにもとづいて説明する。
【0042】
すなわち、まず、始動後の油温との関係では、図8示すように、セクションS1では、タイマーにより機関始動後から所定時間toを越えたか否かを判断して、越えた場合はセクションS2で油温センサによる情報に基づき現在の油温が所定温度Toを越えたか否かを判別し、越えた場合はセクションS3で第1,第2の両方の可変機構1,2を駆動させるが、セクションS1及びセクションS2で所定時間toを越えず、または油温が所定油温To以下であればセクションS4で第1可変機構1のみを駆動させて第2可変機構2を駆動させない制御を行う。
【0043】
したがって、低温始動時は第1可変機構1によるバルブリフト制御のみが行われ、第2可変機構2によるバルブタイミング制御が行われず、吸気弁12は前述した最遅角側に保持される。よって、この運転域での油圧駆動源に起因する可変作動不良といった問題が生じないと共に、バルブリフト制御による始動性の向上など機関性能の向上が図れる。また、油温上昇後は第2可変機構2も駆動するので、機関性能の大幅な向上が図れる。
【0044】
次に、前述した第1可変機構1の制御を図9に基づいて説明すれば、まず、セクションS11で、イグニッションスイッチをONすると、その直後にセクションS12において第1可変機構1を最小リフト(零に近い極小リフト)に制御する。続いて、セクションS13でスタータースイッチをONしクランキングが開始した後にセクションS14にて第1可変機構1により、機関回転数(クランキング回転数)の上昇に伴い、リフトを図7に示す実線L3まで増加する制御を行う。
【0045】
続いて、セクションS15では、油温センサにより現在の油温が所定温度(T1)よりも高いか否かを判別し、高い場合はセクションS16において、機関運転状態に応じた第1可変機構1によるリフト可変制御を行う。しかし、油温がT1以下の場合は、セクションS17において、第1可変機構1によるリフト制御を前記L3に固定状態とする。
【0046】
このように、クランキングを開始した始動初期の時点では、セクションS12で最小リフトに制御されているため、動弁系のフリクションが小さくなっているので、機関回転を速やかに立ち上げることができる。
【0047】
また、セクションS14でのリフト増加制御により、混合気のガス交換効率が向上して、機関トルクが速やかに立ち上がって、前記機関回転の速やかな立ち上がりと相俟って始動性を大幅に改善できる。
【0048】
さらに、油温がT1以下である場合は、セクションS17においてリフトをL3の低いリフトに固定するため、吸気弁12からの混合気流の速度を増加させて気筒内の強いガス流動を発生させることにより、冷機始動時の燃焼の改善が図れ、燃費性能と排気エミッション性能を向上できる。
【0049】
また、この実施形態における第1可変機構1は、前述したような図7に示すバルブリフト可変特性を示すが、最大バルブリフトとなる駆動軸13の位相(バルブリフト位相)について考察すると、Lmaxからリフトを低下させていくと少しづつ進角し、さらにLminに向かってリフトを低下させていくと、今度は途中から逆に遅角していくといった特異な変化特性を示す。これは、最大バルブリフト時においては、図6に示すように、駆動カム15の駆動偏心円の動径R1と、駆動カム15の軸心Xとリンクアーム24の突起部24bの枢支点Zとを結ぶ線R2が一直線になった瞬間であり、このとき、R1の方向はシリンダヘッド11の鉛直方向線Qに対して角度θだけ手前側、つまり進角側にある。
【0050】
次に、制御軸32が図中時計方向に回動していった場合において、駆動カム15の動径R1とリンクアーム24が一直線になった場合を考察する。すなわち、このとき角度θは、制御軸32の時計方向の回動とともに、次第に増加してロッカアーム23の動径R3と制御カム33の動径eが一直線になったとき(図5参照)に最大となり、制御軸32がさらに図4に示すように時計方向に回動すると、逆に減少していく(図7参照)。このため、バルブリフト位相は、前述したように特異な変化特性を示すようになるのである。
【0051】
次に、前記コントローラ37は、第1,第2可変機構1,2の両方を可変制御させる運転域において、第1可変機構1あるいは第2可変機構2が故障した場合に、前記制御回路によって図10及び図11に示すような制御を行う。
【0052】
まず、図1に示す制御では、セクションS31で各センサからの情報信号を読み込み、セクションS32で、第1位置検出センサ58から制御軸32の実際の回転位置(リフト量と対応)を読み込み、次にセクションS33では前記実回転位置と目標回転位置とを比較して第1可変機構1が故障しているか否かを判別する。ここで故障している、と判別すると、セクションS34において第2可変機構2の制御位置を吸気弁12とピストン及び吸気弁12と排気弁がそれぞれ干渉しない制御範囲(進角量)を演算し、さらにセクションS35で第2可変機構2を前記所定の制御範囲内で連続制御を行う。
【0053】
つまり、第1可変機構1が最大リフト(Lmax)制御中に故障した場合は、両機関弁などの干渉を回避するために、第2可変機構2を最遅角付近で連続制御する。また小リフト(Lmin〜L1)域で故障した場合は、第2可変機構2を、最遅角から最進角まで広範囲に連続制御する。これにより性能悪化を抑制できる。さらに、中リフトL3域で故障した場合は、最遅角から中間位相の範囲で連続制御する。
【0054】
したがって、各機関弁やピストンの干渉を回避できる範囲で、第2可変機構2を連続制御したため、機関性能の低下を防止できる。
【0055】
次に図1に示す制御では、セクションS21で各センサからの情報信号を読み込んだ後、セクションS22で第2位置検出センサ59から駆動軸13の実際の相対回動位置(進角量と対応)を読み込み、次にセクションS23で実相対回動位置と、目標相対回動位置とを比較して、第2可変機構2が故障しているか否かを判断する。
【0056】
ここで、故障と判断した場合は、セクションS24において、第1可変機構1の制御位置を吸気弁12とピストン及び排気弁がそれぞれ干渉しない制御範囲(リフト量)を演算し、さらにセクションS25で第1可変機構1を所定の制御範囲内で連続制御を行う。
【0057】
つまり、第2可変機構2が最進角制御中に故障した場合は、干渉を回避するため、第1可変機構1を図7に示す小リフト域(Lmin〜L1)で連続的に制御する。最遅角側で故障した場合は、干渉の問題がないから最小から最大リフトの全領域で連続制御する。さらに、中間位相で故障した場合は、最小リフトから中リフトL3の範囲で連続制御する。
【0058】
このように、第2可変機構2が故障した場合も吸気弁12とピストンなどの干渉を回避し得る範囲内で第1可変機構1を連続制御できるため、機関性能の低下を可及的に抑制できる。また、多段階に連続的に制御することによっても、同様の効果が得られる。この場合、制御が簡素化される。
【0059】
また、本実施形態では、揺動カム17がロッカアーム23に対してリンクロッド25によって連係されているため、揺動カム17の最大揺動範囲を、リンクロッド25によりロッカアーム23の揺動範囲内に規制できる。したがって、たとえ高回転域でも、揺動カム17の過度な揺動やジャンプなどのいわゆる踊り現象が確実に防止できる。このため、揺動カム17とロッカアーム23との離接による衝突が回避されて、打音の発生が防止されると共に、バルブリフトの制御精度の低下が防止され、特に高回転域における機関性能の安定化が図れる。
【0060】
また、本実施形態では、前述したようにバルブリフト位相がリフト変化とともに特異な変化をするが、第1可変機構1と、駆動軸13の回転位相を変化させる第2の可変機構2とを組み合わせることによってこの特異な変化を矯正することが可能になる。すなわち、例えば、機関運転状態が高回転あるいは高負荷域で第1可変機構1により大バルブリフトに制御し、第2可変機構2によってバルブリフト位相が上死点に近付くように制御すれば、バルブオーバーラップが大きくなり、排気脈動の負圧波を大きなバルブオーバーラップ期間と同期させることで、気筒内の残留ガスを掃気することができるので、新気の吸入効率を高め、出力を大きく向上させることが可能になるのである。
【0061】
本発明は、前記実施形態に限定されるものではなく、例えば排気側に適用することも可能であり、始動初期に第1可変機構1を零または極小リフト制御することにより、吸気弁12側の場合と同様に動弁フリクションを小さくでき、機関回転数のスムーズな立ち上がり特性が得られ、さらに機関回転数の増加に伴いリフト量を増加させるように可変制御することによってガス交換効率が向上し、もって良好な始動性が得られるなど、吸気側と同様の作用効果が得られる。
【0062】
また、排気側に適用した場合も前記吸気側と同じく、いずれか一方の可変機構が故障した場合に他方の可変機構を可及的に制御できるため、メカニカルな不都合を回避しつつ機関性能の低下を防止できることは勿論である。
【0063】
また、本発明は、各可変機構の駆動源が油圧、電動に拘わらずいかなる駆動源であってもよく、また、両方の可変機構を同じ電動あるいは油圧によって駆動するものに適用することが可能である。
【0064】
【発明の効果】
請求項1〜3記載の発明によれば、第1可変機構と第2可変機構とによって機関運転状態に応じて該機関性能を大幅に向上させることができることは勿論のこと、第1可変機構あるいは第2可変機構のいずれか一方が故障した場合は、制御手段によって一方の可変機構の故障時の位置に応じて、他方の可変機構を、機関弁とピストンとの干渉及び吸気,排気弁との間の干渉を回避し得る所定範囲内において可及的かつ連続あるいは段階的に制御することができるため、メカニカルな不具合を回避しつつ機関性能の低下を防止できる。
【0065】
請求項4記載の発明によれば、制御カムを回動することによってバルブリフト量を連続的に可変制御できると共に、該バルブリフト量の変化幅を大きくすることができるため、各可変機構の故障が発生していない場合は勿論のこと故障したとしても機関性能十分に発揮することが可能になる。
【0066】
しかも、制御カムを用いることに起因して、バルブリフト位相がリフト変化とともに特異な変化を示すが、駆動軸の位相を変化させる第2可変機構を組み合わせることによって、前記特異な変化を矯正することが可能になり、この結果、各可変機構が故障していない場合における機関性能を十分に発揮させることができる。
【0067】
請求項5記載の発明によれば、連係部材によって、揺動カムの最大揺動範囲をロッカアームの揺動範囲内に規制することができるため、たとえ高回転域でも、揺動カムの過度な揺動やジャンプなどの踊り現象を確実に防止できる。このため、揺動カムとロッカアームとの離接による衝突が回避されて打音の発生が防止できると共に、バルブリフトの制御精度の低下が防止され、特に高回転域における機関性能の安定化が図れる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す断面図
【図2】図1のA−A線断面図
【図3】第1可変機構の平面図
【図4】第1可変機構の最小リフト制御の作用説明図
【図5】第1可変機構の最大から最小リフトへ制御する過程を示す作用説明図
【図6】第1可変機構の最大リフト制御の作用説明図
【図7】本実施形態のバルブリフト及びバルブタイミングの特性図
【図8】本実施形態のコントローラーによる制御フローチャート図
【図9】本実施形態のコントローラーによる制御フローチャート図
【図10】本実施形態のコントローラーによる制御フローチャート図
【図11】本実施形態のコントローラーによる制御フローチャート図
【符号の説明】
1…第1可変機構
2…第2可変機構
12…吸気弁
13…駆動軸
17…揺動カム
19…制御機構
23…ロッカアーム
24…リンクアーム
25…リンクロッド(連係部材)
34…電動モータ
37…コントローラ
58…第1位置検出センサ
59…第2位置検出センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a variable valve operating apparatus for an internal combustion engine, and in particular, a variable valve operating system including a first variable mechanism that controls lift characteristics of an engine valve that is an intake valve or an exhaust valve, and a second variable mechanism that controls valve timing. Relates to the device.
[0002]
[Prior art]
As is well known, for example, a variable lift mechanism that makes the valve lift characteristic of the intake valve variable and a variable valve timing mechanism that makes the valve timing characteristic variable improve the degree of freedom of the valve lift characteristic and improve engine operating performance. Various variable valve actuating devices have been conventionally provided that greatly increase (see Japanese Patent Application Laid-Open No. 8-177434, etc.).
[0003]
In other words, this variable valve operating device selectively switches the low-speed cam and high-speed cam provided on the camshaft according to the engine operating state, and variably controls the cam lift of the intake valve or exhaust valve that is the engine valve. And a valve timing control mechanism that variably controls the opening / closing timing of the engine valve by converting the relative rotation phase of the camshaft and the crankshaft according to the engine operating state.
[0004]
Further, for example, when the valve timing control mechanism fails, this device forcibly switches to the low speed cam side by the valve lift control mechanism, or when the valve lift control mechanism fails, the valve timing control mechanism Controls the opening and closing timing of the engine valve by moving the valve lift operating center away from the top dead center Who A control mechanism for avoiding interference between the intake valve and the exhaust valve is provided by performing control in each direction.
[0005]
[Problems to be solved by the invention]
However, in the conventional variable valve device, when each control mechanism fails as described above, although mechanical inconvenience such as avoiding interference between the intake valve and the exhaust valve can be avoided, Consideration about engine performance at the time of such a failure was insufficient.
[0006]
In other words, when one of the control mechanisms fails, the valve lift control mechanism uniformly switches to the low speed cam, or the valve lift control mechanism moves the valve lift operation center uniformly away from the top dead center. Because of the control, the so-called valve overlap between the intake valve and the exhaust valve is necessarily reduced. Therefore, in the engine high-speed operation region, the output of the engine is greatly reduced, and it becomes difficult to sufficiently exhibit the engine performance.
[0007]
[Means for Solving the Problems]
The present invention has been devised in view of the actual situation of the conventional variable valve gear, and the invention according to claim 1 is characterized in that at least the lift characteristic of the engine valve is set according to the engine operating state. Continuously The first variable mechanism to be variably controlled and at least the opening / closing timing characteristics of the engine valve according to the engine operating state Continuously A second variable mechanism for variably controlling; a position detecting means for detecting a current operating position of the first variable mechanism or the second variable mechanism; and the first variable mechanism or the second variable mechanism based on a current engine operating state. When one of the first variable mechanism and the second variable mechanism fails, one of the variable target detected by the position detecting means when the control target value determining means determines the control target value of the first variable mechanism and the second variable mechanism. Based on the position, the control range of the other variable mechanism is set to a predetermined range, and the operating position of the other variable mechanism and the control target value determined by the detecting means within the set predetermined control range are determined. Control means for performing feedback control of the other variable mechanism continuously or stepwise based on the control target value determined by the means.
[0008]
According to this invention, for example, when the first variable mechanism fails in a predetermined operating region of the engine, the position detection means detects the position at the time of failure and outputs the information signal to the control means. As a result, the control means does not simply select and control the fixed low-speed cam by the first variable mechanism as in the prior art, but between the mechanical engine valves according to the position at the time of failure of the first variable mechanism. The second variable mechanism is controlled as much as possible within a predetermined range in which interference or the like can be avoided. Therefore, the engine performance can be exhibited as much as possible according to the engine operating state.
According to the second aspect of the present invention, at least the lift characteristic of the engine valve is determined according to the engine operating state. Continuous A first variable mechanism that is variably controlled, and at least an opening / closing timing characteristic of the engine valve according to an engine operating state Continuously A second variable mechanism for variably controlling; a first position detecting means for detecting a current operating position of the first variable mechanism; a second position detecting means for detecting a current operating position of the second variable mechanism; First control target value determining means for determining the control target value of the first variable mechanism based on the engine operating state, and the second position detecting means detected by the second position detecting means when the second variable mechanism fails. (2) The control range of the first variable mechanism is set to a predetermined control range based on the position at the time of failure of the variable mechanism, and the operation detected by the first position detection means within the set predetermined control range Control means for performing feedback control of the first variable mechanism continuously or stepwise based on the position and the control target value determined by the first control target value determining means is provided.
[0009]
According to the third aspect of the present invention, at least the lift characteristic of the engine valve is set according to the engine operating state. Continuously The first variable mechanism to be variably controlled and at least the opening / closing timing characteristics of the engine valve according to the engine operating state Continuously A second variable mechanism for variably controlling; a first position detecting means for detecting a current operating position of the first variable mechanism; a second position detecting means for detecting a current operating position of the second variable mechanism; Second control target value determining means for determining a control target value of the second variable mechanism based on the engine operating state, and a first detected by the first position detecting means when the first variable mechanism fails. The control range of the second variable mechanism is set to a predetermined control range based on the position at the time of failure of the one variable mechanism, and the operating position detected by the second position detection means within the set predetermined control range. And control means for performing feedback control of the second variable mechanism continuously or stepwise based on the control target value determined by the second control target value determining means.
[0010]
According to a fourth aspect of the present invention, the first variable mechanism has a drive shaft having a drive cam on the outer periphery, and a swing cam that is swingably supported by the support shaft and swings to open and close the engine valve. And a rocker arm whose one end is rotatably linked to the drive cam, the other end is rotatably linked to the swing cam, and the swing center is variably controlled by the control cam. It is a feature.
[0011]
According to a fifth aspect of the present invention, the first variable mechanism includes a drive shaft having a drive cam on the outer periphery, a link arm whose one end portion is rotatably linked to the outer periphery of the drive cam, and one end portion other than the link arm. A rocker arm that is rotatably linked to the end and whose swing center is variably controlled by a control cam, a swing cam that opens and closes an engine valve, and the swing cam and the other end of the rocker arm are mechanically rotated. A linkage member that freely links and regulates the maximum swing range of the swing cam within the swing range of the rocker arm, and an actuator that controls the rotation of the control cam via a control shaft according to the engine operating state. It is characterized by having.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment in which a variable valve device according to the present invention is applied to the intake side, and two intake valves 12 per cylinder, which are slidably provided on a cylinder head 11 via a valve guide (not shown), 12 and the variable valve lift of each intake valve 12, 12 is made variable according to the engine operation state, and the valve timing of each intake valve 12, 12 is made variable according to the engine operation state. The second variable mechanism 2 is provided.
[0013]
As shown in FIGS. 1 to 3, the first variable mechanism 1 includes a hollow drive shaft 13 that is rotatably supported by a bearing 14 at the top of the cylinder head 11, and is fixed to the drive shaft 13 by press fitting or the like. The flat lifts of the valve lifters 16 and 16 disposed at the upper end portions of the intake valves 12 and 12 are supported by the two drive cams 15 and 15 and the drive shaft 13 so as to be swingable. Rotating force of the drive cam 15 is linked between the swing cams 17 and 17 that are in sliding contact with the upper surfaces 16a and 16a to open the intake valves 12 and 12, and the drive cam 15 and the swing cams 17 and 17, respectively. Is transmitted as a swinging force of the swing cams 17, 17, and a control mechanism 19 that variably controls the operating position of the transfer mechanism 18 is provided.
[0014]
The drive shaft 13 is disposed along the longitudinal direction of the engine, and is connected to the crank of the engine via a timing chain (not shown) wound around a timing sprocket 40 of the variable mechanism 2 (described later) provided at one end. A rotational force is transmitted from the shaft.
[0015]
As shown in FIG. 1, the bearing 14 is provided at the upper end portion of the cylinder head 11, and is provided with a main bracket 14a that supports the upper portion of the drive shaft 13, and an upper end portion of the main bracket 14a. The sub bracket 14b rotatably supports the shaft 32, and both the brackets 14a and 14b are fastened together by a pair of bolts 14c and 14c from above.
[0016]
The drive cams 15 are substantially ring-shaped as shown in FIGS. 1 to 3, and are composed of a cam main body 15a and a cylindrical portion 15b integrally provided on the outer end surface of the cam main body 15a. A drive shaft insertion hole 15c is formed penetrating in the direction, and the axis X of the cam body 15a is offset from the axis Y of the drive shaft 13 by a predetermined amount in the radial direction. Each drive cam 15 is press-fitted and fixed to both sides of the drive shaft 13 through the drive shaft insertion hole 15c so as not to interfere with the valve lifters 16 and 16, and both the cam main bodies 15a and 15a are fixed. The outer peripheral surfaces 15d and 15d are formed in the same cam profile.
[0017]
As shown in FIG. 2, the swing cam 17 has a substantially U-shape, and a support hole in which a drive shaft 13 is fitted and inserted into an annular base end 20 on one end side so as to be rotatably supported. 20a is formed through, and a pin hole 21a is formed through the cam nose 21 at the other end. Further, a cam surface 22 is formed on the lower surface of the swing cam 17, and a base circle surface 22a on the base end portion 20 side, a ramp surface 22b extending from the base circle surface 22a to the cam nose portion 21 side in an arc shape, and the lamp A lift surface 22c is formed on the tip side of the surface 22b, and the base circle surface 22a, the ramp surface 22b, and the lift surface 22c correspond to the upper surface of each valve lifter 16 according to the swing position of the swing cam 17. 16a is in contact with a predetermined position.
[0018]
As shown in FIG. 2, the transmission mechanism 18 includes a rocker arm 23 disposed above the drive shaft 13, a link arm 24 that links the one end 23 a of the rocker arm 23 and the drive cam 15, and the other end of the rocker arm 23. A link rod 25 that is a linking member that links the portion 23b and the swing cam 17 is provided.
[0019]
As shown in FIG. 3, each of the rocker arms 23 is bent in a substantially crank shape when viewed from above, and a cylindrical base portion 23c at the center is rotatably supported by a control cam 33 described later. Further, as shown in FIGS. 2 and 3, a pin 26 is inserted into the one end portion 23a projecting from each outer end portion of each base portion 23c so as to be relatively rotatable with the link arm 24. While the holes 23d are formed so as to penetrate, the other end portions 23b projecting from the inner end portions of the respective base portions 23c are respectively provided with pins 27 that are rotatably connected to the one end portions 25a of the respective link rods 25. A pin hole 23e to be inserted is formed.
[0020]
The link arm 24 includes an annular base 24a having a relatively large diameter and a projecting end 24b projecting at a predetermined position on the outer peripheral surface of the base 24a. A fitting hole 24c is formed in the outer peripheral surface of the cam main body 15a of the cam 15 so as to be rotatably fitted. On the protruding end 24b, a pin hole 24d through which the pin 26 is rotatably inserted is formed. Yes.
[0021]
Further, as shown in FIG. 2, the link rod 25 is bent into a substantially rectangular shape having a predetermined length, and pin insertion holes 25c and 25d are formed at both ends 25a and 25b as shown in FIG. The pin insertion holes 25c and 25d are inserted into the pin holes 23e provided in the other end 23b of the rocker arm 23 and the pin holes 21a provided in the cam nose 21 of the swing cam 17, respectively. , 28 are rotatably inserted.
[0022]
The link rod 25 regulates the maximum swing range of the swing cam 17 within the swing range of the rocker arm 23.
[0023]
In addition, snap rings 29, 30, and 31 for restricting the axial movement of the link arm 24 and the link rod 25 are provided at one end of each pin 26, 27, and 28.
[0024]
The control mechanism 19 includes a control shaft 32 disposed in the longitudinal direction of the engine, a control cam 33 fixed to the outer periphery of the control shaft 32 and serving as a rocking fulcrum of the rocker arm 23, and a rotational position of the control shaft 32. It is comprised from the electric motor 34 which is an electric actuator to control.
[0025]
The control shaft 32 is provided in parallel with the drive shaft 13, and is rotatably supported between the bearing groove at the upper end of the main bracket 14a of the bearing 14 and the sub bracket 14b as described above. On the other hand, each of the control cams 33 has a cylindrical shape, and the position of the axis P1 is deviated from the axis P2 of the control shaft 32 by α as shown in FIG.
[0026]
The electric motor 34 is connected to the control shaft 32 through meshing of a first spur gear 35 provided at the front end portion of the drive shaft 34 a and a second spur gear 36 provided at the rear end portion of the control shaft 32. A rotational force is transmitted, and the system is driven by a control signal from a controller 37 that detects the operating state of the engine.
[0027]
On the other hand, the second variable mechanism 2 is provided on the tip end side of the drive shaft 13 as shown in FIG. 1, and a timing sprocket 40 to which rotational force is transmitted from the crankshaft of the engine by a timing chain (not shown), A sleeve 42 fixed to the front end of the drive shaft 13 by a bolt 41 from the axial direction, a cylindrical gear 43 interposed between the timing sprocket 40 and the sleeve 42, and the cylindrical gear 43 connected to the drive shaft 13. The hydraulic circuit 44 is a drive mechanism for driving in the longitudinal axis direction.
[0028]
In the timing sprocket 40, a sprocket portion 40b around which a chain is wound is fixed to a rear end portion of the cylindrical main body 40a by a bolt 45, and a front end opening of the cylindrical main body 40a is closed by a front cover 40c. . Further, helical inner teeth 46 are formed on the inner peripheral surface of the cylindrical main body 40a.
[0029]
The sleeve 42 is formed with a fitting groove for fitting the front end of the drive shaft 13 on the rear end side, and the timing sprocket 40 is attached to the front end holding groove at the front end via a front cover 40c. A coil spring 47 is mounted. Further, on the outer peripheral surface of the sleeve 42, a helical outer tooth 48 is formed.
[0030]
The cylindrical gear 43 is divided into two in the direction perpendicular to the axis, and the front and rear gear components are urged toward each other by pins and springs, and the inner teeth 46 and the outer teeth 48 are provided on the inner and outer peripheral surfaces. The inner and outer teeth of a helical tooth meshing with the first and second hydraulic chambers 49 and 50 formed at the front and rear are formed in sliding contact with each other by the hydraulic pressure relatively supplied to the first and second hydraulic chambers 49 and 50. To move to. In addition, the cylindrical gear 43 controls the intake valve 12 to the most retarded position at the maximum forward movement position hitting the front cover 40c, while controlling the intake valve 12 to the most advanced angle position at the maximum backward movement position. Yes. Further, when the hydraulic pressure of the first hydraulic chamber 49 is not supplied by the return spring 51 mounted in the second hydraulic chamber 50, the maximum hydraulic position is urged.
[0031]
The hydraulic circuit 44 includes a main gallery 53 connected to the downstream side of an oil pump 52 that communicates with an oil pan (not shown), and branches on the downstream side of the main gallery 53 to branch to the first and second hydraulic chambers 49, 50, first and second hydraulic passages 54, 55 connected to 50, a solenoid-type flow path switching valve 56 provided at the branch position, and a drain path 57 connected to the flow path switching valve 56. Has been.
[0032]
The flow path switching valve 56 is switched and driven by a control signal from the same controller 37 that drives and controls the electric motor 34 of the first variable mechanism 1.
[0033]
The controller 37 calculates a current engine operating state based on an engine speed signal from a crank angle sensor, an intake flow signal (load) from an air flow meter, and detection signals from various sensors such as an engine oil temperature sensor. Detection signals from the first position detection sensor 58 that detects the current rotational position of the control shaft 32 and the second position detection sensor 59 that detects the relative rotational position of the drive shaft 13 and the timing sprocket 40. Based on this, when a control signal is output to the electric motor 34 and the flow path switching valve 56 and one of the variable mechanisms 1 and 2 fails and locks, A control circuit is provided as a control means for continuously variably controlling the other variable mechanism within a predetermined range in accordance with the lock position.
[0034]
That is, the controller 37 determines the target lift characteristic of the intake valve 12, that is, the target rotational position of the control shaft 32, from the information signal such as the engine speed, the load, the oil temperature, the elapsed time after the engine start, etc. By rotating the electric motor 34 based on this, the control cam 33 is controlled to rotate to a predetermined rotational angle position via the control shaft 32. Further, the actual rotational position of the control shaft 32 is monitored by the first position detection sensor 58, and the control shaft 32 is rotated to the target phase by feedback control.
[0035]
Specifically, at the time of cranking and idling at the initial stage of engine start, the control shaft 32 is controlled to rotate in one direction by the control signal from the controller 37, and the control cam 33 is shown in FIG. As shown in the figure, the shaft center P1 of the control shaft 32 is held at the upper left rotation position, and the thick portion 33a rotates away from the drive shaft 13 upward. As a result, the entire rocker arm 23 moves upward with respect to the drive shaft 13. For this reason, each swing cam 17 is forcibly pulled up via the link rod 25 and rotated counterclockwise. Therefore, when the drive cam 15 rotates and pushes up the one end portion 23a of the rocker arm 23 via the link arm 24, the lift amount is transmitted to the swing cam 17 and the valve lifter 16 via the link rod 25. The lift amount L becomes smaller as shown in FIGS. For this reason, gas flow is strengthened, combustion is improved, fuel consumption can be improved, and engine rotation can be stabilized.
[0036]
In particular, at the time of cranking, the valve lift amount is set to zero or a minimum lift (Lmin) close to zero as shown in FIG. 7, so that the engine rotation rises well as will be described later.
[0037]
On the other hand, in the high rotation and high load range, the control shaft 32 is rotated in the other direction by the electric motor 34 in response to a control signal from the controller 37, and the control cam 33 is rotated to the position shown in FIGS. The part 33a is rotated downward. For this reason, the entire rocker arm 23 moves in the direction of the drive shaft 13 (downward), and the other end 23b presses the swing cam 17 downward via the link arm 25 so that the entire swing cam 17 is positioned. A fixed amount is rotated to the position shown (clockwise). Therefore, when the drive cam 15 rotates and pushes up the one end portion 23a of the rocker arm 23 via the link arm 24, the lift amount is transmitted to the swing cam 17 and the valve lifter 16 via the link rod 25. The lift amount L is the largest (Lmax) as shown in FIG. The lift amount change from the minimum lift (Lmin) to the maximum (Lmax) has characteristics (L1 to L6) as shown in FIG. Note that Lmin in FIG. 7 is a minimal lift close to zero, but it can also be made zero by further rotating the control shaft to the one side.
[0038]
On the other hand, the flow path switching valve 56 side determines the target advance amount of the intake valve 12 from the information signal from each sensor in the same manner as described above, and the flow path switching valve 56 determines the target hydraulic advance amount based on this command signal. The main gallery 53 is in communication for a predetermined time, and the second hydraulic passage 55 and the drain passage 57 are in communication for a predetermined time. As a result, the relative rotation position of the timing sprocket 40 and the drive shaft 13 is converted via the cylindrical gear 43 and controlled to the advance side. Also in this case, the actual relative rotation position of the drive shaft 13 is monitored in advance by the second position detection sensor 59, and the drive shaft is rotated to the target relative rotation position, that is, the target advance amount by feedback control. ing.
[0039]
Specifically, the hydraulic pressure is supplied only to the second hydraulic chamber 50 by the flow path switching valve 56 until the oil temperature reaches the predetermined temperature To from the start of the engine until the oil temperature reaches the predetermined temperature To, and the hydraulic pressure is supplied to the first hydraulic chamber 49. Not supplied. Therefore, as shown in FIG. 1, the cylindrical gear 43 is held at the maximum front position by the spring force of the return spring 51, and the drive shaft 13 is held at the maximum retarded rotational position. Thereafter, when the oil temperature exceeds a predetermined temperature To, the flow path switching valve 56 is driven by a control signal from the controller 37 in accordance with the operating conditions to cause the first hydraulic passage 54 and the main gallery 53 to communicate with each other. The time for communicating the hydraulic passage 55 and the drain passage 57 continuously changes. As a result, the cylindrical gear 43 moves from the foremost position to the rearmost position. Therefore, the opening / closing timing of the intake valve 12 is changed from the most retarded state of the solid line to the most advanced angle of the broken line as shown in FIG. It is continuously variable and controlled.
[0040]
It should be noted that the intake valve 12 does not interfere with the piston in the cylinder and the opposing exhaust valve when the intake valve 12 is controlled to the maximum lift by the first variable mechanism 1 and controlled to the maximum retarded position by the second variable mechanism 2. Is set to the correct configuration.
[0041]
Hereinafter, specific drive control of the first variable mechanism 1 and the second variable mechanism 2 by the controller 37 will be described based on the flowcharts shown in FIGS. 8 and 9.
[0042]
That is, first, in relation to the oil temperature after starting, as shown in FIG. 8, in section S1, it is determined by a timer whether or not a predetermined time to has been exceeded after engine starting. Based on the information from the oil temperature sensor, it is determined whether or not the current oil temperature exceeds the predetermined temperature To, and if it exceeds, both the first and second variable mechanisms 1 and 2 are driven in section S3. If the predetermined time to is not exceeded in S1 and section S2, or if the oil temperature is equal to or lower than the predetermined oil temperature To, in section S4, only the first variable mechanism 1 is driven and the second variable mechanism 2 is not driven.
[0043]
Therefore, at the time of cold start, only the valve lift control by the first variable mechanism 1 is performed, the valve timing control by the second variable mechanism 2 is not performed, and the intake valve 12 is held at the most retarded angle side. Therefore, the problem of variable operation failure due to the hydraulic drive source in this operating range does not occur, and engine performance such as startability improvement by valve lift control can be improved. Further, since the second variable mechanism 2 is also driven after the oil temperature rises, the engine performance can be greatly improved.
[0044]
Next, the control of the first variable mechanism 1 described above will be described with reference to FIG. 9. First, when the ignition switch is turned on in section S11, the first variable mechanism 1 is moved to the minimum lift (zero) in section S12 immediately after that. (Minimal lift close to). Subsequently, after the starter switch is turned on in section S13 and cranking is started, the lift is increased by the first variable mechanism 1 in section S14 as the engine speed (cranking speed) is increased by the solid line L3 shown in FIG. Control to increase up to.
[0045]
Subsequently, in section S15, it is determined whether or not the current oil temperature is higher than a predetermined temperature (T1) by an oil temperature sensor. If higher, in section S16, the first variable mechanism 1 according to the engine operating state is used. Variable lift control is performed. However, when the oil temperature is equal to or lower than T1, the lift control by the first variable mechanism 1 is fixed to the L3 in section S17.
[0046]
In this way, at the initial start time when cranking is started, since the lift is controlled to the minimum lift in section S12, the friction of the valve operating system is reduced, so that the engine rotation can be quickly started.
[0047]
Further, by the lift increase control in section S14, the gas exchange efficiency of the air-fuel mixture is improved, the engine torque rises quickly, and the startability can be greatly improved in combination with the rapid rise of the engine rotation.
[0048]
Further, when the oil temperature is equal to or lower than T1, in order to fix the lift to a lift having a low L3 in section S17, the speed of the mixed airflow from the intake valve 12 is increased to generate a strong gas flow in the cylinder. In addition, combustion at the start of cold engine can be improved, and fuel efficiency and exhaust emission performance can be improved.
[0049]
In addition, the first variable mechanism 1 in this embodiment exhibits the variable valve lift characteristics shown in FIG. 7 as described above, but considering the phase of the drive shaft 13 (valve lift phase) that becomes the maximum valve lift, from Lmax When the lift is lowered, the angle is advanced little by little, and when the lift is further lowered toward Lmin, a unique change characteristic is shown in which the angle is retarded from the middle. In the maximum valve lift, as shown in FIG. 6, the radius R1 of the drive eccentric circle of the drive cam 15, the axis X of the drive cam 15, and the pivot point Z of the protrusion 24b of the link arm 24 Is the moment when the line R2 connecting the two becomes a straight line. At this time, the direction of R1 is closer to the vertical direction line Q of the cylinder head 11 by the angle θ, that is, the advance side.
[0050]
Next, consider the case where the moving radius R1 of the drive cam 15 and the link arm 24 are in a straight line when the control shaft 32 rotates clockwise in the figure. That is, at this time, the angle θ gradually increases with the clockwise rotation of the control shaft 32, and becomes maximum when the moving radius R3 of the rocker arm 23 and the moving radius e of the control cam 33 are in a straight line (see FIG. 5). Then, when the control shaft 32 is further rotated clockwise as shown in FIG. 4, it decreases on the contrary (see FIG. 7). For this reason, the valve lift phase exhibits a unique change characteristic as described above.
[0051]
Next, when the first variable mechanism 1 or the second variable mechanism 2 breaks down in the operation range in which both the first and second variable mechanisms 1 and 2 are variably controlled, the controller 37 is controlled by the control circuit. 10 and control as shown in FIG.
[0052]
First, FIG. 1 In section S31, the information signal from each sensor is read in section S31. In section S32, the actual rotational position (corresponding to the lift amount) of the control shaft 32 is read from the first position detection sensor 58. Next, in section S33. The actual rotation position and the target rotation position are compared to determine whether or not the first variable mechanism 1 has failed. If it is determined that there is a failure, the control range (advance amount) in which the intake valve 12 and the piston and the intake valve 12 and the exhaust valve do not interfere with each other is calculated for the control position of the second variable mechanism 2 in section S34. Further, in section S35, the second variable mechanism 2 is continuously controlled within the predetermined control range.
[0053]
That is, when the first variable mechanism 1 fails during the maximum lift (Lmax) control, the second variable mechanism 2 is continuously controlled in the vicinity of the most retarded angle in order to avoid interference between the two engine valves. Further, when a failure occurs in the small lift (Lmin to L1) region, the second variable mechanism 2 is continuously controlled over a wide range from the most retarded angle to the most advanced angle. Thereby, performance deterioration can be suppressed. Furthermore, when a failure occurs in the middle lift L3 region, continuous control is performed in the range from the most retarded angle to the intermediate phase.
[0054]
Therefore, since the second variable mechanism 2 is continuously controlled within a range in which interference between the engine valves and the pistons can be avoided, it is possible to prevent the engine performance from being deteriorated.
[0055]
Next, FIG. 0 In section S21, the information signal from each sensor is read in section S21, and then the actual relative rotational position (corresponding to the advance amount) of the drive shaft 13 is read from the second position detection sensor 59 in section S22. In section S23, the actual relative rotation position and the target relative rotation position are compared to determine whether or not the second variable mechanism 2 has failed.
[0056]
Here, when it is determined that there is a failure, in section S24, a control range (lift amount) in which the intake valve 12, the piston and the exhaust valve do not interfere with each other is calculated for the control position of the first variable mechanism 1, and further in section S25 1 The variable mechanism 1 is continuously controlled within a predetermined control range.
[0057]
In other words, when the second variable mechanism 2 fails during the most advanced angle control, the first variable mechanism 1 is moved to the small lift region (L min ~ L 1 ) To control continuously. If there is a failure on the most retarded angle side, there is no problem of interference, so continuous control is performed in the entire range from the minimum to the maximum lift. Further, when a failure occurs in the intermediate phase, continuous control is performed in the range from the minimum lift to the middle lift L3.
[0058]
As described above, even when the second variable mechanism 2 fails, the first variable mechanism 1 can be continuously controlled within a range in which interference between the intake valve 12 and the piston can be avoided, so that deterioration in engine performance is suppressed as much as possible. it can. Further, the same effect can be obtained by continuously controlling in multiple stages. In this case, the control is simplified.
[0059]
In this embodiment, since the swing cam 17 is linked to the rocker arm 23 by the link rod 25, the maximum swing range of the swing cam 17 is within the swing range of the rocker arm 23 by the link rod 25. Can be regulated. Therefore, even in a high rotation range, so-called dance phenomena such as excessive swinging and jumping of the swing cam 17 can be reliably prevented. For this reason, collision due to separation / contact between the rocking cam 17 and the rocker arm 23 is avoided, the occurrence of hitting sound is prevented, and the control accuracy of the valve lift is prevented from being lowered. Stabilization can be achieved.
[0060]
In the present embodiment, as described above, the valve lift phase changes peculiarly with the lift change, but the first variable mechanism 1 and the second variable mechanism 2 that changes the rotational phase of the drive shaft 13 are combined. This makes it possible to correct this unique change. That is, for example, if the engine operating state is controlled to a large valve lift by the first variable mechanism 1 in a high rotation or high load range, and the valve lift phase is controlled to approach the top dead center by the second variable mechanism 2, the valve By increasing the overlap and synchronizing the negative pressure wave of exhaust pulsation with a large valve overlap period, the residual gas in the cylinder can be scavenged, so the intake efficiency of fresh air is improved and the output is greatly improved Is possible.
[0061]
The present invention is not limited to the above-described embodiment, and can be applied to, for example, the exhaust side. By controlling the first variable mechanism 1 to zero or minimal lift at the initial stage of the start, As in the case, the valve friction can be reduced, a smooth rise characteristic of the engine speed can be obtained, and the gas exchange efficiency can be improved by variably controlling the lift amount to increase as the engine speed increases. Thus, the same effect as the intake side can be obtained, for example, good startability can be obtained.
[0062]
Also, when applied to the exhaust side, as with the intake side, if one of the variable mechanisms breaks down, the other variable mechanism can be controlled as much as possible, thus reducing engine performance while avoiding mechanical inconveniences. Of course, this can be prevented.
[0063]
Further, the present invention may be applied to any drive source for each variable mechanism regardless of whether it is hydraulic or electric, and both variable mechanisms are driven by the same electric or hydraulic pressure. is there.
[0064]
【The invention's effect】
According to the first to third aspects of the invention, the first variable mechanism and the second variable mechanism can significantly improve the engine performance in accordance with the engine operating state. If either one of the second variable mechanisms fails, the other variable mechanism is connected to the interference between the engine valve and the piston and the intake and exhaust valves according to the position at the time of the failure of one variable mechanism by the control means. Since the control can be performed continuously or stepwise as much as possible within a predetermined range in which the interference can be avoided, it is possible to prevent the engine performance from deteriorating while avoiding the mechanical trouble.
[0065]
According to the fourth aspect of the present invention, the valve lift amount can be continuously variably controlled by rotating the control cam, and the variation range of the valve lift amount can be increased. If the engine does not occur, the engine performance can be sufficiently exerted even if a failure occurs.
[0066]
Moreover, due to the use of the control cam, the valve lift phase shows a singular change along with the lift change, but the singular change is corrected by combining a second variable mechanism that changes the phase of the drive shaft. As a result, the engine performance can be sufficiently exhibited when each variable mechanism is not broken down.
[0067]
According to the fifth aspect of the present invention, since the maximum swinging range of the swing cam can be regulated within the swing range of the rocker arm by the linkage member, excessive swinging of the swing cam is possible even in the high rotation range. Dance phenomena such as movement and jumping can be reliably prevented. For this reason, collision due to separation / contact between the swing cam and the rocker arm can be avoided to prevent the generation of a hitting sound, and the control accuracy of the valve lift can be prevented from being lowered, and the engine performance can be stabilized particularly in a high rotation range. .
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a plan view of the first variable mechanism.
FIG. 4 is an explanatory diagram of the operation of the minimum lift control of the first variable mechanism.
FIG. 5 is an operation explanatory view showing a process of controlling the first variable mechanism from the maximum to the minimum lift.
FIG. 6 is an explanatory diagram of the operation of the maximum lift control of the first variable mechanism.
FIG. 7 is a characteristic diagram of valve lift and valve timing of the present embodiment.
FIG. 8 is a flowchart of control by the controller of the present embodiment.
FIG. 9 is a flowchart of control by the controller of the present embodiment.
FIG. 10 is a flowchart of control by the controller of the present embodiment.
FIG. 11 is a flowchart of control by the controller of the present embodiment.
[Explanation of symbols]
1 ... 1st variable mechanism
2 ... Second variable mechanism
12 ... Intake valve
13 ... Drive shaft
17 ... Oscillating cam
19 ... Control mechanism
23 ... Rocker arm
24 ... Link arm
25 ... Link rod (linkage member)
34 ... Electric motor
37 ... Controller
58... First position detection sensor
59 ... Second position detection sensor

Claims (5)

機関弁の少なくともリフト特性を機関運転状態に応じて連続的に可変制御する第1可変機構と、
機関弁の少なくとも開閉タイミング特性を機関運転状態に応じて連続的に可変制御する第2可変機構と、
前記第1可変機構あるいは第2可変機構の現在の作動位置を検出する位置検出手段と、
現在の機関運転状態に基づいて前記第1可変機構あるいは第2可変機構の制御目標値を決定する制御目標値決定手段と、
前記第1可変機構あるいは第2可変機構のいずれか一方が故障した際に、前記位置検出手段によって検出された一方の可変機構の故障時の位置に基づいて他方の可変機構の制御範囲を所定の範囲に設定すると共に、この設定された所定の制御範囲内で前記検出手段によって検出した前記他方の可変機構の作動位置と前記制御目標値決定手段によって決定された制御目標値とに基づいて、前記他方の可変機構を連続的あるいは段階的にフィードバック制御する制御手段と、
を備えたことを特徴とする内燃機関の可変動弁装置。
A first variable mechanism that continuously and variably controls at least a lift characteristic of the engine valve according to an engine operating state;
A second variable mechanism that continuously variably controls at least the opening / closing timing characteristics of the engine valve according to the engine operating state;
Position detecting means for detecting a current operating position of the first variable mechanism or the second variable mechanism;
Control target value determining means for determining a control target value of the first variable mechanism or the second variable mechanism based on a current engine operating state;
When one of the first variable mechanism and the second variable mechanism fails, the control range of the other variable mechanism is set to a predetermined range based on the position of the one variable mechanism detected by the position detecting means. And the control target value determined by the control target value determining means based on the operating position of the other variable mechanism detected by the detecting means within the set predetermined control range, Control means for feedback-controlling the other variable mechanism continuously or stepwise;
A variable valve operating apparatus for an internal combustion engine, comprising:
機関弁の少なくともリフト特性を機関運転状態に応じて連続的に可変制御する第1可変機構と、
機関弁の少なくとも開閉タイミング特性を機関運転状態に応じて連続的に可変制御する第2可変機構と、
前記第1可変機構の現在の作動位置を検出する第1位置検出手段と、
前記第2可変機構の現在の作動位置を検出する第2位置検出手段と、
現在の機関運転状態に基づいて前記第1可変機構の制御目標値を決定する第1制御目標値決定手段と、
前記第2可変機構が故障した際に、前記第2位置検出手段によって検出された第2可変機構の故障時の位置に基づいて前記第1可変機構の制御範囲を所定の制御範囲に設定すると共に、この設定された所定の制御範囲内で、前記第1位置検出手段で検出した作動位置と前記第1制御目標値決定手段によって決定された制御目標値とに基づいて、前記第1可変機構を連続的あるいは段階的にフィードバック制御する制御手段と、
を備えたことを特徴とする内燃機関の可変動弁装置。
A first variable mechanism that continuously and variably controls at least a lift characteristic of the engine valve according to an engine operating state;
A second variable mechanism that continuously variably controls at least the opening / closing timing characteristics of the engine valve according to the engine operating state;
First position detecting means for detecting a current operating position of the first variable mechanism;
Second position detecting means for detecting a current operating position of the second variable mechanism;
First control target value determining means for determining a control target value of the first variable mechanism based on a current engine operating state;
When the second variable mechanism fails, the control range of the first variable mechanism is set to a predetermined control range based on the position of the second variable mechanism detected by the second position detecting unit when the second variable mechanism fails. Based on the operation position detected by the first position detection means and the control target value determined by the first control target value determination means within the set predetermined control range, the first variable mechanism is Control means for feedback control continuously or stepwise;
A variable valve operating apparatus for an internal combustion engine, comprising:
機関弁の少なくともリフト特性を機関運転状態に応じて連続的に可変制御する第1可変機構と、
機関弁の少なくとも開閉タイミング特性を機関運転状態に応じて連続的に可変制御する第2可変機構と、
前記第1可変機構の現在の作動位置を検出する第1位置検出手段と、
前記第2可変機構の現在の作動位置を検出する第2位置検出手段と、
現在の機関運転状態に基づいて前記第2可変機構の制御目標値を決定する第2制御目標値決定手段と、
前記第1可変機構が故障した際に、前記第1位置検出手段によって検出された第1可変機構の故障時の位置に基づいて、前記第2可変機構の制御範囲を所定の制御範囲に設定すると共に、この設定した所定の制御範囲内で、前記第2位置検出手段によって検出した作動位置と前記第2制御目標値決定手段によって決定された制御目標値に基づいて、前記第2可変機構を連続的あるいは段階的にフィードバック制御する制御手段と、
を備えたことを特徴とする内燃機関の可変動弁装置。
A first variable mechanism that continuously and variably controls at least a lift characteristic of the engine valve according to an engine operating state;
A second variable mechanism that continuously variably controls at least the opening / closing timing characteristics of the engine valve according to the engine operating state;
First position detecting means for detecting a current operating position of the first variable mechanism;
Second position detecting means for detecting a current operating position of the second variable mechanism;
Second control target value determining means for determining a control target value of the second variable mechanism based on a current engine operating state;
When the first variable mechanism fails, the control range of the second variable mechanism is set to a predetermined control range based on the position of the first variable mechanism detected by the first position detecting unit when the first variable mechanism fails. At the same time, within the set predetermined control range, the second variable mechanism is continuously operated based on the operation position detected by the second position detection means and the control target value determined by the second control target value determination means. Control means for feedback control in a stepwise or stepwise manner,
A variable valve operating apparatus for an internal combustion engine, comprising:
前記第1可変機構は、外周に駆動カムを有する駆動軸と、支軸に揺動自在に支持されて、揺動することによって機関弁を開閉作動する揺動カムと、一端部が前記駆動カムに回動自在に連係すると共に、他端部が前記揺動カムに回転自在に連係し、揺動中心が制御カムによって可変制御されるロッカアームとを備えたことを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の可変動弁装置。  The first variable mechanism includes a drive shaft having a drive cam on the outer periphery, a swing cam that is swingably supported by a support shaft and swings to open and close the engine valve, and one end portion of the drive cam And a rocker arm whose other end is rotatably linked to the swing cam and whose swing center is variably controlled by the control cam. The variable valve operating apparatus for an internal combustion engine according to any one of the above. 前記第1可変機構は、外周に駆動カムを有する駆動軸と、一端部が前記駆動カムの外周に回転自在に連係するリンクアームと、一端部がリンクアームの他端部に回転自在に連係しかつ揺動中心が制御カムによって可変制御されるロッカアームと、機関弁を開閉作動する揺動カムと、該揺動カムとロッカアームの他端部とを機械的に回転自在に連係し前記揺動カムの最大揺動範囲をロッカアームの揺動範囲内に規制する連係部材と、前記制御カムを機関運転状態に応じて制御軸を介して回転制御するアクチュエータと、を備えたことを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の可変動弁装置。  The first variable mechanism includes a drive shaft having a drive cam on the outer periphery, a link arm having one end rotatably linked to the outer periphery of the drive cam, and one end rotatably linked to the other end of the link arm. In addition, a rocker arm whose swing center is variably controlled by a control cam, a swing cam that opens and closes an engine valve, and the swing cam and the other end of the rocker arm are mechanically linked in a freely rotatable manner. And a actuator for controlling the rotation of the control cam via a control shaft in accordance with an engine operating state. The variable valve operating apparatus for an internal combustion engine according to any one of claims 1 to 3.
JP24134099A 1999-08-27 1999-08-27 Variable valve operating device for internal combustion engine Expired - Lifetime JP4017297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24134099A JP4017297B2 (en) 1999-08-27 1999-08-27 Variable valve operating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24134099A JP4017297B2 (en) 1999-08-27 1999-08-27 Variable valve operating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001065321A JP2001065321A (en) 2001-03-13
JP4017297B2 true JP4017297B2 (en) 2007-12-05

Family

ID=17072856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24134099A Expired - Lifetime JP4017297B2 (en) 1999-08-27 1999-08-27 Variable valve operating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4017297B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886532B2 (en) 2001-03-13 2005-05-03 Nissan Motor Co., Ltd. Intake system of internal combustion engine
JP2002285871A (en) 2001-03-27 2002-10-03 Unisia Jecs Corp Variable valve gear for internal combustion engine
JP4489380B2 (en) * 2003-06-25 2010-06-23 日立オートモティブシステムズ株式会社 Fail-safe control device for internal combustion engine with variable valve mechanism
JP4483637B2 (en) 2005-03-15 2010-06-16 日産自動車株式会社 Internal combustion engine
JP2006312943A (en) * 2006-08-24 2006-11-16 Hitachi Ltd Variable valve gear of internal combustion engine
JP2009281343A (en) 2008-05-26 2009-12-03 Hitachi Automotive Systems Ltd Control apparatus for internal combustion engine
JP4937188B2 (en) 2008-05-26 2012-05-23 日立オートモティブシステムズ株式会社 Variable valve operating device for internal combustion engine
JP2010025127A (en) * 2009-11-02 2010-02-04 Hitachi Automotive Systems Ltd Variable valve gear for internal combustion engine
DE102018120422A1 (en) * 2018-08-22 2020-02-27 Schaeffler Technologies AG & Co. KG Sensor arrangement on an adjusting device for a variable valve train of an internal combustion engine

Also Published As

Publication number Publication date
JP2001065321A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP4394764B2 (en) Variable valve operating device for internal combustion engine
JP3975652B2 (en) Variable valve operating device for internal combustion engine
JP4373028B2 (en) Variable valve operating apparatus for internal combustion engine and control method thereof
US7789051B2 (en) Variable valve actuating apparatus for internal combustion engine
JP4776447B2 (en) Variable valve operating device for internal combustion engine
US6502535B2 (en) Valve timing and lift control system
JP4827865B2 (en) Variable valve operating device for internal combustion engine
JP2002106312A (en) Variable valve system for internal combustion engine
US20080257289A1 (en) Variable valve actuating apparatus for internal combustion engine
JP4136926B2 (en) Start control device and start control method for internal combustion engine
JP4483637B2 (en) Internal combustion engine
JP4017297B2 (en) Variable valve operating device for internal combustion engine
JP4118575B2 (en) Variable valve operating apparatus for internal combustion engine and controller for variable valve operating apparatus for internal combustion engine
JP3823675B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP4194445B2 (en) Control device for variable valve lift mechanism
JP2007332942A (en) Variable valve system control device of internal combustion engine
JP4027685B2 (en) Variable valve operating apparatus for internal combustion engine and control mechanism used in the apparatus
JP4063478B2 (en) Variable valve operating device for internal combustion engine
JP4195351B2 (en) Internal combustion engine
JP4369457B2 (en) Variable valve operating device for internal combustion engine
JP3968184B2 (en) Variable valve operating device for internal combustion engine
JP3996763B2 (en) Variable valve gear for V-type internal combustion engine
JP5119180B2 (en) Variable valve operating device for internal combustion engine
JP2002295274A (en) Variable valve device for internal combustion engine
JP4432746B2 (en) Intake control device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4017297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term