JP4016277B2 - Aqueous mixture processing method and apparatus - Google Patents

Aqueous mixture processing method and apparatus Download PDF

Info

Publication number
JP4016277B2
JP4016277B2 JP2003313416A JP2003313416A JP4016277B2 JP 4016277 B2 JP4016277 B2 JP 4016277B2 JP 2003313416 A JP2003313416 A JP 2003313416A JP 2003313416 A JP2003313416 A JP 2003313416A JP 4016277 B2 JP4016277 B2 JP 4016277B2
Authority
JP
Japan
Prior art keywords
solution
crushed ice
concentration
container
ice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003313416A
Other languages
Japanese (ja)
Other versions
JP2005081186A (en
Inventor
茂 坂下
公 石倉
浩康 大平
隆弘 秋月
多津規 浅田
賢一 永留
亮 鱸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2003313416A priority Critical patent/JP4016277B2/en
Publication of JP2005081186A publication Critical patent/JP2005081186A/en
Application granted granted Critical
Publication of JP4016277B2 publication Critical patent/JP4016277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は、水性混合液即ち少なくとも一種の水溶性物質、若しくは少なくとも一種の水溶性物質及び少なくとも一種の油溶性物質を含む、水を主たる媒質とする水性混合液の処理方法及びその装置に関する。   The present invention relates to a method and an apparatus for treating an aqueous mixed liquid, that is, an aqueous mixed liquid containing at least one water-soluble substance, or at least one water-soluble substance and at least one oil-soluble substance using water as a main medium.

多種の物質が混合している水性混合液で、混合物中熱に弱い物質を含むなど加熱して濃縮することのできない水性混合液の濃縮には凍結濃縮法が利用されている(例えば特許文献1参照)。しかし、水溶性塩濃度が高い系では、凍結濃縮での、濃縮倍率が著しく低く実用化が困難である。
また、特に加熱を嫌わない系であって、例えば減圧濃縮法により高濃度で含まれる水溶性塩の分離をすると、減圧釜内壁面に当該塩の結晶が付着し、伝熱面積移の低下を来たしかつ清掃などの作業を必要とすることになった。
A freezing concentration method is used for concentration of an aqueous mixture in which various substances are mixed and cannot be concentrated by heating, for example, containing a substance that is weak against heat in the mixture (for example, Patent Document 1). reference). However, in a system having a high water-soluble salt concentration, the concentration factor in freeze concentration is extremely low, making practical application difficult.
Also, it is a system that does not dislike heating, for example, when separating a water-soluble salt contained at a high concentration by a vacuum concentration method, the salt crystals adhere to the inner wall surface of the vacuum kettle, reducing the transfer of heat transfer area. I came and needed work such as cleaning.

そこで、例えば特開2001−9243公報では、凍結濃縮前の精密ろ過膜を用いた膜分離による前段処理で、溶液中の大部分の高濃度物質を除去してから、その後段で凍結濃縮を行う方法が提案されている(特許文献2)。また、特開2000−24641公報(特許文献3)では、氷蓄熱槽内の汚泥水に冷熱を与えて凍結速度の差により濃縮分離するとともに、該氷蓄熱槽内に生成する融解水をろ過して処理水中から汚泥分を分離する方法が提案されている。しかし、精密ろ過膜を始めとする濾過手段を用いた方法では、溶液中の溶質に応じてろ過膜の細孔径を限定する必要があり、また他の油脂など水不溶性の混合物、固体粒子などが存在すると、ろ過膜が目詰まりを起こしたりして実用化が困難となるなど、利用範囲の極めて狭い濃縮方法(前段濃縮方法)であった。
特開2000−334204公報 特開2001−9243公報 特開2000−24641公報
Therefore, for example, in Japanese Patent Application Laid-Open No. 2001-9243, most of the high-concentration substances in the solution are removed by pre-treatment by membrane separation using a microfiltration membrane before freeze-concentration, and then freeze-concentration is performed at the subsequent stage. A method has been proposed (Patent Document 2). Japanese Patent Laid-Open No. 2000-24641 (Patent Document 3) condenses and separates sludge water in an ice heat storage tank by concentrating and separating it by the difference in freezing speed, and filtering the molten water generated in the ice heat storage tank. A method for separating sludge from treated water has been proposed. However, in the method using a filtration means such as a microfiltration membrane, it is necessary to limit the pore size of the filtration membrane according to the solute in the solution, and other water-insoluble mixtures such as fats and oils, solid particles, etc. If present, it was a concentration method (pre-concentration method) with a very narrow range of use, such as clogging the filtration membrane and making it difficult to put it to practical use.
JP 2000-334204 A JP 2001-9243 A JP 2000-24641 A

そこで、本発明はかかる従来の問題点に鑑み、凍結濃縮の前段処理用とは限らないが、多種物質が混在する水性混合液の処理方法であって、該高濃度水性混合液の溶質を効率的に除去する方法及びその装置の提供を目的とする。また、前記装置を利用した方法を凍結濃縮の前段処理として利用した多段凍結濃縮方法の提供を目的とする。   Therefore, in view of such conventional problems, the present invention is not limited to the pre-treatment for freeze concentration, but is a method for treating an aqueous mixed solution in which various substances are mixed, and the solute of the high concentration aqueous mixed solution is efficiently used. It is an object of the present invention to provide a method and an apparatus for removing it. It is another object of the present invention to provide a multistage freeze concentration method using the method using the apparatus as a pretreatment for freeze concentration.

そこで、本発明はかかる課題を解決するために、請求項1記載の発明は、容器下部に円錐状液取出口と、水性混合液の砕氷を保持する格子状部材とを有する円筒型容器に前記格子状部材の上部位置まで水溶性混合液原液または予め他の処理装置で回収された高濃度溶液を貯留し、その後砕氷投入口より砕氷を投下し、前記液取出口より取出した溶液の少なくとも一部を前記容器の上部に返送して前記砕氷に噴霧し、砕氷の融解速度の差を利用した発汗作用を促進させて砕氷中の水性混合液を溶液中に溶出させ、前記砕氷を所望濃度まで低下させて、前記容器底部に溜まった溶液を全て回収し、その後円筒容器内に氷全融解液を注入し、前記液取出口より取出した溶液の少なくとも一部を返送して未融解の砕氷全体に噴霧し該砕氷を融解し、該融解によって容器底部に溜まった溶液を低濃度溶液として前記液取出口より回収し、前記砕氷が所望の濃度に低下するまでに回収される高濃度溶液と分離することを特徴とする。 Therefore, in order to solve the above problems, the present invention provides a cylindrical container having a conical liquid outlet and a lattice-shaped member for holding crushed ice of an aqueous mixed solution in the lower part of the container. An aqueous mixed solution stock solution or a high-concentration solution previously collected by another processing apparatus is stored up to the upper position of the lattice member, and then crushed ice is dropped from the ice breaker inlet, and at least one of the solutions taken out from the liquid outlet is collected. The part is returned to the upper part of the container and sprayed onto the crushed ice, the sweating action utilizing the difference in melting speed of the crushed ice is promoted, the aqueous mixture in the crushed ice is eluted into the solution, and the crushed ice is brought to the desired concentration. All the solution accumulated at the bottom of the container is recovered, and then the whole ice melt is poured into the cylindrical container, and at least a part of the solution taken out from the liquid outlet is returned to return the entire unmelted crushed ice Spray to melt the crushed ice, and The solution collected in the bottom of the container by the solution recovered from the liquid outlet as a low concentration solution, the crushed ice is you and separating the highly concentrated solution is recovered before reduction to the desired concentration.

これは、単結晶の凍結氷は融点が高いことによる純粋と溶質を含んだ水性混合液の融点の差を利用して、前記砕氷が所望の濃度に低下するまでに回収される高濃度溶液と砕氷が所望濃度まで低下し氷全融解液が注入された後に回収される低濃度溶液と分離する発明である。一般に、水性混合液の完全氷を水性混合液の融点より温度を高くした状態で保持すると、“発汗"という現象により、内包している不純物を外に吐き出すことが知られている。従って、前記砕氷を前記温度とすることにより最初に不純物を多く含む高濃度溶液を取出すことができ、後に不純物を殆ど含まない氷を融解して取出すことにより、高濃度水性溶液であっても効率良く高濃度溶液と低濃度溶液とに分離することができる。
このとき、前記完全氷を砕氷とすることにより、不純物が溶出し易くなる。また、前記発汗作用は、純水より高濃度の溶液を噴霧した場合の方が効果が大きいことが判っている。従って、前記取出口より取出した高濃度溶液を噴霧することによりさらに高濃度溶液を回収することができる。また高濃度溶液を循環利用することにより処理水量を増加することなく処理を行うことが可能となる。
This is because a single crystal frozen ice has a high-concentration solution that is recovered before the crushed ice is reduced to a desired concentration by utilizing a difference in melting point between an aqueous mixed solution containing pure and solute due to a high melting point. Crushed ice is an invention for separating into a low concentration solution that is recovered after the reduced ice all melted liquid until the desired concentration is injected. In general, it is known that when the complete ice of an aqueous mixed solution is kept at a temperature higher than the melting point of the aqueous mixed solution, the contained impurities are discharged to the outside due to a phenomenon called “sweat”. Therefore, by setting the crushed ice to the temperature, a high-concentration solution containing a large amount of impurities can be taken out at first, and by melting and taking out ice containing almost no impurities, the efficiency can be improved even with a high-concentration aqueous solution. It can be well separated into a high concentration solution and a low concentration solution.
At this time, impurities are easily eluted by making the complete ice into crushed ice. Further, it has been found that the perspiration action is more effective when a solution having a higher concentration than that of pure water is sprayed. Therefore, a higher concentration solution can be recovered by spraying the high concentration solution taken out from the outlet. Moreover, it becomes possible to perform a process without increasing the amount of treated water by circulatingly using a high concentration solution.

さらに、前記取出口より取出した前記低濃度溶液に、凍結速度の差を利用した凍結濃縮処理を施すことを特徴とする。
このように、凍結濃縮処理の前段処理として前記発明を組み込むことにより、凍結濃縮処理を効率良く行うことができるとともに、水溶性塩を多く含む高濃度溶液であっても、分離効率を向上させることが可能となる。
Further, the low concentration solution taken out from the liquid outlet is subjected to a freeze concentration process utilizing a difference in freezing speed.
Thus, by incorporating the above invention as a pre-treatment of freeze concentration treatment, freeze concentration treatment can be performed efficiently and separation efficiency can be improved even for a high concentration solution containing a large amount of water-soluble salts. Is possible.

また、水性混合液を高濃度溶液と低濃度溶液とに分離する装置の発明として、容器下部に円錐状液取出口と、水性混合液の砕氷を保持する格子状部材とを有する円筒型容器を備えるとともに、前記液取出口より取出した液の少なくとも一部を前記容器の上部に返送する返送手段と、前記返送した液を前記砕氷に噴霧する噴霧手段と、を備え、
前記円筒型容器に前記格子状部材の上部位置まで水溶性混合液原液または予め他の処理装置で回収された高濃度溶液を貯留し、その後砕氷投入口より砕氷を投下し、前記取出口より取出した溶液の少なくとも一部を前記返送手段によって返送して前記噴霧手段によって前記砕氷に噴霧し、砕氷の融解速度の差を利用した発汗作用を促進させて砕氷中の水性混合液を溶液中に溶出させて前記砕氷を所望濃度まで低下させ、前記容器底部に溜まった溶液を全て回収し、その後円筒容器内に氷全融解液を注入し、前記取出口より取出した溶液の少なくとも一部を前記返送手段によって返送して前記噴霧手段によって未融解の砕氷に噴霧し該砕氷を融解し、該融解によって容器底部に溜まった溶液を低濃度溶液として前記取出口より回収し、前記砕氷が所望の濃度に低下するまでに回収される高濃度溶液と分離する構成としたことを特徴とする。
このとき前記砕氷は、水性混合液の完全氷を前記円筒型容器の上部から投入し、氷落下衝撃により粉砕するようにしても良い。
Further, as an invention of an apparatus for separating an aqueous mixed solution into a high-concentration solution and a low-concentration solution, a cylindrical container having a conical liquid outlet at the bottom of the container and a lattice-like member that holds crushed ice of the aqueous mixed solution is provided. A return means for returning at least part of the liquid taken out from the liquid outlet to the upper part of the container; and a spray means for spraying the returned liquid on the crushed ice,
A water-soluble mixed liquid stock solution or a high-concentration solution collected in advance by another processing apparatus is stored in the cylindrical container up to the upper position of the lattice-like member, and then crushed ice is dropped from the crushed ice inlet and taken out from the outlet. At least a part of the solution is returned by the returning means and sprayed on the crushed ice by the spraying means, and the aqueous mixture liquid in the crushed ice is eluted into the solution by promoting the sweating action utilizing the difference in melting speed of the crushed ice. The crushed ice is reduced to a desired concentration, and all the solution accumulated at the bottom of the container is collected, and then a total melt of ice is injected into a cylindrical container, and at least a part of the solution taken out from the outlet is returned to the container. The molten ice is sprayed onto the unmelted crushed ice by the spraying means to melt the crushed ice, and the solution accumulated at the bottom of the container by the melting is recovered as a low-concentration solution from the outlet, and the crushed ice Characterized by being configured to separate a high concentration solution to be recovered until reduced to the desired concentration.
At this time, the crushed ice may be pulverized by dropping ice into the cylindrical container from the top of the cylindrical container.

かかる発明によれば、円筒型容器を利用しているため、前記噴霧装置により高濃度溶液が砕氷全面に満遍なく噴霧可能で全体的な発汗、融解を行うことができる。また該容器底部に円錐状液取出口を設けているため、液の完全排出が可能となり、低濃度溶液に高濃度溶液が含まれ、低濃度溶液の濃度が上昇することを防止できる。
また前記円筒型容器の底部に前記格子状部材を配していることから、前記取出口に砕氷が吸い込まれることを防止できる。また、前記格子状部材の上部位置まで高濃度溶液を予め満たしておくため、これにより必要以上の氷落下衝撃と騒音を防止することができる。
According to this invention, since the cylindrical container is used, the spray device can spray the high concentration solution evenly over the entire surface of the crushed ice, and can perform overall sweating and melting. Further, since the conical liquid outlet is provided at the bottom of the container, the liquid can be completely discharged, and the high-concentration solution is contained in the low-concentration solution and the concentration of the low-concentration solution can be prevented from increasing.
Moreover, since the lattice-shaped member is arranged at the bottom of the cylindrical container, it is possible to prevent the crushed ice from being sucked into the take-out port. Further, since the advance satisfy the high concentration solution to the upper position of the grid-shaped member, thereby preventing the ice dropping impact and noise than necessary.

また、前記返送手段に、前記返送する高濃度溶液の冷熱を回収する手段を設け、該回収した冷熱を前記水性混合液の凍結に利用することが好ましい。これにより、かかる装置における熱効率を向上し、運転コストを低廉化することができる。
さらに、前記水性混合液処理装置を複数設け、一の装置より取出した高濃度溶液を他の容器の砕氷に噴霧することを特徴とする。
かかる発明は、前記一の装置より取出した高濃度溶液を、他の容器に予め導入し、該他の容器の格子上部材の上部位置まで高濃度溶液を満たして砕氷を投入し、前記高濃度溶液を噴霧手段より噴霧する。このように、高濃度溶液を他の容器で利用することにより外部から水等の溶液を導入する必要がなく、処理水量を最小限に抑えることができる。
Preferably, the return means is provided with means for recovering the cold heat of the high-concentration solution to be returned, and the recovered cold heat is used for freezing the aqueous mixed solution. Thereby, the thermal efficiency in this apparatus can be improved and the operating cost can be reduced.
Furthermore, a plurality of the aqueous mixed solution treatment apparatuses are provided, and the high concentration solution taken out from one apparatus is sprayed on the crushed ice in another container.
In this invention, the high-concentration solution taken out from the one apparatus is introduced into another container in advance, the high-concentration solution is filled up to the upper position of the upper lattice member of the other container, and crushed ice is added. The solution is sprayed from the spraying means. In this way, by using the high concentration solution in another container, it is not necessary to introduce a solution such as water from the outside, and the amount of treated water can be minimized.

本発明によれば、多種物質が混在する水性混合液の処理方法であって、該水性混合液中に存在する不純物を効率的に除去する方法及びその装置の提供を可能にした。また、前記装置を利用した方法を凍結濃縮の前段処理として利用した多段凍結濃縮方法を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, it was possible to provide the processing method of the aqueous liquid mixture which a various substance coexists, Comprising: The method and apparatus which remove efficiently the impurity which exists in this aqueous liquid mixture. In addition, it is possible to provide a multistage freeze concentration method in which the method using the apparatus is used as a pretreatment for freeze concentration.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の水性混合液処理方法の作用を説明する図、図2は本実施形態にかかる水性混合液処理装置の全体構成図、図3は図2の水性混合液処理装置の処理フローを示す図、図4は図2の水性混合液処理装置を複数設けた場合の処理フローを示す図、図5は本発明にかかる水性混合液処理を凍結濃縮処理と組み合わせた場合の処理工程図である。
本実施形態は、例えば切削油廃液からSS分(懸濁物質)、オイル分、溶液を分離する処理に適しているが、これに限らず水性混合液であれば何れにも適用可能である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
FIG. 1 is a diagram for explaining the operation of the aqueous mixed liquid processing method of the present invention, FIG. 2 is an overall configuration diagram of the aqueous mixed liquid processing apparatus according to the present embodiment, and FIG. 3 is a processing flow of the aqueous mixed liquid processing apparatus of FIG. FIG. 4 is a diagram showing a processing flow in the case where a plurality of the aqueous mixed solution processing apparatus of FIG. 2 is provided, and FIG. 5 is a processing process diagram in the case where the aqueous mixed solution processing according to the present invention is combined with the freeze concentration processing. It is.
Although this embodiment is suitable for the process which isolate | separates SS content (suspended substance), oil content, and a solution from cutting oil waste liquid, for example, it is applicable not only to this but to any aqueous mixed liquid.

かかる実施形態は、図1に示される作用を利用した方法及び装置に関する。純水の融点は、溶質を含んだ水性混合液の融点より高いことを利用して、凍結氷の融解速度の差により高濃度溶液と低濃度溶液とを分離する。一般に、水性混合液の完全氷を水性混合液の融点より温度を高くした状態で保持すると、“発汗"という現象により、内包している不純物を外に吐き出すことが知られている。図1に示されるように、タンク1に貯留された水性混合液5を(a)、製氷器2に導入して冷凍機3により冷熱を与えて完全凍結し、水性混合液の融点より温度を高く保持すると凝集油分8が氷表面に溶出するとともに凍結氷6が融解して濃縮液7が生成する(c)。そして、該凍結氷6の上部から溶液を噴霧することにより前記凝集油分8を洗浄するとともに、前記濃縮液7を下部より取出すことができる(d)。これにより、凝集油分8及び濃縮液7を殆ど含まない氷が残留し、これを融解して取出すことにより、効率良く高濃度溶液と低濃度溶液とを分離することができる。   Such an embodiment relates to a method and an apparatus using the operation shown in FIG. Using the fact that the melting point of pure water is higher than the melting point of the aqueous mixed solution containing the solute, the high-concentration solution and the low-concentration solution are separated by the difference in the melting rate of the frozen ice. In general, it is known that when the complete ice of an aqueous mixed solution is kept at a temperature higher than the melting point of the aqueous mixed solution, the contained impurities are discharged to the outside due to a phenomenon called “sweat”. As shown in FIG. 1, the aqueous mixed solution 5 stored in the tank 1 is (a) introduced into the ice maker 2 and is completely frozen by applying cold heat from the refrigerator 3, and the temperature is set higher than the melting point of the aqueous mixed solution. When kept high, the coagulated oil 8 is eluted on the ice surface and the frozen ice 6 is melted to produce a concentrated solution 7 (c). Then, by spraying the solution from the upper part of the frozen ice 6, the agglomerated oil component 8 can be washed and the concentrated liquid 7 can be taken out from the lower part (d). As a result, ice that hardly contains the flocculated oil 8 and the concentrated liquid 7 remains, and the high-concentration solution and the low-concentration solution can be efficiently separated by melting and removing the ice.

かかる作用を効果的に利用した装置を図2に示す。図2に示される水性混合液処理装置10は、円筒型容器11aと、該容器底部に具備された円錐部11bと、該円錐部の先端に設けられた液取出口11cとからなる本体11と、該容器下部に配された格子状のグレーチング12と、該容器上部に設けられた噴霧ノズル13及び砕氷投入口14と、三方バルブ15と、前記液取出口11cから取出された液を前記噴霧ノズル14に返送する返送ライン16と、該返送ライン16と上に配設された熱交換器17と、前記液取出口11cからの液を外部へ排出する排出ライン18と、を備えた構成となっている。   FIG. 2 shows an apparatus that effectively uses such an action. An aqueous mixed liquid processing apparatus 10 shown in FIG. 2 includes a main body 11 including a cylindrical container 11a, a conical part 11b provided at the bottom of the container, and a liquid outlet 11c provided at the tip of the conical part. The lattice-shaped grating 12 disposed in the lower part of the container, the spray nozzle 13 and the ice breaker inlet 14 provided in the upper part of the container, the three-way valve 15, and the liquid taken out from the liquid outlet 11c are sprayed. A configuration including a return line 16 for returning to the nozzle 14, a heat exchanger 17 disposed on the return line 16, and a discharge line 18 for discharging the liquid from the liquid outlet 11c to the outside. It has become.

底部に円錐部11bを持つ円筒型容器11aは底部先端(円錐の頂点)が液取出口11cで封じられている。前記容器11aは熱交換器17を備えており熱交換器17は水性混合液と熱媒体を熱交換させることで、内部の水性混合液の砕氷21の温度調整を行っている。
前記円筒型容器11aの底部が円錐部11bとなっているのは、融解した液が前記取出口11cから分離抜き取りし易い構造だからである。
また、前記容器11a内には砕氷21が取出口11cに吸い込まれないようにグレーチング12により保持されている。
The cylindrical container 11a having the conical portion 11b at the bottom has its bottom end (conical apex) sealed with a liquid outlet 11c. The said container 11a is equipped with the heat exchanger 17, and the heat exchanger 17 adjusts the temperature of the crushed ice 21 of an internal aqueous liquid mixture by heat-exchanging an aqueous liquid mixture and a heat medium.
The bottom part of the cylindrical container 11a is the conical part 11b because the melted liquid can be easily separated and extracted from the outlet 11c.
In the container 11a, the crushed ice 21 is held by the grating 12 so as not to be sucked into the outlet 11c.

前記容器11aの取出口11cより排出された液は、前記三方バルブ15により排出ライン18から外部へ排出されるか、若しくは前記返送ライン16を介して前記噴霧ノズル13を介して容器本体11内に循環されるように制御されている。また、前記返送ライン16上には、液を前記噴霧ノズル13に返送するための循環ポンプが設けられるとともに、前記熱交換器17が配されて冷熱回収されるように構成される。   The liquid discharged from the outlet 11c of the container 11a is discharged to the outside from the discharge line 18 by the three-way valve 15, or enters the container body 11 through the spray nozzle 13 through the return line 16. It is controlled to be circulated. In addition, a circulation pump for returning the liquid to the spray nozzle 13 is provided on the return line 16, and the heat exchanger 17 is arranged to recover the cold.

次に、水性混合液を処理する方法につき、前記水性混合液処理装置10を用いた処理フローを図3を参照して説明する。図3に示されるように、まず前記円筒型容器11に前記グレーチング12の上部位置まで高濃度溶液20、若しくは水性混合液原液を貯留した後、前記砕氷投入口14より砕氷21を投入する(a)。前記砕氷21は、水性混合液の完全氷を前記投入口14より投入し、落下衝撃により粉砕するようにしても良い。
そして、融解速度の差を利用して前記砕21に含まれる高濃度溶液20を前記取出口11cより取出し、前記返送ライン16より前記噴霧ノズル13を介して砕氷21上に満遍なく噴霧する(b)。
Next, a processing flow using the aqueous mixed solution processing apparatus 10 will be described with reference to FIG. As shown in FIG. 3, first, after storing the high-concentration solution 20 or the aqueous mixed solution stock solution in the cylindrical container 11 up to the upper position of the grating 12, the crushed ice 21 is fed from the crushed ice inlet 14 (a ). The crushed ice 21 may be crushed by a drop impact after the complete ice of an aqueous mixture is introduced from the inlet 14.
Then, the high-concentration solution 20 contained in the crushed 21 is taken out from the take-out port 11c using the difference in melting speed, and sprayed evenly on the crushed ice 21 from the return line 16 through the spray nozzle 13 (b). .

このとき、前記返送ライン16上の熱交換器17により前記高濃度溶液20の冷熱を回収して、凍結砕氷生成の際の冷熱として利用することが好適である。
前記高濃度溶液20の噴霧により砕氷21中のオイル分、SS分等の溶質が溶出するとともに洗い流され、容器底部に溜まった高濃度溶液20を取出口11cより回収する(c)。
そして、砕氷を所望濃度まで低下させた後に氷全融解液を注入し(d)、前記返送ライン16により低濃度溶液22を返送し、前記噴霧ノズル13より砕氷21全体に噴霧して砕氷21を融解して低濃度溶液22を融解して回収する(e)。
At this time, it is preferable that the cold heat of the high-concentration solution 20 is recovered by the heat exchanger 17 on the return line 16 and used as the cold heat during the production of frozen crushed ice.
By spraying the high-concentration solution 20, solutes such as oil and SS in the crushed ice 21 are eluted and washed away, and the high-concentration solution 20 collected at the bottom of the container is recovered from the outlet 11c (c).
Then, after reducing the crushed ice to a desired concentration, the ice total melt is injected (d), the low concentration solution 22 is returned by the return line 16, and sprayed on the entire crushed ice 21 from the spray nozzle 13, thereby breaking the crushed ice 21. Thaw to recover the low concentration solution 22 by melting (e).

かかる処理フローのように、前記水性混合液を凍結させることにより該液が変性され、完全凍結氷から自然発汗して凝集物と濃縮された高濃度溶液として溶出、分離することが可能となる。従って、高濃度混合性溶液であっても効率良く高濃度溶液と低濃度溶液とに分離することができる。
また、前記凍結氷を砕氷21とすることにより、不純物が溶出し易くなる。また、前記取出口11cより取出した高濃度溶液20を噴霧することによりさらに高濃度溶液を回収することができるとともに、高濃度溶液を循環利用することにより処理水量の増加を防止できる。さらにまた、前記熱交換器17を設けることにより熱効率を向上させることができ、運転コストの低廉化が図れる。
As in this processing flow, the aqueous mixture is frozen to be denatured, and it becomes possible to elute and separate as a highly concentrated solution concentrated from aggregates by spontaneous sweating from completely frozen ice. Accordingly, even a high concentration mixed solution can be efficiently separated into a high concentration solution and a low concentration solution.
Moreover, by making the frozen ice into crushed ice 21, impurities are easily eluted. Further, by spraying the high-concentration solution 20 taken out from the outlet 11c, it is possible to further collect a high-concentration solution, and it is possible to prevent an increase in the amount of treated water by circulating the high-concentration solution. Furthermore, by providing the heat exchanger 17, the thermal efficiency can be improved, and the operating cost can be reduced.

また、前記したような装置構成とすることにより、以下の効果が得られる。即ち、前記容器本体11を円筒型とすることにより局所的ではなく砕氷全体に高濃度溶液20を噴霧することができる。さらに、前記本体底部を円錐部11bとすることにより、本体11内に液を残留させることなく取出すことができるため、低濃度溶液22中に高濃度溶液20が混入して低濃度溶液の濃度が上昇することなく不純物の少ない液とすることができる。   Moreover, the following effects are acquired by setting it as an above-described apparatus structure. That is, by making the container body 11 cylindrical, the high-concentration solution 20 can be sprayed on the entire crushed ice instead of locally. Further, since the bottom of the main body is the conical part 11b, the liquid can be taken out without remaining in the main body 11, so that the high-concentration solution 20 is mixed in the low-concentration solution 22 and the concentration of the low-concentration solution is reduced. A liquid with few impurities can be obtained without increasing.

図4は前記水性混合液処理装置を複数設けた場合の実施形態を示す。本実施形態では3基の処理装置10A、10B、10Cを並列的に配設し、時間差を以って処理を行う構成としている。かかる処理装置は、3基に限定されず、装置の設置面積、設置コスト等を考慮して適宜設定する。
図4(a)に示される第1工程にて、処理装置10Aでは空の容器本体11にグレーチング12の上部位置まで高濃度溶液20若しくは水性混合液を貯留した後に砕氷21を投入する。一方、処理装置10Bでは、本体11に貯留した砕氷21上に該装置10B下部から取出した高濃度溶液20の少なくとも一部を返送して噴霧ノズル13より噴霧する。このとき、該取出口より取出した高濃度溶液20の少なくとも一部を三方バルブ15bより分岐して前記処理装置10Aに導入しても良い。
FIG. 4 shows an embodiment in which a plurality of the aqueous mixed solution treatment apparatuses are provided. In the present embodiment, three processing apparatuses 10A, 10B, and 10C are arranged in parallel to perform processing with a time difference. Such a processing apparatus is not limited to three, and is set as appropriate in consideration of the installation area of the apparatus, the installation cost, and the like.
In the first step shown in FIG. 4A, in the processing apparatus 10A, the high concentration solution 20 or the aqueous mixed solution is stored in the empty container body 11 up to the upper position of the grating 12, and then the crushed ice 21 is introduced. On the other hand, in the processing apparatus 10 </ b> B, at least a part of the high concentration solution 20 taken out from the lower part of the apparatus 10 </ b> B is returned onto the crushed ice 21 stored in the main body 11 and sprayed from the spray nozzle 13. At this time, at least a part of the high concentration solution 20 taken out from the outlet may be branched from the three-way valve 15b and introduced into the processing apparatus 10A.

また、処理装置10Cは高濃度溶液20を回収した後であって、不純物を殆ど含まない砕氷21を低濃度溶液22を循環噴霧させることにより溶解して回収している。
さらに、図4(b)に示される第2工程にて、前記処理装置10Aでは本体11内に保持した砕氷21上に高濃度溶液20を噴霧して砕氷に溶出した水性混合液を洗い流しながら高濃度溶液20を回収するとともに、その少なくとも一部を前記噴霧ノズル13に返送する。
Further, the processing apparatus 10C recovers the high-concentration solution 20 by melting and recovering the crushed ice 21 containing almost no impurities by circulating and spraying the low-concentration solution 22.
Further, in the second step shown in FIG. 4B, in the processing apparatus 10A, the high-concentration solution 20 is sprayed on the crushed ice 21 held in the main body 11, and the aqueous mixed solution eluted in the crushed ice is washed away. The concentrated solution 20 is collected and at least a part thereof is returned to the spray nozzle 13.

そして、前記処理装置10Bでは高濃度溶液20を回収した後の砕氷に低濃度溶液22を循環噴霧しながら低濃度溶液22を回収する。また前記処理装置10Cでは、水溶性塩を殆ど含まない砕氷21が全融解して生成した低濃度溶液22を回収した後に、前記処理装置10Aより導入した高濃度溶液20を本体11内に導入して砕氷21を投入する。
このように、複数の処理装置を用いることにより処理効率を大幅に向上させることができるとともに、処理水を有効利用することにより処理水量を最小限とすることができる。
And in the said processing apparatus 10B, the low concentration solution 22 is collect | recovered, circulatingly spraying the low concentration solution 22 on the crushed ice after collect | recovering the high concentration solution 20. FIG. In the processing apparatus 10C, after recovering the low-concentration solution 22 formed by melting the crushed ice 21 containing almost no water-soluble salt, the high-concentration solution 20 introduced from the processing apparatus 10A is introduced into the main body 11. Then put the crushed ice 21.
As described above, the treatment efficiency can be greatly improved by using a plurality of treatment devices, and the amount of treated water can be minimized by effectively using the treated water.

図5は前記実施形態で説明した水性混合液処理工程の次段に凍結濃縮工程を行う濃縮方法を示す処理工程図である。図5に示すように、前記水性混合液処理装置10を用いた水性混合液処理工程100で得られた排出液、即ち、希薄な低濃度水性混合液を、従来公知の凍結氷にして凍結濃縮する凍結濃縮工程101を行った。これによって、高濃度水性混合液でも、凍結濃縮を行うことが可能となり、純度の高い水が分離できた。   FIG. 5 is a process diagram showing a concentration method in which a freeze concentration process is performed in the next stage of the aqueous mixed solution process described in the embodiment. As shown in FIG. 5, the drained liquid obtained in the aqueous mixed liquid processing step 100 using the aqueous mixed liquid processing apparatus 10, that is, the dilute low-concentration aqueous mixed liquid is freeze-concentrated into conventionally known frozen ice. The freeze concentration step 101 was performed. As a result, it was possible to perform freeze concentration even in a high-concentration aqueous mixture, and water with high purity could be separated.

本発明は、切削油廃液からSS分(懸濁物質)、オイル分、溶液を分離する水処理に好適に用いられるが、他に食品工業や化学工業、下水処理場等にも適用することが可能であり、例えば既存の凍結濃縮処理システム等の他のシステムに組み込むことにより、より一層の処理効率向上が期待できる。   The present invention is suitably used for water treatment for separating SS components (suspended substances), oil components, and solutions from cutting oil waste liquid, but may also be applied to food industries, chemical industries, sewage treatment plants, and the like. For example, further improvement in processing efficiency can be expected by incorporating it into another system such as an existing freeze concentration processing system.

本発明の水性混合液処理方法の作用を説明する図である。It is a figure explaining the effect | action of the aqueous liquid mixture processing method of this invention. 本実施形態にかかる水性混合液処理装置の全体構成図である。It is a whole block diagram of the aqueous liquid mixture processing apparatus concerning this embodiment. 図2の水性混合液処理装置の処理フローを示す図である。It is a figure which shows the processing flow of the aqueous | water-based liquid mixture processing apparatus of FIG. 図2の水性混合液処理装置を複数設けた場合の処理フローを示す図である。It is a figure which shows the processing flow at the time of providing two or more aqueous liquid mixture processing apparatuses of FIG. 本発明にかかる水性混合液処理を凍結濃縮処理と組み合わせた場合の処理工程図である。It is a processing-process figure at the time of combining the aqueous liquid mixture process concerning this invention with a freeze concentration process.

符号の説明Explanation of symbols

6 凍結氷
7 濃縮液
8 凝集油分
10、10A、10B、10C 水性混合液処理装置
11 本体
11a 円筒型容器
11b 円錐部
12 グレーチング(格子部)
13 噴霧ノズル
14 砕氷投入口
16 循環ライン
17 熱交換器
20 高濃度溶液
21 砕氷
22 低濃度溶液
100 水性混合液処理装置
101 凍結濃縮装置
6 Frozen ice 7 Concentrated liquid 8 Aggregated oil content 10, 10A, 10B, 10C Aqueous liquid mixture processing device 11 Main body 11a Cylindrical container 11b Conical part 12 Grating (lattice part)
DESCRIPTION OF SYMBOLS 13 Spray nozzle 14 Ice breaking inlet 16 Circulation line 17 Heat exchanger 20 High concentration solution 21 Ice breaking 22 Low concentration solution 100 Aqueous liquid mixture processing apparatus 101 Freezing concentration apparatus

Claims (5)

容器下部に円錐状液取出口と、水性混合液の砕氷を保持する格子状部材とを有する円筒型容器に前記格子状部材の上部位置まで水溶性混合液原液または予め他の処理装置で回収された高濃度溶液を貯留し、その後砕氷投入口より砕氷を投下し、前記液取出口より取出した溶液の少なくとも一部を前記容器の上部に返送して前記砕氷に噴霧し、砕氷の融解速度の差を利用した発汗作用を促進させて砕氷中の水性混合液を溶液中に溶出させ、前記砕氷を所望濃度まで低下させて、前記容器底部に溜まった溶液を全て回収し、その後円筒容器内に氷全融解液を注入し、前記液取出口より取出した溶液の少なくとも一部を返送して未融解の砕氷全体に噴霧し該砕氷を融解し、該融解によって容器底部に溜まった溶液を低濃度溶液として前記液取出口より回収し、前記砕氷が所望の濃度に低下するまでに回収される高濃度溶液と分離することを特徴とする水性混合液処理方法。 In a cylindrical container having a conical liquid outlet at the bottom of the container and a lattice-shaped member for holding the crushed ice of the aqueous mixed solution, the water-soluble mixed solution is collected up to the upper position of the lattice-shaped member or collected in advance by another processing apparatus. The high concentration solution is stored, and then the crushed ice is dropped from the crushed ice inlet, and at least a part of the solution taken out from the liquid outlet is returned to the upper part of the container and sprayed on the crushed ice. The sweating action utilizing the difference is promoted to elute the aqueous mixed solution in the crushed ice into the solution, the crushed ice is lowered to the desired concentration, and all the solution accumulated at the bottom of the container is collected, and then placed in the cylindrical container Inject a total melt of ice, return at least a portion of the solution taken out from the liquid outlet, spray over the entire unmelted crushed ice, melt the crushed ice, and lower the concentration of the solution accumulated at the bottom of the container by the melting As the solution, the liquid outlet Recovered, aqueous mixture treatment method characterized in that the crushed ice is separated from the highly concentrated solution is recovered before reduction to the desired concentration. 前記液取出口より取出した前記低濃度溶液に、凍結速度の差を利用した凍結濃縮処理を施すことを特徴とする請求項1記載の水性混合液処理方法。 2. The aqueous mixed liquid treatment method according to claim 1, wherein the low concentration solution taken out from the liquid outlet is subjected to freeze concentration treatment utilizing a difference in freezing speed . 容器下部に円錐状液取出口と、水性混合液の砕氷を保持する格子状部材とを有する円筒型容器を備えるとともに、前記液取出口より取出した液の少なくとも一部を前記容器の上部に返送する返送手段と、前記返送した液を前記砕氷に噴霧する噴霧手段と、を備え、
前記円筒型容器に前記格子状部材の上部位置まで水溶性混合液原液または予め他の処理装置で回収された高濃度溶液を貯留し、その後砕氷投入口より砕氷を投下し、前記取出口より取出した溶液の少なくとも一部を前記返送手段によって返送して前記噴霧手段によって前記砕氷に噴霧し、砕氷の融解速度の差を利用した発汗作用を促進させて砕氷中の水性混合液を溶液中に溶出させて前記砕氷を所望濃度まで低下させ、前記容器底部に溜まった溶液を全て回収し、その後円筒容器内に氷全融解液を注入し、前記取出口より取出した溶液の少なくとも一部を前記返送手段によって返送して前記噴霧手段によって未融解の砕氷に噴霧し該砕氷を融解し、該融解によって容器底部に溜まった溶液を低濃度溶液として前記取出口より回収し、前記砕氷が所望の濃度に低下するまでに回収される高濃度溶液と分離する構成としたことを特徴とする水性混合液処理装置
A cylindrical container having a conical liquid outlet at the bottom of the container and a lattice-like member that holds crushed ice of the aqueous mixed liquid is provided, and at least a part of the liquid taken out from the liquid outlet is returned to the upper part of the container Return means for spraying, and spray means for spraying the returned liquid onto the crushed ice,
A water-soluble mixed liquid stock solution or a high-concentration solution collected in advance by another processing apparatus is stored in the cylindrical container up to the upper position of the lattice-like member, and then crushed ice is dropped from the crushed ice inlet and taken out from the outlet. At least a part of the solution is returned by the returning means and sprayed on the crushed ice by the spraying means, and the aqueous mixture liquid in the crushed ice is eluted into the solution by promoting the sweating action utilizing the difference in melting speed of the crushed ice. The crushed ice is reduced to a desired concentration, and all the solution accumulated at the bottom of the container is collected, and then a total melt of ice is injected into a cylindrical container, and at least a part of the solution taken out from the outlet is returned to the container. The molten ice is sprayed onto the unmelted crushed ice by the spraying means to melt the crushed ice, and the solution accumulated at the bottom of the container by the melting is recovered as a low-concentration solution from the outlet, and the crushed ice It desired high concentration solution to be collected until the reduced concentration and separating arrangement and the possible aqueous mixture processing apparatus according to claim.
前記返送手段に、前記返送する高濃度溶液の冷熱を回収する手段を設け、該回収した冷熱を前記水性混合液の凍結に利用することを特徴とする請求項3記載の水性混合液処理装置。 4. The aqueous mixed liquid processing apparatus according to claim 3, wherein the returning means is provided with means for recovering the cold heat of the high concentration solution to be returned, and the recovered cold heat is used for freezing the aqueous mixed liquid. 前記水性混合液処理装置を複数設け、一の装置より取出した高濃度溶液を他の容器の砕氷に噴霧することを特徴とする請求項3記載の水性混合液処理装置。 4. The aqueous mixed liquid processing apparatus according to claim 3, wherein a plurality of the aqueous mixed liquid processing apparatuses are provided, and the high-concentration solution taken out from one apparatus is sprayed on crushed ice in another container .
JP2003313416A 2003-09-05 2003-09-05 Aqueous mixture processing method and apparatus Expired - Lifetime JP4016277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313416A JP4016277B2 (en) 2003-09-05 2003-09-05 Aqueous mixture processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313416A JP4016277B2 (en) 2003-09-05 2003-09-05 Aqueous mixture processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2005081186A JP2005081186A (en) 2005-03-31
JP4016277B2 true JP4016277B2 (en) 2007-12-05

Family

ID=34414345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313416A Expired - Lifetime JP4016277B2 (en) 2003-09-05 2003-09-05 Aqueous mixture processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4016277B2 (en)

Also Published As

Publication number Publication date
JP2005081186A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4062374B2 (en) Ice maker
EP0090004B1 (en) Liquid purification system
JP5935782B2 (en) Radioactive material contaminated water treatment method
US4314455A (en) Freeze concentration apparatus and process
US20090274596A1 (en) Method and apparatus for processing silicon particles
JP5802609B2 (en) Coolant regeneration method
WO2013030098A1 (en) Method for treating of plastic substrates and a device for an at least partial regeneration of a treatment solution
CN101219946B (en) Method for recycling waste liquor of ammonium hexanedioic acid and recycling system thereof
JP3397290B2 (en) Apparatus for freezing and concentrating aqueous solution, apparatus for generating icicle and method for freezing and concentrating aqueous solution
JP4016277B2 (en) Aqueous mixture processing method and apparatus
EP0078164B1 (en) Separation of a mixture by the vacuum freezing vapor desublimation desublimate vaporization process
US4457769A (en) Freeze concentration apparatus and process
Rahman et al. Freezing‐Melting Desalination Process
JP6190473B2 (en) Coolant regeneration device and coolant regeneration method
JP4348898B2 (en) Organic matter processing method and processing apparatus
CN113716780A (en) Waste acid treatment system
CN112875966A (en) Energy-saving saline-alkali water multistage freezing desalination device and process
JP3728519B2 (en) Freeze concentration method and apparatus
JP2000197862A (en) Washing apparatus for removing residue
CN210394055U (en) System for purifying potassium and sodium salts of fly ash water washing liquid according to quality
JP4453957B2 (en) Aqueous mixed waste liquid treatment apparatus and concentration method of aqueous mixed waste liquid
JPH10192603A (en) Concentrated solution separation device for ice/water in dynamic ice making process and conveyor system
JP2001317883A (en) Method for treating open circulating cooling water system
WO2016041154A1 (en) Waste gas treatment method
JP3544270B2 (en) How to freeze aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5