JP4016097B2 - Double-helical binuclear complex and its production method - Google Patents
Double-helical binuclear complex and its production method Download PDFInfo
- Publication number
- JP4016097B2 JP4016097B2 JP2001376645A JP2001376645A JP4016097B2 JP 4016097 B2 JP4016097 B2 JP 4016097B2 JP 2001376645 A JP2001376645 A JP 2001376645A JP 2001376645 A JP2001376645 A JP 2001376645A JP 4016097 B2 JP4016097 B2 JP 4016097B2
- Authority
- JP
- Japan
- Prior art keywords
- compound
- transition metal
- helical
- double
- binuclear complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Description
【0001】
【発明の属する技術分野】
遷移金属は各種の触媒、磁性材料等に利用されており、先端産業に欠かせない金属群と位置づけられている。特に遷移金属の複核錯体は金属-金属間相互作用に起因する特異な性質の発現が期待され、高性能の触媒、磁性材料として注目されている。さらに、分子自身が不斉を持つものは不斉触媒としての機能や偏光素子等の光学的機能も期待される。
【0002】
【従来の技術】
遷移金属の複核錯体は、金属イオン同士の相互作用により単核錯体にはないユニークな特性を示すことが期待されている。不斉をもつ分子は不斉触媒機能や光学的機能が期待されるが、分子に不斉を導入するためには光学活性部位をもつ原料をつかう必要がある。光学活性部位を用いずに不斉を導入する手段として配位子にらせん構造をもたせる方法も報告されているが(例えばAngew. Chem. Int. Ed. Engl. 31 (1992) 230; Chem. Commun. (1999) 1853.)、一般に構造が複雑になるほど合成は困難になる。
【0003】
【発明が解決しようとする課題】
遷移金属イオンは一般に4〜6の配位数をもつ。したがって安定な複核錯体を得るためには、複数の配位原子が適切な位置に配置された配位子を合成する必要がある。このような高度に設計された配位子、またその複核錯体を合成するには一般に多段階の複雑な経路が必要である。しかも各段階で満足な収量を得るには余計な副生成物を押さえる必要がある。さらに分子内に不斉を導入するためには光学活性をもつ原料を使う必要があり、コストが増加する。
これを解決する一つの手段が配位子にらせん構造をもたせることであるが、従来のらせん型複核錯体は複数の非環状配位子の集合体でありその安定性には問題がある。また、有機反応の触媒としての用途を考えると、非極性溶媒に溶解したほうが望ましい。この点では従来のイオン性の錯体よりも、金属イオンの電荷がすべて補償された中性錯体の方が適している。
【0004】
【課題を解決するための手段】
発明者は、2個の配位原子をもつ化合物(ジアルデヒド)2分子と2個の配位原子をもつ化合物(ジアミン)2分子とを縮合させてできる大環状配位子を設計できることがわかった。
この配位子は4個の水酸基と4個の窒素原子をもっており、水酸基が解離することにより4価の負電荷をもつ。したがって2価の遷移金属陽イオン2個と錯形成し中性の錯体を作ることが判った。
化合物1と化合物2を遷移金属塩の共存下で反応させることにより、一分子内に遷移金属イオンを2個有する化合物3で表される大環状二重らせん型複核錯体が得られた。
目的の化合物の構造を確認するためESI-MS, IR, NMR, X線単結晶構造解析を用いて、解析したところ、目的の化合物が得られていることを確認した。
【0005】
【発明の実施の形態】
本発明において用いるジアルデヒドとしては、1,1-ビス(2’-ヒドロキシー3’-ホルミルベンジル)エチレン等がある。ここにおいてベンゼン環上の置換基は、水素又は低級アルキル基である。
本発明において用いるジアミンとしては、ジエチレングリコールビス(2’-アミノフェニル)エーテル等がある。ここにおいて、エチレングリコール鎖の長さは、適宜調節することができるが、一般式中のnが1〜5程度が望ましい。
本発明で用いる遷移金属Mとしては、Mn, Fe, Co, Ni, Cu, Zn, Pd 等があげられる。
【0006】
【実施例】
実施例1
次式で表される化合物1を0.5ミリモルと、
【化5】
次式で表される化合物2を0.5ミリモル
【化6】
とを取って10ミリリットルのクロロホルムに溶解したものに、0.5ミリモルのニッケルの塩(例えば酢酸ニッケル)を10ミリリットルのメタノールに溶解したものを加え、大気下で溶媒を自然に蒸発させることにより褐色の結晶性沈殿を得た。これを濾別しクロロホルムで洗浄して乾燥し、次式で表される化合物3を得た。
【化7】
【0007】
実施例2
化合物1を0.5ミリモルと、次式で表される化合物4を0.5ミリモル
【化8】
取って10ミリリットルのクロロホルムに溶解したものに、0.5ミリモルのニッケルの塩(例えば酢酸ニッケル)を10ミリリットルのメタノールに溶解したものを加え、大気下で溶媒を自然に蒸発させることにより褐色の結晶性沈殿を得た。これを濾別しクロロホルムで洗浄して乾燥し、次式で表される化合物5を得た。
【化9】
【0008】
次式で表される化合物6を0.5ミリモルと
【化10】
0.5ミリモルの化合物2を10ミリリットルのクロロホルムに溶解したものに、0.5ミリモルの銅の塩(酢酸銅)を10ミリリットルのメタノールに溶解したものを加え、大気下で溶媒を自然に蒸発させることにより褐色の結晶性沈殿を得た。これを濾別しクロロホルムで洗浄して乾燥し、次式で表される化合物7であることを確認した。
【化11】
【0009】
実施例1で得られた化合物3をジメチルホルムアミドに溶解しアセトニトリルで希釈してESI-MSを測定したところ、1233.1(m/z)にニッケルの複核錯体のピークがナトリウムイオン付加体として観測された。
【0010】
実施例1で得られた化合物3の単結晶をX線回折法により構造解析を行ったところ、配位子部分は大環状の二重らせん構造を持つことが明らかとなった。二重らせん構造はニッケルイオンによって固定されており、各々の分子は結晶中で不斉を持つことがわかった。結晶は右巻のらせんと左巻きのらせんが等量混在したもの、つまりラセミ体であることがわかった。
【発明の効果】
本発明で得られた遷移金属の複核錯体は3次元構造を有する大環状二重らせん型化合物であり、従来の平面型あるいは非環状らせん型に比べて安定である。また不斉をもつ配位子に中心金属が包含された構造になっており、触媒反応など特殊な反応場としてはたらくことが十分に期待される。
クロロホルムやジメチルホルムアミドなど種々の有機溶媒に溶解するため用途も広い。本発明の化合物の生成は、遷移金属イオンを鋳型としたアルデヒドとアミンの自己集合によって引き起こされるため、合成は比較的容易で、大量合成が可能である。[0001]
BACKGROUND OF THE INVENTION
Transition metals are used in various catalysts and magnetic materials, and are positioned as a group of metals indispensable for advanced industries. In particular, transition metal binuclear complexes are expected to exhibit unique properties due to metal-metal interactions, and are attracting attention as high-performance catalysts and magnetic materials. Furthermore, those having asymmetric molecules themselves are expected to have a function as an asymmetric catalyst and an optical function such as a polarizing element.
[0002]
[Prior art]
Transition metal binuclear complexes are expected to exhibit unique properties not found in mononuclear complexes due to the interaction between metal ions. Asymmetric molecules are expected to have an asymmetric catalytic function and an optical function, but in order to introduce asymmetry into the molecule, it is necessary to use a raw material having an optically active site. As a means of introducing asymmetry without using an optically active site, a method of giving a ligand a helical structure has also been reported (for example, Angew. Chem. Int. Ed. Engl. 31 (1992) 230; Chem. Commun. (1999) 1853.) In general, the more complex the structure, the more difficult it is to synthesize.
[0003]
[Problems to be solved by the invention]
Transition metal ions generally have a coordination number of 4-6. Therefore, in order to obtain a stable binuclear complex, it is necessary to synthesize a ligand in which a plurality of coordination atoms are arranged at appropriate positions. In order to synthesize such highly designed ligands and their dinuclear complexes, a multi-step complex route is generally required. In addition, it is necessary to suppress extra by-products in order to obtain a satisfactory yield at each stage. Furthermore, in order to introduce asymmetry into the molecule, it is necessary to use a raw material having optical activity, which increases costs.
One means for solving this is to give the ligand a helical structure, but the conventional helical binuclear complex is an aggregate of a plurality of acyclic ligands, and there is a problem in its stability. Moreover, considering the use as a catalyst for organic reactions, it is desirable to dissolve in a nonpolar solvent. In this respect, a neutral complex in which the charge of all metal ions is compensated is more suitable than a conventional ionic complex.
[0004]
[Means for Solving the Problems]
The inventor found that a macrocyclic ligand formed by condensing two molecules of a compound having two coordination atoms (dialdehyde) and two molecules of a compound having two coordination atoms (diamine) can be designed. It was.
This ligand has four hydroxyl groups and four nitrogen atoms, and has a tetravalent negative charge when the hydroxyl groups are dissociated. Therefore, it was found that a neutral complex was formed by complexing with two divalent transition metal cations.
By reacting compound 1 and compound 2 in the presence of a transition metal salt, a macrocyclic double-helical binuclear complex represented by compound 3 having two transition metal ions in one molecule was obtained.
Analysis using ESI-MS, IR, NMR, and X-ray single crystal structure analysis to confirm the structure of the target compound confirmed that the target compound was obtained.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the dialdehyde used in the present invention include 1,1-bis (2′-hydroxy-3′-formylbenzyl) ethylene. Here, the substituent on the benzene ring is hydrogen or a lower alkyl group.
Examples of the diamine used in the present invention include diethylene glycol bis (2′-aminophenyl) ether. Here, the length of the ethylene glycol chain can be appropriately adjusted, but n in the general formula is preferably about 1 to 5.
Examples of the transition metal M used in the present invention include Mn, Fe, Co, Ni, Cu, Zn, and Pd.
[0006]
【Example】
Example 1
0.5 mmol of compound 1 represented by the following formula:
[Chemical formula 5]
0.5 mmol of the compound 2 represented by the following formula:
And a solution of 0.5 mmol of nickel salt (for example, nickel acetate) dissolved in 10 ml of methanol and naturally evaporating the solvent in the atmosphere. A brown crystalline precipitate was obtained. This was separated by filtration, washed with chloroform and dried to obtain Compound 3 represented by the following formula.
[Chemical 7]
[0007]
Example 2
0.5 mmol of compound 1 and 0.5 mmol of compound 4 represented by the following formula:
Take a solution of 0.5 millimoles of nickel salt (eg, nickel acetate) in 10 milliliters of methanol and dissolve it in 10 milliliters of chloroform. A crystalline precipitate was obtained. This was separated by filtration, washed with chloroform and dried to obtain a compound 5 represented by the following formula.
[Chemical 9]
[0008]
0.5 mmol of compound 6 represented by the following formula:
0.5 mmol of compound 2 dissolved in 10 ml of chloroform is added to 0.5 mmol of copper salt (copper acetate) dissolved in 10 ml of methanol, and the solvent is naturally evaporated in the atmosphere. As a result, a brown crystalline precipitate was obtained. This was separated by filtration, washed with chloroform and dried to confirm that it was Compound 7 represented by the following formula.
Embedded image
[0009]
Compound 3 obtained in Example 1 was dissolved in dimethylformamide, diluted with acetonitrile, and ESI-MS was measured. A peak of a nickel binuclear complex was observed at 1233.1 (m / z) as a sodium ion adduct. It was done.
[0010]
Structural analysis of the single crystal of compound 3 obtained in Example 1 by X-ray diffraction revealed that the ligand part had a macrocyclic double helix structure. The double helix structure was fixed by nickel ions, and each molecule was found to have asymmetry in the crystal. The crystals were found to be a racemic mixture of equal amounts of right-handed and left-handed spirals.
【The invention's effect】
The transition metal binuclear complex obtained in the present invention is a macrocyclic double-helix type compound having a three-dimensional structure, and is more stable than the conventional planar type or acyclic helix type. In addition, it has a structure in which a central metal is included in an asymmetric ligand, and is expected to serve as a special reaction field such as a catalytic reaction.
Since it dissolves in various organic solvents such as chloroform and dimethylformamide, it is widely used. Since the production of the compound of the present invention is caused by the self-assembly of an aldehyde and an amine using a transition metal ion as a template, the synthesis is relatively easy and large-scale synthesis is possible.
Claims (2)
一般式
一般式
で表される大環状二重らせん型複核錯体の製造方法。General formula
General formula
General formula
The manufacturing method of the macrocyclic double helix type binuclear complex represented by these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001376645A JP4016097B2 (en) | 2001-12-11 | 2001-12-11 | Double-helical binuclear complex and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001376645A JP4016097B2 (en) | 2001-12-11 | 2001-12-11 | Double-helical binuclear complex and its production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003176278A JP2003176278A (en) | 2003-06-24 |
JP4016097B2 true JP4016097B2 (en) | 2007-12-05 |
Family
ID=19184793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001376645A Expired - Lifetime JP4016097B2 (en) | 2001-12-11 | 2001-12-11 | Double-helical binuclear complex and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4016097B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102190686A (en) * | 2011-01-17 | 2011-09-21 | 天津师范大学 | Binuclear Fe(II) complex of 4-(2-pyridin-)-1,2,4-triazol and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007073562A2 (en) * | 2005-12-20 | 2007-06-28 | Invitrogen Corporation | Fluorescent ion indicators for cadmium and lanthanide ion detection |
-
2001
- 2001-12-11 JP JP2001376645A patent/JP4016097B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102190686A (en) * | 2011-01-17 | 2011-09-21 | 天津师范大学 | Binuclear Fe(II) complex of 4-(2-pyridin-)-1,2,4-triazol and application thereof |
CN102190686B (en) * | 2011-01-17 | 2013-12-11 | 天津师范大学 | Binuclear Fe(II) complex of 4-(2-pyridin-)-1,2,4-triazol and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2003176278A (en) | 2003-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Parmar et al. | Efficient heterogeneous catalysis by dual ligand Zn (II)/Cd (II) MOFs for the Knoevenagel condensation reaction: adaptable synthetic routes, characterization, crystal structures and luminescence studies | |
Yang et al. | Interconversion of a Monomer and Two Coordination Polymers of a Copper (II)− Reduced Schiff Base Ligand− 1, 10-Phenanthroline Complex Based on Hydrogen-and Coordinative-Bonding | |
Wang et al. | Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d 10 coordination polymers based on the 5, 5′-(1 H-2, 3, 5-triazole-1, 4-diyl) diisophthalic acid ligand | |
Castiñeiras et al. | Neutral Ni II, Pd II and Pt II ONS-pincer complexes of 5-acetylbarbituric-4 N-dimethylthiosemicarbazone: synthesis, characterization and properties | |
Dong et al. | Synthesis and structure of a penta-and hexa-coordinated tri-nuclear cobalt (II) complex | |
Telfer et al. | Mono-and Dinuclear Complexes of Chiral Tri-and Tetradentate Schiff-Base Ligands Derived from 1, 1 ‘-Binaphthyl-2, 2 ‘-diamine | |
Huang et al. | Imidazole-directed fabrication of three polyoxovanadate-based copper frameworks as efficient catalysts for constructing C–N bonds | |
Ananthnag et al. | Synthesis, structure and catalysis of organometallic porphyrin–pincer hybrids: a review | |
Guchhait et al. | Synthesis and structural characterization of silver (I), copper (I) coordination polymers and a helicate palladium (II) complex of dipyrrolylmethane-based dipyrazole ligands: the effect of meso substituents on structural formation | |
Yoshinari et al. | Multitopic metal–organic carboxylates available as supramolecular building units | |
Chang et al. | Transmetalation for flexible pendant-armed Schiff-base macrocyclic complexes influenced by halide effects | |
US6664408B2 (en) | Process for preparing organically-substituted polyoxometalates | |
Meguro et al. | Synthesis, structure, and quaternization and complexation reactions of κ3SCS pincer palladium complexes having 3, 5-pyridinediyl unit | |
JP4945755B2 (en) | Polynuclear metal complexes with caged ligands | |
Huang et al. | Sodium ions directed self-assembly with 3, 5-pyridinedicarboxylate (3, 5-pdc) and 4-pyridinecarboxylate (4-pc) | |
JP4016097B2 (en) | Double-helical binuclear complex and its production method | |
Naik et al. | Bisamino (diphosphonite) with dangling olefin functionalities: synthesis, metal chemistry and catalytic utility of Rh I and Pd II complexes in hydroformylation and Suzuki–Miyaura reactions | |
He et al. | Structures and properties of 6-aryl substituted tris (2-pyridylmethyl) amine transition metal complexes | |
Xu et al. | Open coordination sites-induced structural diversity of a new series of Cu (II) complexes with tridentate aroylhydrazone Schiff base | |
Tzeng et al. | Supramolecular assembly and structural transformation of d 10-metal complexes containing (aza-15-crown-5) dithiocarbamate | |
Guo et al. | Co-crystal of [CuCl 4] 2− and L1 and its inclusion compounds with three different guests (L1= N, N, N′, N′-tetra-p-methoxybenzyl-ethylenediamine) | |
Lawrence et al. | Synthesis, X-ray crystallographic, electrochemical, and spectroscopic studies of Bis-(1, 10-phenanthroline)(2, 2′-bipyridine) cobalt (III) Hexafluorophosphate | |
Belicchi-Ferrari et al. | Investigations into bis (triphenylphosphine) copper (I) complexes with cyclic derivatives of methylpyruvate thiosemicarbazones | |
Liu et al. | Synthesis, structure, and characterization of a series of Ag (I), Cu (II) and Ni (II) complexes based on 2, 5-dimethyl-1, 3, 4-thiodiazole | |
Kwon et al. | Static and dynamic coordination behaviours of copper (I) ions in hexa (2-pyridyl) benzene ligand systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070314 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4016097 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |