JP4015371B2 - Cylindrical roller bearing - Google Patents

Cylindrical roller bearing Download PDF

Info

Publication number
JP4015371B2
JP4015371B2 JP2001065229A JP2001065229A JP4015371B2 JP 4015371 B2 JP4015371 B2 JP 4015371B2 JP 2001065229 A JP2001065229 A JP 2001065229A JP 2001065229 A JP2001065229 A JP 2001065229A JP 4015371 B2 JP4015371 B2 JP 4015371B2
Authority
JP
Japan
Prior art keywords
cylindrical roller
cage
roller bearing
nozzle
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001065229A
Other languages
Japanese (ja)
Other versions
JP2002266874A (en
Inventor
峰夫 古山
敬一 植田
博志 瀧内
守 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2001065229A priority Critical patent/JP4015371B2/en
Publication of JP2002266874A publication Critical patent/JP2002266874A/en
Application granted granted Critical
Publication of JP4015371B2 publication Critical patent/JP4015371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は円筒ころ軸受に関し、詳しくは工作機械の主軸、圧延機械のロールや印刷機械の印刷胴等においてエアオイル(オイル/エア)潤滑またはオイルミスト潤滑(噴霧潤滑)下で使用される円筒ころ軸受に関するものである。
【0002】
【従来の技術】
工作機の主軸回転数は年々高速化が進み、軸受の潤滑方法もグリース潤滑から、エアオイル潤滑やオイルミスト潤滑等が多用されるようになってきた。エアオイル潤滑は微少油量潤滑とも呼ばれ、例えば実公昭63−14156号公報に記載されている。
【0003】
従来から主軸に使用される単列円筒ころ軸受には、銅合金(高力黄銅鋳物)製のカゴ型鋲加締め保持器が使用されている。このような単列円筒ころ軸受のサイズとしては、軸受内径φ25〜φ160の実績がある。また、保持器案内方式には、保持器内径と内輪外径および、保持器外径と外輪内径にそれぞれ隙間がある、転動体(ころ)案内方式がある。
【0004】
以下、単列円筒ころ軸受を用いた工作機等の軸受部について説明する。図7はその軸受部の一部断面図であり、図7において、10は回転軸嵌挿部で、その外周に円筒ころ軸受(以下、軸受と称する)11が配置されている。この軸受11は内輪12と、外輪13との間に保持器14を配置し、保持器14のポケット穴に円筒ころ(以下、ころと称する)15が転動自在に介在されている。16は潤滑油供給部材で、内部に供給穴17を有し、その先端にノズル穴18が連通しており、ノズル穴18の外方端にノズル19を備えている。このノズル19は、前記保持器14の内径面と内輪12の外径面との隙間を狙って、エアオイルまたはオイルミスト状の潤滑油を供給するようになっている。20は前記潤滑油供給部材16の反対側に設けられた使用済み潤滑油の案内部材で、軸受11の内輪12と外輪13との隙間(径方向)と同等の大きさの案内空洞部21を有する。案内部材20の円周上に使用済み潤滑油を排出するための排出穴23を設ける。したがって、エアオイルまたはオイルミスト状の潤滑油24は、潤滑油案内部材16の供給穴17の一端から供給され、ノズル19から噴出され軸受11に供給されて、内輪12の回転による遠心力およびころ15の転動によって軸受11内に行き渡り潤滑作用を営む。使用済みの潤滑油24aは、軸受11から出て案内部材20の案内空洞部21および排出穴23を通って、外部に排出される。
【0005】
図8は、上記円筒ころ軸受11の一例の拡大断面図で、カゴ型鋲加締め保持器を採用したものを示す。図8において、31は内輪で外径面の幅方向の両端に鍔31a,31aを有する。32は内輪1の外径面と所定間隔で配置されている外輪である。33は前記内輪1と外輪2との間に介在されたカゴ型鋲加締め保持器で、略環状でかつ櫛歯状の主部材33aと環状の補助部材33bとを鋲33cで加締めて、一定間隔のポケット穴(図示せず)を形成したものである。34は前記保持器33のポケット穴に転動自在に収容された円筒ころである。
【0006】
【発明が解決しようとする課題】
上記の単列円筒ころ軸受における主要な構成部材の設計について以下詳述する。
【0007】
▲1▼上記のように、内輪31に鍔31aのあるタイプ(以下、Nタイプと称する)の単列円筒ころ軸受において、保持器33を転動体案内とする場合、保持器33の内径寸法および外径寸法の設定は、リング部の剛性等を考慮した上で、ころ34のPCDから均等になるようにしている。
【0008】
▲2▼一方、内輪31の外径面にはころ34の軸方向の動きを案内する鍔31a,31aが両側にあり、その鍔31aの高さは、ころ径基準(通常ころ径の20%)となっている。これにより、内輪外径(鍔外径)寸法を設定している。
【0009】
▲3▼エアオイル潤滑やオイルミスト潤滑の給油位置は、ころ34と鍔31aの潤滑および、高速回転時(内輪回転)の遠心力による油の流れを考慮し、保持器33の内径と内輪31の外径との隙間を狙っている。
【0010】
ここで、軸受設計においては、上記▲1▼,▲2▼の設定を優先するため、保持器33の内径と内輪31の外径との隙間(径方向)寸法は、ノズル径(通常φ0.8〜φ1.5)よりも狭くなっており、通常ノズル径の0.3〜0.8倍未満である。
【0011】
また、▲3▼の理由から、給油位置(ノズル位置)としては、その狭い側の保持器内径と内輪外径との隙間を狙うこととなる。その場合、ノズルから拡散した潤滑油を軸受内部に供給しやすくするために、図示するように、内輪外径部にテーパ状案内部を設けることも行われている。
【0012】
ところが、従来の円筒ころ軸受は、運転時の温度上昇が高く、しかもdn=40万〜80万の付近で温度上昇の山(ピーク)が見られた。軸受は、使用上できるだけ運転温度を低く保つことが、工作機における加工精度の安定と、主軸の耐焼付き性に有利なことから、軸受の低温度上昇は常に求められている。
【0013】
したがって、本発明の解決すべき課題は、円筒ころ軸受における運転時の温度上昇を、dnの実用域で可及的に低く、かつ平坦にすることにある。
【0014】
【課題を解決するための手段】
本発明は、上記課題を解決するために、保持器内径面と内輪鍔外径面の隙間に向けて配置したノズルから、エアオイルまたはオイルミスト状の潤滑油を噴出させて、前記隙間に供給する、エアオイル潤滑またはオイルミスト潤滑下で運転される円筒ころ軸受において、保持器内径面と内輪鍔外径面との隙間寸法を、潤滑油が供給されるノズル径の0.8〜1.6倍に設定したことを特徴とする。
【0015】
本発明はまた、上記構成において、前記ノズル径をφ0.8〜φ1.5にしたことを特徴とする。
【0016】
本発明は、上記のように構成したことにより、ノズルから供給されたエアオイルまたはオイルミスト状の潤滑油が、前記保持器内径面と内輪鍔外径面との隙間から軸受内部に効率よく供給されるようになり、内輪,外輪,ころおよび保持器相互間に潤滑油が行き渡り、それら相互間の摩擦抵抗が低減されて、低温度上昇運転を達成できる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。
【0018】
図1は、本発明を実施した単列円筒ころ軸受の主要部の断面図を示す。図1において、1は高力黄銅鋳物からなる内輪で、その外径面における幅方向(軸方向)の両側にころ案内用の鍔1a,1aが形成されており、両鍔1a,1a間に凹部が形成されている。2は内輪1の外周面に沿って所定間隔で配置された高力黄銅鋳物からなる外輪である。3は前記内輪1および外輪2の間に配置された高力黄銅鋳物からなるカゴ型鋲加締め保持器であり、3aは環状かつ櫛歯状の主部材、3bは環状の補助部材で、これらは鋲3cによって加締め固定されており、前記主部材3aと補助部材3bとによって一定間隔でポケット穴(図示せず)が形成されている。この保持器3の内径は前記内輪1の鍔1a,1aの外径よりも大きく、かつその外径は前記外輪2の内径よりも小さく設定され、後述するころ(4)と相俟って、前記内輪1および外輪2のいずれとも接触することがないようになっている。4はこの保持器3のポケット穴に転動自在に嵌め込まれた円筒形のころで、周面部の一部が内輪1の鍔1a,1a間に収容されて案内されるようになっており、周面部の他の一部が外輪2の内面に接している。このころ4の転動によって、内輪1が外輪2に対して回転自在に保持されるようになっている。
【0019】
そして、上記保持器3の内径面と内輪1の鍔1a,1aの外径面との隙間5に、図示していないノズル(図7参照)から、エアオイルまたはオイルミスト状の潤滑油を供給するようにしている。したがって、ころ4の転動およびエアオイルまたはオイルミスト状で供給された潤滑油との協働作用によって、内輪1は外輪2に対して、小さい摩擦抵抗で自在に回転する。
【0020】
ここで、通常ノズル径は先にも述べたようにφ0.8〜φ1.5であり、前記保持器3の内径面と内輪1の鍔1aの外径面との隙間5の寸法をgとすると、従来の円筒ころ軸受の隙間寸法g0はノズル径の0.3〜0.8未満になっている。したがって、従来の円筒ころ軸受においては、ノズルから噴射された潤滑油が、前記隙間5から軸受11の内部に効率よく供給されず、潤滑作用が充分でなかったため、低温度上昇が達成されなかったものと考えられる。
【0021】
本発明においては、前記隙間5の寸法gを従来よりも大きくして、ノズル径の0.8〜1.6倍に設定している。それによって、ノズルから噴射されたエアオイルまたはオイルミスト状の潤滑油は、隙間5から効率よく軸受内に供給され、充分な潤滑作用が得られて、軸受の低温度運転が達成される。
【0022】
【実施例】
以下、本発明の実施例について、説明する。
【0023】
図2は単列円筒ころ軸受において、前記隙間5を従来品よりも大きくして、隙間寸法g1をノズル径(φ0.8〜φ1.5)の0.8倍に設定した第1実施例における主要部の断面図である。
【0024】
図3は単列円筒ころ軸受において、前記隙間5を前記第1実施例よりもさらに大きくして、隙間寸法g2をノズル径(φ0.8〜φ1.5)の1.6倍に設定した第2実施例における主要部の断面図である。
【0025】
図4は単列円筒ころ軸受において、前記隙間5を従来品と同一にした場合,即ち隙間寸法g3をノズル径(φ0.8〜φ1.5)の0.4倍に設定した比較例における主要部の断面図である。
【0026】
なお、上記第1実施例,第2実施例および比較例においては、いずれも図面の煩雑化を避けるために、保持器3の主部材3a,補助部材3bおよび鋲3cを省略して示すとともに、図1では見えないポケット穴3dを示している。
【0027】
以下に、上記第1実施例,第2実施例および比較例の試験結果について説明する。試験条件は、いずれも次のとおりである
潤滑方式 : エアオイル潤滑
潤滑油 : VG32
ノズル径 : φ0.8、φ1.5
エア量 : 20n1/分
給油量 : 0.02ml/5分
ノズル狙い位置:内輪鍔外径と保持器内径の隙間
組込み後のラジアル内部隙間:0μm
図5は、ノズル径がφ0.8の場合の、上記第1実施例,第2実施例および比較例における外輪2の温度上昇特性図を示す。縦軸は外輪2の温度上昇値(℃)であり、横軸はdn(×104)で、dは外輪2の内径、nは回転数である。
【0028】
また、図6は、ノズル径がφ1.5の場合の、上記第1実施例,第2実施例および比較例における外輪2の温度上昇特性図を示す。縦軸は外輪2の温度上昇値(℃)であり、横軸はdn(×104)で、dは外輪2の内径、nは回転数である。
この図5および図6から明らかなように、比較例の外輪温度上昇値は、dnが40万〜80万の実用域で9〜11.5℃と高く、しかも実用域の中央で温度上昇の山(ピーク)が認められるのに対して、本発明の第1実施例および第2実施例における外輪温度上昇値は、いずれもdnの実用域において6〜8℃と比較例に対して3℃程度低く、しかも前記dnの実用域全域にわたってほぼ平坦である。したがって、本発明の円筒ころ軸受が比較例に対し、外輪温度上昇において優れていることが明らかである。
【0029】
本発明者たちは、上記実施例に示したノズル径のみならず、各種のノズル径(φ0.8を超えφ1.5未満)に対して同様の実施品を作成して試験したが、上記と同様の結果が得られた。
【0030】
なお、前記隙間寸法gをノズル径の0.8倍よりも小さくした場合は、ノズルから噴射された潤滑油のうち隙間5から軸受内に入り込む量が少なくなるために、本発明の所期の効果が十分得られないし、前記隙間寸法gをノズル径の1.6倍よりも大きくした場合は、保持器3のリング部剛性(径方向)が確保できなく恐れがある。したがって、隙間寸法gはノズル径の0.8〜1.6倍の範囲に限定される。
【0031】
また、上記実施例は、内輪1,外輪2およびころ4の材料がいずれも銅合金(高力黄銅鋳物)製の場合について説明したが、高炭素クロム軸受鋼,浸炭鋼,高速度鋼,ステンレス鋼,セラミックス,さらには樹脂製の場合でも同様の効果が得られる。
【0032】
さらに、上記実施例は、保持器3の材料が銅合金(高力黄銅鋳物)製の場合について説明したが、冷間または熱間圧延鋼板,ステンレス鋼板,機械構造用炭素鋼,アルミ合金,ニッケルクロムモリブデン鋼,グラスファイバやカーボンファイバで強化した耐熱性ポリアミド樹脂の射出成形品等製であってもよい。
【0033】
【発明の効果】
本発明は、以上のようにエアオイル潤滑またはオイルミスト潤滑下で運転される円筒ころ軸受において、保持器内径面と内輪鍔外径面との隙間寸法を、潤滑油が供給されるノズル径の0.8〜1.6倍に設定したことにより、ノズルから噴射される潤滑油を軸受内に効率よく供給することができ、十分な潤滑作用が得られて、運転時における軸受の温度上昇を低く抑えることができる。
【図面の簡単な説明】
【図1】 本発明の単列円筒ころ軸受における主要部の断面図
【図2】 本発明の第1実施例の単列円筒ころ軸受における主要部の断面図
【図3】 本発明の第2実施例の単列円筒ころ軸受における主要部の断面図
【図4】 比較例の単列円筒ころ軸受における主要部の断面図
【図5】 ノズル径がφ0.8の場合の本発明の第1,第2実施例と比較例の単列円筒ころ軸受における外輪の温度上昇特性図
【図6】 ノズル径がφ1.5の場合の本発明の第1,第2実施例と比較例の単列円筒ころ軸受における外輪の温度上昇特性図
【図7】 円筒ころ軸受を用いた工作機等の主要部の一部断面図
【図8】 カゴ型鋲加締め保持器を用いた円筒ころ軸受の拡大断面図
【符号の説明】
1 内輪
1a 内輪の鍔
2 外輪
3 保持器
3a 保持器の主部材
3b 保持器の補助部材
3c 鋲
3d ポケット穴
4 円筒2ころ
5 保持器内径面と内輪鍔外径面との隙間
g、g0,g1,g2 隙間寸法
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical roller bearing, in particular is used in the main shaft, the lower air-oil in the printing cylinder or the like of the roll and the printing machine of the rolling machine (oil / air) Jun Namerama other oil mist lubrication (spray lubrication) of the machine tool The present invention relates to a cylindrical roller bearing.
[0002]
[Prior art]
The spindle speed of machine tools has been increasing year by year, and the lubrication method of bearings has been frequently used from grease lubrication to air oil lubrication and oil mist lubrication. Air oil lubrication is also called micro oil lubrication, and is described, for example, in Japanese Utility Model Publication No. 63-14156.
[0003]
2. Description of the Related Art Conventionally, a cage-type cage cage made of copper alloy (high-strength brass casting) has been used for a single-row cylindrical roller bearing used for a main shaft. The size of such a single-row cylindrical roller bearing, there is a track record of bearings inside diameter φ25~ φ160. The cage guide system includes a rolling element (roller) guide system in which there is a gap between the cage inner diameter and the inner ring outer diameter, and the cage outer diameter and the outer ring inner diameter.
[0004]
Hereinafter, a bearing portion of a machine tool or the like using a single row cylindrical roller bearing will be described. FIG. 7 is a partial cross-sectional view of the bearing portion. In FIG. 7, reference numeral 10 denotes a rotary shaft insertion portion, and a cylindrical roller bearing (hereinafter referred to as a bearing) 11 is disposed on the outer periphery thereof. In this bearing 11, a retainer 14 is disposed between an inner ring 12 and an outer ring 13, and a cylindrical roller (hereinafter referred to as a roller) 15 is interposed in a pocket hole of the retainer 14 so as to be able to roll. Reference numeral 16 denotes a lubricating oil supply member having a supply hole 17 inside, a nozzle hole 18 communicating with the tip thereof, and a nozzle 19 provided at the outer end of the nozzle hole 18. The nozzle 19 supplies air oil or oil mist-like lubricating oil aiming at a gap between the inner diameter surface of the cage 14 and the outer diameter surface of the inner ring 12. Reference numeral 20 denotes a used lubricating oil guide member provided on the opposite side of the lubricating oil supply member 16, and has a guide cavity portion 21 having a size equivalent to the gap (radial direction) between the inner ring 12 and the outer ring 13 of the bearing 11. Have. A discharge hole 23 for discharging used lubricating oil is provided on the circumference of the guide member 20. Accordingly, the air oil or oil mist-like lubricating oil 24 is supplied from one end of the supply hole 17 of the lubricating oil guide member 16, is ejected from the nozzle 19 and supplied to the bearing 11, and the centrifugal force and the roller 15 due to the rotation of the inner ring 12. The roller is spread in the bearing 11 by the rolling of the roller and performs a lubricating action. The used lubricating oil 24a exits from the bearing 11 and is discharged to the outside through the guide cavity portion 21 and the discharge hole 23 of the guide member 20.
[0005]
FIG. 8 is an enlarged cross-sectional view of an example of the cylindrical roller bearing 11 and shows a cage-type cage caulking cage. In FIG. 8, 31 is an inner ring and has flanges 31a and 31a at both ends in the width direction of the outer diameter surface. 32 is a outer ring are arranged in the radially outer surface a predetermined distance of the inner ring 3 1. 33 is the inner ring 3 1 and cage rivet caulking the cage interposed between the outer ring 3 2, crimping the auxiliary member 33b of the substantially annular in and comb teeth-shaped main member 33a and the annular with rivets 33c Thus, pocket holes (not shown) at regular intervals are formed. Reference numeral 34 denotes a cylindrical roller which is rotatably accommodated in a pocket hole of the cage 33.
[0006]
[Problems to be solved by the invention]
The design of main components in the single row cylindrical roller bearing will be described in detail below.
[0007]
(1) As described above, in a single row cylindrical roller bearing of a type (hereinafter referred to as N type) having a flange 31a in the inner ring 31, when the cage 33 is a rolling element guide, The setting of the outer diameter dimension is made uniform from the PCD of the roller 34 in consideration of the rigidity of the ring portion and the like.
[0008]
(2) On the other hand, on the outer diameter surface of the inner ring 31, there are flanges 31a, 31a for guiding the axial movement of the roller 34 on both sides, and the height of the flange 31a is a roller diameter reference (20% of the normal roller diameter). ). Thereby, the inner ring outer diameter (径 outer diameter) dimension is set.
[0009]
(3) The oil supply position for air oil lubrication or oil mist lubrication is determined by considering the lubrication of the rollers 34 and 31a and the flow of oil due to centrifugal force during high speed rotation (inner ring rotation), and the inner diameter of the retainer 33 and the inner ring 31 Aims for a gap with the outer diameter.
[0010]
Here, in the bearing design, in order to give priority to the above settings (1) and (2), the clearance (radial direction) dimension between the inner diameter of the cage 33 and the outer diameter of the inner ring 31 is the nozzle diameter (usually φ0. 8 to φ1.5), which is usually 0.3 to 0.8 times the nozzle diameter.
[0011]
For the reason (3), the oil supply position (nozzle position) is aimed at the gap between the inner diameter of the cage on the narrow side and the outer diameter of the inner ring. In that case, in order to make it easy to supply the lubricating oil diffused from the nozzle to the inside of the bearing, as shown in the drawing, a tapered guide portion is provided on the outer diameter portion of the inner ring.
[0012]
However, the conventional cylindrical roller bearing has a high temperature rise during operation, and a peak of temperature rise is observed in the vicinity of dn = 400,000 to 800,000. Since keeping the operating temperature as low as possible for the bearing is advantageous for stability of machining accuracy in the machine tool and seizure resistance of the main shaft, a low temperature rise of the bearing is always required.
[0013]
Therefore, the problem to be solved by the present invention is to make the temperature rise during operation of the cylindrical roller bearing as low and flat as possible in the practical range of dn.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention ejects air oil or oil mist-like lubricating oil from a nozzle arranged toward the gap between the inner diameter surface of the cage and the outer diameter surface of the inner ring and supplies the lubricant to the gap. In cylindrical roller bearings operated under air oil lubrication or oil mist lubrication, the clearance between the inner diameter surface of the cage and the outer diameter surface of the inner ring is 0.8 to 1.6 times the nozzle diameter to which the lubricating oil is supplied. It is characterized by being set to.
[0015]
The present invention is also characterized in that, in the above configuration, the nozzle diameter is φ0.8 to φ1.5.
[0016]
According to the present invention configured as described above, air oil or oil mist-like lubricating oil supplied from the nozzle is efficiently supplied into the bearing from the gap between the inner diameter surface of the cage and the outer diameter surface of the inner ring. Thus, the lubricating oil spreads between the inner ring, the outer ring, the rollers and the cage, and the frictional resistance between them is reduced, so that a low temperature rising operation can be achieved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
FIG. 1 shows a cross-sectional view of the main part of a single row cylindrical roller bearing embodying the present invention. In FIG. 1, reference numeral 1 denotes an inner ring made of a high-strength brass casting, and roller guide ribs 1a, 1a are formed on both sides in the width direction (axial direction) of the outer diameter surface, and between the both ribs 1a, 1a. A recess is formed. Reference numeral 2 denotes an outer ring made of a high-strength brass casting disposed at a predetermined interval along the outer peripheral surface of the inner ring 1. Reference numeral 3 denotes a cage-type rivet caulking cage made of a high-strength brass casting disposed between the inner ring 1 and the outer ring 2, 3a is an annular and comb-shaped main member, and 3b is an annular auxiliary member. Is fixed by caulking 3c, and pocket holes (not shown) are formed at regular intervals by the main member 3a and the auxiliary member 3b. The inner diameter of the cage 3 is larger than the outer diameter of the flanges 1a, 1a of the inner ring 1, and the outer diameter is set smaller than the inner diameter of the outer ring 2, and in combination with a roller (4) described later, The inner ring 1 and the outer ring 2 are not in contact with each other. 4 is a cylindrical roller fitted into the pocket hole of the cage 3 so as to be able to roll, and a part of the peripheral surface portion is accommodated and guided between the flanges 1a, 1a of the inner ring 1, Another part of the peripheral surface portion is in contact with the inner surface of the outer ring 2. The inner ring 1 is rotatably held with respect to the outer ring 2 by the rolling of the rollers 4.
[0019]
Then, air oil or oil mist-like lubricating oil is supplied from a nozzle (not shown) to a gap 5 between the inner diameter surface of the cage 3 and the outer diameter surfaces of the flanges 1a and 1a of the inner ring 1. I am doing so. Therefore, the inner ring 1 freely rotates with a small frictional resistance with respect to the outer ring 2 by the rolling action of the rollers 4 and the cooperative action with the lubricating oil supplied in the form of air oil or oil mist.
[0020]
Here, as described above, the normal nozzle diameter is φ0.8 to φ1.5, and the dimension of the gap 5 between the inner diameter surface of the cage 3 and the outer diameter surface of the flange 1a of the inner ring 1 is g. Then, the gap size g0 of the conventional cylindrical roller bearing is less than 0.3 to 0.8 of the nozzle diameter. Therefore, in the conventional cylindrical roller bearing, the lubricating oil injected from the nozzle is not efficiently supplied to the inside of the bearing 11 from the gap 5, and the lubrication action is not sufficient, so that the low temperature rise is not achieved. It is considered a thing.
[0021]
In the present invention, the dimension g of the gap 5 is set to be 0.8 to 1.6 times the nozzle diameter by making it larger than the conventional one. As a result, the air oil or oil mist-like lubricating oil injected from the nozzle is efficiently supplied into the bearing through the gap 5, and a sufficient lubricating action is obtained to achieve low temperature operation of the bearing.
[0022]
【Example】
Examples of the present invention will be described below.
[0023]
FIG. 2 shows a single-row cylindrical roller bearing in the first embodiment in which the gap 5 is larger than that of the conventional product and the gap dimension g1 is set to 0.8 times the nozzle diameter (φ0.8 to φ1.5). It is sectional drawing of the principal part.
[0024]
FIG. 3 shows a single row cylindrical roller bearing in which the gap 5 is made larger than that of the first embodiment, and the gap dimension g2 is set to 1.6 times the nozzle diameter (φ0.8 to φ1.5). It is sectional drawing of the principal part in 2 Examples.
[0025]
FIG. 4 is a main view in a comparative example in which the gap 5 is the same as that of the conventional product in a single row cylindrical roller bearing, that is, the gap dimension g3 is set to 0.4 times the nozzle diameter (φ0.8 to φ1.5). It is sectional drawing of a part.
[0026]
In the first embodiment, the second embodiment, and the comparative example, in order to avoid complication of the drawings, the main member 3a, the auxiliary member 3b, and the hook 3c of the cage 3 are omitted, and FIG. 1 shows a pocket hole 3d that cannot be seen.
[0027]
The test results of the first example, the second example and the comparative example will be described below. The test conditions are as follows: Lubrication method: Air oil Lubricating lubricant: VG32
Nozzle diameter: φ0.8, φ1.5
Air amount: 20n1 / min. Lubrication amount: 0.02ml / 5min Nozzle target position: Radial internal gap after assembly of inner ring outer diameter and cage inner diameter gap: 0μm
FIG. 5 is a temperature rise characteristic diagram of the outer ring 2 in the first embodiment, the second embodiment, and the comparative example when the nozzle diameter is φ0.8. The vertical axis is the temperature rise value (° C.) of the outer ring 2, the horizontal axis is dn (× 10 4 ), d is the inner diameter of the outer ring 2, and n is the rotational speed.
[0028]
FIG. 6 shows a temperature rise characteristic diagram of the outer ring 2 in the first, second, and comparative examples when the nozzle diameter is φ1.5. The vertical axis is the temperature rise value (° C.) of the outer ring 2, the horizontal axis is dn (× 10 4 ), d is the inner diameter of the outer ring 2, and n is the rotational speed.
As apparent from FIGS. 5 and 6, the outer ring temperature rise value of the comparative example is as high as 9 to 11.5 ° C. in the practical range where dn is 400,000 to 800,000, and the temperature rises at the center of the practical range. Whereas peaks (peaks) are observed, the outer ring temperature rise values in the first and second embodiments of the present invention are 6 to 8 ° C. in the practical range of dn, and 3 ° C. relative to the comparative example. It is low enough and is almost flat throughout the practical range of the dn. Therefore, it is clear that the cylindrical roller bearing of the present invention is superior to the comparative example in increasing the outer ring temperature.
[0029]
The present inventors made and tested similar products not only for the nozzle diameters shown in the above examples but also for various nozzle diameters (greater than φ0.8 and less than φ1.5). Similar results were obtained.
[0030]
When the gap dimension g is smaller than 0.8 times the nozzle diameter, the amount of lubricating oil injected from the nozzle enters the bearing from the gap 5 is reduced. If the effect is not sufficiently obtained and the gap dimension g is larger than 1.6 times the nozzle diameter, the rigidity of the ring portion (radial direction) of the cage 3 may not be ensured. Therefore, the gap dimension g is limited to a range of 0.8 to 1.6 times the nozzle diameter.
[0031]
Moreover, although the said Example demonstrated the case where all the material of the inner ring | wheel 1, the outer ring | wheel 2, and the roller 4 was a copper alloy (high-strength brass casting), high carbon chromium bearing steel, carburized steel, high speed steel, stainless steel The same effect can be obtained even in the case of steel, ceramics, or resin.
[0032]
Furthermore, although the said Example demonstrated the case where the material of the holder | retainer 3 was a copper alloy (high-strength brass casting), cold or hot rolled steel plate, stainless steel plate, carbon steel for machine structures, aluminum alloy, nickel It may be made of a heat-resistant polyamide resin reinforced with chromium molybdenum steel, glass fiber or carbon fiber.
[0033]
【The invention's effect】
In the cylindrical roller bearing operated under air-oil lubrication or oil mist lubrication as described above, the clearance dimension between the inner diameter surface of the cage and the outer diameter surface of the inner ring is equal to 0 of the nozzle diameter to which the lubricating oil is supplied. .8 to 1.6 times allows the lubricating oil injected from the nozzle to be efficiently supplied into the bearing, providing a sufficient lubricating action and reducing the temperature rise of the bearing during operation. Can be suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of a single-row cylindrical roller bearing of the present invention. FIG. 2 is a cross-sectional view of a main part of a single-row cylindrical roller bearing of a first embodiment of the present invention. FIG. 4 is a cross-sectional view of the main part of the single-row cylindrical roller bearing of the embodiment. FIG. 4 is a cross-sectional view of the main part of the single-row cylindrical roller bearing of the comparative example. FIG. 6 is a temperature rise characteristic diagram of the outer ring in the single-row cylindrical roller bearing of the second embodiment and the comparative example. FIG. 6 is a single row of the first and second embodiments of the present invention and the comparative example when the nozzle diameter is φ1.5. Temperature rise characteristics diagram of outer ring in cylindrical roller bearing [Fig. 7] Partial cross-sectional view of the main part of machine tool etc. using cylindrical roller bearing [Fig. 8] Expansion of cylindrical roller bearing using cage cage Sectional view [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner ring 1a Inner ring flange 2 Outer ring 3 Retainer 3a Retainer main member 3b Retainer auxiliary member 3c Reed 3d Pocket hole 4 Cylindrical 2 roller 5 Gap g, g0, Retainer inner diameter surface and inner ring outer diameter surface g1, g2 Clearance dimension

Claims (2)

保持器内径面と内輪鍔外径面の隙間に向けて配置したノズルから、エアオイルまたはオイルミスト状の潤滑油を噴出させて、前記隙間に供給する、エアオイル潤滑またはオイルミスト潤滑下で運転される円筒ころ軸受において、保持器内径面と内輪鍔外径面との隙間寸法を、潤滑油が供給されるノズル径の0.8〜1.6倍に設定したことを特徴とする円筒ころ軸受。It is operated under air oil lubrication or oil mist lubrication , in which air oil or oil mist-like lubricating oil is jetted from a nozzle arranged toward the clearance between the inner diameter surface of the cage and the outer diameter surface of the inner ring and supplied to the clearance. In the cylindrical roller bearing, a cylindrical roller bearing characterized in that a clearance between the inner diameter surface of the cage and the outer diameter surface of the inner ring is set to 0.8 to 1.6 times the nozzle diameter to which the lubricating oil is supplied. 前記ノズル径をφ0.8〜φ1.5にしたことを特徴とする請求項1に記載の円筒ころ軸受。The cylindrical roller bearing according to claim 1, wherein the nozzle diameter is φ0.8 to φ1.5.
JP2001065229A 2001-03-08 2001-03-08 Cylindrical roller bearing Expired - Lifetime JP4015371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065229A JP4015371B2 (en) 2001-03-08 2001-03-08 Cylindrical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065229A JP4015371B2 (en) 2001-03-08 2001-03-08 Cylindrical roller bearing

Publications (2)

Publication Number Publication Date
JP2002266874A JP2002266874A (en) 2002-09-18
JP4015371B2 true JP4015371B2 (en) 2007-11-28

Family

ID=18923922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065229A Expired - Lifetime JP4015371B2 (en) 2001-03-08 2001-03-08 Cylindrical roller bearing

Country Status (1)

Country Link
JP (1) JP4015371B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006013430A1 (en) * 2006-03-23 2007-09-27 Schaeffler Kg bearing cage
JP2016151339A (en) * 2015-02-19 2016-08-22 Ntn株式会社 Motor drive unit for vehicle

Also Published As

Publication number Publication date
JP2002266874A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US7267488B2 (en) Rolling bearing and spindle device for machine tools
US7677809B2 (en) Tapered roller bearing, a tapered roller bearing assembly and a pinion-shaft supporting assembly using the same
US6328478B1 (en) Roller bearing for bearing unit
US6176349B1 (en) Bearing lubricating device
EP2333368B1 (en) Rolling bearing
WO2007078616A2 (en) Tapered bearing and method for manufacturing
JP4983402B2 (en) Rolling bearing device
JP6234017B2 (en) Lubrication structure of bearing device
JP2006316842A (en) Rolling bearing with inner ring guided cage
KR20180041127A (en) Angular contact ball bearings
JP4015371B2 (en) Cylindrical roller bearing
JP4836852B2 (en) Angular contact ball bearing lubrication system
CN108296295B (en) Guide roller
JP5316249B2 (en) Rolling bearing device and rolling bearing used therefor
JP4393828B2 (en) Roller bearing cage and rolling bearing provided with the same
JPH11336767A (en) Cylindrical roller bearing
JP2014025525A (en) Oil air lubrication type rolling bearing device
JP4917110B2 (en) Rolling bearing lubrication structure
JP6609003B2 (en) Cooling structure of bearing device
JP4519060B2 (en) Double row tapered roller bearing
JP6434094B2 (en) Lubrication structure of bearing device
JP2008082497A (en) Lubricating device of roll bearing
JP2006038134A (en) Rolling bearing and lubricating structure of rolling bearing
JP5353432B2 (en) Rolling bearing device
JP2003278771A (en) Rolling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4015371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term