JP4013895B2 - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP4013895B2
JP4013895B2 JP2003415046A JP2003415046A JP4013895B2 JP 4013895 B2 JP4013895 B2 JP 4013895B2 JP 2003415046 A JP2003415046 A JP 2003415046A JP 2003415046 A JP2003415046 A JP 2003415046A JP 4013895 B2 JP4013895 B2 JP 4013895B2
Authority
JP
Japan
Prior art keywords
layer
external connection
thermoelectric module
thermoelectric
connection terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003415046A
Other languages
Japanese (ja)
Other versions
JP2004207717A (en
Inventor
勝彦 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2003415046A priority Critical patent/JP4013895B2/en
Publication of JP2004207717A publication Critical patent/JP2004207717A/en
Application granted granted Critical
Publication of JP4013895B2 publication Critical patent/JP4013895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明はペルチェ効果を利用した熱電モジュールに関し、特に複数個の熱電素子が接続された熱電モジュールに関する。   The present invention relates to a thermoelectric module using the Peltier effect, and more particularly to a thermoelectric module in which a plurality of thermoelectric elements are connected.

図5は従来の一般的な熱電モジュールを模式的に示す断面図である。図5においては、構造を見やすくするため、はんだ等の接続部材部分は省略している。従来の熱電モジュールは、下部電極3が形成された下基板1及び上部電極4が形成された上基板2が、下部電極3と上部電極4とが相互に対向するように平行に配置されており、両者の間には複数個の熱電素子が配置されている。そして、下部電極3には、1対のp型熱電素子5a及びn型熱電素子5bが接合されており、隣接する1対の下部電極3上に接合された熱電素子のうち、隣接するp型熱電素子5a及びn型熱電素子5bの上部を1個の上部電極4に接合することにより、p型熱電素子とn型熱電素子とが交互に直列に接続されている。この直列接続体の両端部の熱電素子が接合された下部電極3には、夫々、SnめっきCuリード線7(例えば、直径0.3mm)がはんだ付け等の方法により接続されている。しかしながら、はんだ付け等でSnめっきCuリード線7を接続した場合、接続部の強度が低く、このため、従来の熱電モジュールにおいては、接続部の劣化又は疲労による断線及び剥離が問題となっていた。また、このSnめっきCuリード線7の配線作業は自動化が難しく、作業性にも問題があり、高コスト化の原因でもあった。   FIG. 5 is a cross-sectional view schematically showing a conventional general thermoelectric module. In FIG. 5, a connecting member portion such as solder is omitted in order to make the structure easy to see. In a conventional thermoelectric module, a lower substrate 1 on which a lower electrode 3 is formed and an upper substrate 2 on which an upper electrode 4 is formed are arranged in parallel so that the lower electrode 3 and the upper electrode 4 face each other. A plurality of thermoelectric elements are disposed between the two. A pair of p-type thermoelectric elements 5 a and n-type thermoelectric elements 5 b are joined to the lower electrode 3. Among the thermoelectric elements joined on the adjacent pair of lower electrodes 3, the adjacent p-type thermoelectric elements 5 a and 5 n are joined. By joining the upper parts of the thermoelectric element 5a and the n-type thermoelectric element 5b to one upper electrode 4, the p-type thermoelectric element and the n-type thermoelectric element are alternately connected in series. An Sn-plated Cu lead wire 7 (for example, a diameter of 0.3 mm) is connected to the lower electrode 3 to which the thermoelectric elements at both ends of the series connection body are joined by a method such as soldering. However, when the Sn-plated Cu lead wire 7 is connected by soldering or the like, the strength of the connecting portion is low. For this reason, in the conventional thermoelectric module, disconnection and peeling due to deterioration or fatigue of the connecting portion has been a problem. . Further, the wiring work of the Sn-plated Cu lead wire 7 is difficult to automate, there is a problem in workability, and the cost is increased.

従来、はんだ付け性を改善するために、電極の表面にAuめっき層を設け、はんだに対する濡れ性を良好にする方法が行われているが、同様の方法で熱電モジュールにおける基板と熱電素子とのはんだ濡れ性を改善する方法が提案されている(例えば、特許文献1及び2)。また、近年、はんだで接合するのではなく、ワイヤボンディング法によりAuワイヤをリードとして使用する方法が適用され始めている(例えば、特許文献3乃至5参照)。   Conventionally, in order to improve solderability, an Au plating layer is provided on the surface of the electrode to improve the wettability with respect to the solder, but a similar method is used between the substrate and the thermoelectric element in the thermoelectric module. Methods for improving solder wettability have been proposed (for example, Patent Documents 1 and 2). In recent years, a method of using an Au wire as a lead by a wire bonding method instead of soldering has started to be applied (see, for example, Patent Documents 3 to 5).

特開2001−156342号公報 (第2−6頁、図6)JP 2001-156342 A (page 2-6, FIG. 6) 特開2002−43637号公報 (第2−6頁、図1−2)JP 2002-43637 A (page 2-6, FIG. 1-2) 特開平11−54806号公報 (第2頁、図1)Japanese Patent Laid-Open No. 11-54806 (2nd page, FIG. 1) 特許第3082170号公報 (第1−3頁、図1−3)Japanese Patent No. 3082170 (page 1-3, FIG. 1-3) 特開2000−164945号公報 (第8頁、図8)JP 2000-164945 A (Page 8, FIG. 8)

しかしながら、上述の従来の技術には以下に示す問題点がある。先ず、特許文献1及び2に記載されている電極表面にAuめっき層を設ける方法は、熱電素子と基板との接続を目的としたものであり、リード線又はワイヤで接続した場合、特にワイヤボンディング法を適用した場合、そのための配慮がなされていないため十分な特性が得られないという問題点がある。また、ワイヤボンディング法を適用した特許文献3の熱電モジュールは、モジュール組み立て工程におけるはんだ付けの際に外部接続端子も高温に加熱されるが、その対策がなされていないため、Auワイヤのボンディングが困難になるという問題点がある。更に、ワイヤボンディング法を適用した特許文献5の熱電モジュールは、別の部材により形成されたポスト電極を使用しているため、前記ポスト電極を基板に接合する作業が困難であり、また、部材及び接合費用がかかるため、高コストになってしまうという問題点がある。   However, the conventional techniques described above have the following problems. First, the method of providing an Au plating layer on the electrode surface described in Patent Documents 1 and 2 is for the purpose of connecting a thermoelectric element and a substrate. When the law is applied, there is a problem that sufficient characteristics cannot be obtained because no consideration is given to this. In addition, in the thermoelectric module of Patent Document 3 to which the wire bonding method is applied, the external connection terminal is also heated to a high temperature during soldering in the module assembly process, but since the countermeasure is not taken, it is difficult to bond the Au wire. There is a problem of becoming. Further, since the thermoelectric module of Patent Document 5 to which the wire bonding method is applied uses a post electrode formed by another member, it is difficult to join the post electrode to the substrate. Since the joining cost is high, there is a problem that the cost becomes high.

本発明はかかる問題点に鑑みてなされたものであって、ワイヤボンディング性及び耐久性が優れ、且つ低コストで製造することができる熱電モジュールを提供することを目的とする。   This invention is made | formed in view of this problem, Comprising: It aims at providing the thermoelectric module which is excellent in wire-bonding property and durability, and can be manufactured at low cost.

本発明に係る熱電モジュールは、複数個の熱電素子と、前記熱電素子を電気的に接続するための複数個の電極及び1対の外部接続端子が一方の面にパターン形成された基板と、を備え熱電モジュールにおいて、各前記外部接続端子とこの外部接続端子に接続される電極が一のパターンとして形成されており、この一のパターンの最表面にAu層が電解メッキにより形成されており、この一のパターンはAu層が厚い部分と薄い部分との2領域に分かれていて、Au層の厚い部分に外部接続用ボンディングワイヤが接続され、Au層の薄い部分に前記熱電素子が接続されるものであることを特徴とする。 A thermoelectric module according to the present invention includes a plurality of thermoelectric elements, a substrate having a plurality of electrodes for electrically connecting the thermoelectric elements and a pair of external connection terminals formed on one surface. In the thermoelectric module provided, the external connection terminals and the electrodes connected to the external connection terminals are formed as one pattern, and an Au layer is formed on the outermost surface of the one pattern by electrolytic plating, This one pattern is divided into two regions, a thick Au layer and a thin Au layer. An external connection bonding wire is connected to the thick Au layer, and the thermoelectric element is connected to the thin Au layer. It is characterized by being.

本発明においては、リード線又は別の部材からなるポスト電極を使用しないため、接続工程が簡略化できる。また、熱電素子接続電極のAu層より外部接続端子のAu層を厚く形成することにより、熱電モジュールの組み立て工程で外部接続端子が加熱されても、Ni層が酸化しないため、前記Ni層の上に設けられているAu層に悪影響を及ぼさず、安定したワイヤボンディング性が得られる。また、本発明の熱電モジュールは、外部接続端子のみAu層を厚くしているため、全ての電極のAu層を厚くするよりもAuの使用量が少なく、従来品に比べて製造コストが増加することを抑えることができる。   In the present invention, since the lead electrode or the post electrode made of another member is not used, the connection process can be simplified. Further, by forming the Au layer of the external connection terminal thicker than the Au layer of the thermoelectric element connection electrode, even if the external connection terminal is heated in the assembly process of the thermoelectric module, the Ni layer is not oxidized. Stable wire bonding properties can be obtained without adversely affecting the Au layer provided on the substrate. Further, since the thermoelectric module of the present invention has a thick Au layer only for the external connection terminals, the amount of Au used is smaller than that of the thick Au layer of all the electrodes, and the manufacturing cost increases compared to the conventional product. That can be suppressed.

本発明によれば、電極及び外部接続端子の最表面にAu層を設け、外部接続端子Au層を電極のAu層より厚くすることにより、モジュール組み立て工程で加熱されても、Ni層の酸化を防ぐことができるため、安定したワイヤボンディング性をえることができると共に、電極のAu層が薄いため、熱電素子と基板とを接合するはんだに含まれるAu量が少なくなり、耐久性が向上する。   According to the present invention, the Au layer is provided on the outermost surfaces of the electrode and the external connection terminal, and the external connection terminal Au layer is thicker than the Au layer of the electrode, so that the Ni layer is oxidized even when heated in the module assembly process. Therefore, stable wire bonding can be obtained, and since the Au layer of the electrode is thin, the amount of Au contained in the solder joining the thermoelectric element and the substrate is reduced, and durability is improved.

以下、本発明の実施形態に係る熱電モジュールについて添付の図面を参照して具体的に説明する。本実施形態の熱電モジュールは、下基板に下部接続端子が設けられている。図1は本実施形態の熱電モジュールを示す断面図であり、図2はその下基板を示す平面図である。図1に示すように、本実施形態の熱電モジュールは、セラミックス等の絶縁性の下基板1及び上基板2にめっき等により夫々下部電極3及び上部電極4が形成され、下基板1及び上基板2は下部電極3と上部電極4が相互に対向するように平行に配置され、両者の間に複数個の熱電素子が配置されている。下部電極3には、1対のp型熱電素子5a及びn型熱電素子5bとが接合され、隣接する1対の下部電極3上に接合された熱電素子のうち、隣接するp型熱電素子5aとn型熱電素子5bの上部を1個の上部電極4に接合することにより、p型熱電素子とn型熱電素子とが交互に直列に接続されている。また、図2に示すように、下基板1には、前記直列接続体の両端部の熱電素子が接合された下部電極3に接して、外部接続端子6が形成されており、外部接続端子6には夫々Auワイヤがボンディングされている。   Hereinafter, a thermoelectric module according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. In the thermoelectric module of the present embodiment, a lower connection terminal is provided on the lower substrate. FIG. 1 is a sectional view showing a thermoelectric module of the present embodiment, and FIG. 2 is a plan view showing a lower substrate thereof. As shown in FIG. 1, in the thermoelectric module of this embodiment, a lower electrode 3 and an upper substrate 4 are formed on an insulating lower substrate 1 and an upper substrate 2 such as ceramics by plating or the like, respectively. 2 is arranged in parallel so that the lower electrode 3 and the upper electrode 4 face each other, and a plurality of thermoelectric elements are arranged therebetween. A pair of p-type thermoelectric elements 5a and n-type thermoelectric elements 5b are joined to the lower electrode 3, and among the thermoelectric elements joined on the adjacent pair of lower electrodes 3, the adjacent p-type thermoelectric elements 5a. P-type thermoelectric elements and n-type thermoelectric elements are alternately connected in series by joining the top of n-type thermoelectric element 5b to one upper electrode 4. In addition, as shown in FIG. 2, external connection terminals 6 are formed on the lower substrate 1 in contact with the lower electrodes 3 to which the thermoelectric elements at both ends of the series connection body are joined. Each has an Au wire bonded thereto.

次に、前述の如く構成された本実施形態の熱電モジュールの動作について説明する。本実施形態の熱電モジュールは、Auワイヤ8を介して電流が供給されると、外部接続端子6を経由し、下部電極3からn型熱電素子5bに電流が流れ、更に上部電極3を経由してp型熱電素子5aに流れる。その際、エネルギーは電流とは逆の方向に移動するため、上部電極側ではエネルギーが不足して温度が下がり(吸熱)、下部電極側ではエネルギーが放出されるため温度が上がる(放熱)。   Next, the operation of the thermoelectric module of the present embodiment configured as described above will be described. In the thermoelectric module of the present embodiment, when current is supplied through the Au wire 8, current flows from the lower electrode 3 to the n-type thermoelectric element 5 b via the external connection terminal 6, and further passes through the upper electrode 3. Flow into the p-type thermoelectric element 5a. At this time, since energy moves in the direction opposite to the current, the energy is insufficient on the upper electrode side and the temperature decreases (heat absorption), and the energy is released on the lower electrode side and the temperature increases (heat dissipation).

図3は本発明の熱電モジュールの下部電極3及び外部接続端子6の構成を示す断面図である。図3に示すように、本実施形態の熱電モジュールの下部電極3及び外部接続端子6は、下基板1上にCu層9が形成され、その上にNi層10が形成され、最表面にはAu層11が形成されている3層構造となっている。   FIG. 3 is a cross-sectional view showing the configuration of the lower electrode 3 and the external connection terminal 6 of the thermoelectric module of the present invention. As shown in FIG. 3, the lower electrode 3 and the external connection terminal 6 of the thermoelectric module of the present embodiment have a Cu layer 9 formed on the lower substrate 1, a Ni layer 10 formed thereon, and an outermost surface. It has a three-layer structure in which the Au layer 11 is formed.

本実施形態の熱電モジュールにおける下部電極3のAu層の厚さは、0.05乃至0.80μmであることが好ましい。なお、Au層の厚さの下限である0.05μmは、一般に、フラッシュ金めっきと呼ばれる領域である。Au層の厚さが0.05μmよりも薄いと、はんだの濡れ性が著しく低下する。また、Au層が0.80μmよりも厚いと、Sn−Pb共晶はんだ、Sn−Sbはんだ、Sn−Zn系はんだ、Sn−Cuはんだ、Sn−Agはんだ又はSn−Ag−Cuはんだ等を使用して熱電素子5を接合する際に、Au−Sn化合物の生成量が多くなり、接続耐久不良が発生する。更に、Au−Sn共晶はんだを使用する場合においても、Au層が0.80μmよりも厚いと、共晶はんだの組成中のAu含有量が増加するため、はんだの濡れ性が著しく低下し、良好なフレットが生成せず、接続耐久性不良が発生する。   The thickness of the Au layer of the lower electrode 3 in the thermoelectric module of this embodiment is preferably 0.05 to 0.80 μm. Note that 0.05 μm, which is the lower limit of the thickness of the Au layer, is a region generally called flash gold plating. When the thickness of the Au layer is less than 0.05 μm, the wettability of the solder is remarkably lowered. If the Au layer is thicker than 0.80 μm, Sn-Pb eutectic solder, Sn-Sb solder, Sn-Zn solder, Sn-Cu solder, Sn-Ag solder, Sn-Ag-Cu solder, etc. are used. When the thermoelectric element 5 is bonded, the amount of Au—Sn compound generated increases, resulting in poor connection durability. Furthermore, even when using Au—Sn eutectic solder, if the Au layer is thicker than 0.80 μm, the Au content in the composition of the eutectic solder increases, so the wettability of the solder is significantly reduced, Good frets are not generated, resulting in poor connection durability.

また、外部接続端子6におけるAu層の厚さは、1乃至10μmであることが好ましい。Au層の厚さが1μmより薄いと、モジュール組み立て工程のはんだ付けの際にAu層の下のNi層が酸化されて、Au層の表面までその酸化物が突出し、その結果、ワイヤボンディング工程で不良が発生する。一方、Au層の厚さを10μmより厚くしてもそれ以上の効果は得られないため、製造コスト等を考慮するとAu層の厚さは10μm以下にすることが望ましい。   The thickness of the Au layer in the external connection terminal 6 is preferably 1 to 10 μm. If the thickness of the Au layer is less than 1 μm, the Ni layer under the Au layer is oxidized during soldering in the module assembly process, and the oxide protrudes to the surface of the Au layer. As a result, in the wire bonding process Defects occur. On the other hand, even if the thickness of the Au layer is made thicker than 10 μm, no further effect can be obtained. Therefore, it is desirable that the thickness of the Au layer be made 10 μm or less in view of manufacturing costs.

上述したように、本実施形態の熱電モジュールにおいては、外部接続端子6のAu層は、下部電極3のAu層より厚く形成される。このように、外部接続端子6のAu層のみを厚くすることにより、Auの使用量を最小限にすることができるため、製造コストの増加を抑制することができる。   As described above, in the thermoelectric module of the present embodiment, the Au layer of the external connection terminal 6 is formed thicker than the Au layer of the lower electrode 3. Thus, since only the Au layer of the external connection terminal 6 is thickened, the amount of Au used can be minimized, and an increase in manufacturing cost can be suppressed.

なお、本実施形態の熱電モジュールにおける外部接続端子6のAu層を形成する方法としては、例えば、めっき法等の湿式法若しくはスパッタ法等の乾式気相法により外部接続端子部分だけを厚膜形成する方法、又は下部電極3と同じ厚さで形成した後、所定の厚さとなるようにAu箔等を超音波接合、はんだ付け若しくはろう付け等によりを接合して厚くする方法等を適用することができる。   As a method for forming the Au layer of the external connection terminal 6 in the thermoelectric module of the present embodiment, for example, a thick film is formed only on the external connection terminal portion by a wet method such as a plating method or a dry gas phase method such as a sputtering method. Or a method of forming an Au foil or the like by ultrasonic bonding, soldering or brazing so as to have a predetermined thickness after the same thickness as that of the lower electrode 3 is applied. Can do.

以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。先ず、本発明の実施例として、以下に示す方法で下基板上に下部電極及び外部接続端子を形成して熱電モジュールを作製した。図4(a)乃至(g)は本実施例の熱電モジュールの作製方法をその工程順に示す断面図である。先ず、図4(a)に示すように、Al基板13に厚さ0.05μmのCu層9aを形成した。次に、図4(b)に示すように、Cu層9a上にレジスト12を塗布した後で露光し、不要なレジストを除去することによりマスクパターンを形成した。そして、図4(c)に示すように、電解めっきによりCu層9bを30μm、Ni層10を4.0μm及びAu層11aを0.05μmめっきした。次に、図4(d)に示すように、電極間のレジスト12を除去した後、図4(e)に示すように、外部接続端子以外の部分にマスク15を形成した。次に、図4(f)に示すように、電解めっきによりAu層11bを3.95μmめっきし、図4(g)に示すように、マスク15及び電極間のCu層9aを除去した。そして、この下基板を使用し、ワイヤボンディングにより接続して実施例の熱電モジュールを作製した。前述の工程により作製した本実施例の熱電モジュールにおける下部電極のAu層の厚さは0.05μmであり、外部接続端子のAu層の厚さは4μmであった。 Hereinafter, the effect of the Example of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention. First, as an example of the present invention, a thermoelectric module was manufactured by forming a lower electrode and an external connection terminal on a lower substrate by the following method. 4 (a) to 4 (g) are cross-sectional views showing the method of manufacturing the thermoelectric module of this embodiment in the order of the steps. First, as shown in FIG. 4A, a 0.05 μm thick Cu layer 9 a was formed on the Al 2 O 3 substrate 13. Next, as shown in FIG. 4B, a mask 12 was formed by applying a resist 12 on the Cu layer 9a and then exposing and removing unnecessary resist. Then, as shown in FIG. 4C, the Cu layer 9b was plated by 30 μm, the Ni layer 10 by 4.0 μm, and the Au layer 11a by 0.05 μm by electrolytic plating. Next, as shown in FIG. 4D, after removing the resist 12 between the electrodes, as shown in FIG. 4E, a mask 15 was formed in a portion other than the external connection terminals. Next, as shown in FIG. 4F, the Au layer 11b was plated by 3.95 μm by electrolytic plating, and as shown in FIG. 4G, the mask 15 and the Cu layer 9a between the electrodes were removed. The lower substrate was used and connected by wire bonding to produce the thermoelectric module of the example. The thickness of the Au layer of the lower electrode in the thermoelectric module of the present example produced by the above-described process was 0.05 μm, and the thickness of the Au layer of the external connection terminal was 4 μm.

次に、以下に示す方法で下基板上に下部電極及び外部接続端子を形成して比較例1の熱電モジュールを作製した。先ず、Al基板13に厚さ0.05μmのCu層9aを形成した。次に、Cu層9a上にレジスト12を塗布した後で露光し、不要なレジストを除去することによりマスクパターンを形成した。そして、電解めっきによりCu層9bを30μm、Ni層10を4.0μm及びAu層11aを0.05μmめっきした。その後、マスク及び電極間のCu層9aを除去して下部電極及び外部接続端子の厚さが均一な下基板を作製した。そして、この下基板を使用し、ワイヤボンディングにより接続して比較例1の熱電モジュールを作製した。本比較例の熱電モジュールの熱電素子電極及び外部接続端子のAu層の厚さは共に0.05μmであった。 Next, the lower electrode and the external connection terminal were formed on the lower substrate by the method shown below, and the thermoelectric module of Comparative Example 1 was produced. First, a Cu layer 9 a having a thickness of 0.05 μm was formed on the Al 2 O 3 substrate 13. Next, after applying a resist 12 on the Cu layer 9a, exposure was performed and an unnecessary resist was removed to form a mask pattern. Then, the Cu layer 9b was plated by 30 μm, the Ni layer 10 by 4.0 μm, and the Au layer 11a by 0.05 μm by electrolytic plating. Thereafter, the Cu layer 9a between the mask and the electrode was removed, and a lower substrate having a uniform thickness of the lower electrode and the external connection terminal was produced. The lower substrate was used and connected by wire bonding to produce a thermoelectric module of Comparative Example 1. The thickness of the thermoelectric element electrode of the thermoelectric module of this comparative example and the Au layer of the external connection terminal were both 0.05 μm.

次に、以下に示す方法で下基板上に下部電極及び外部接続端子を形成して比較例2の熱電モジュールを作製した。先ず、Al基板13に厚さ0.05μmのCu層9aを形成した。次に、Cu層9a上にレジスト12を塗布した後で露光し、不要なレジストを除去することによりマスクパターンを形成した。次に、電解めっきにより、Cu層を30μm、Ni層を4.0μm及びAu層を4.0μmめっきした後、マスク及び電極間のCu層9aを除去し、電極の厚さが均一な下基板を作製した。そして、この下基板を使用し、ワイヤボンディングにより接続して比較例2の熱電モジュールを作製した。本比較例の下基板における下部電極及び外部接続端子のAu層の厚さは共に4.0μmであった。 Next, a lower electrode and an external connection terminal were formed on the lower substrate by the method described below to produce a thermoelectric module of Comparative Example 2. First, a Cu layer 9 a having a thickness of 0.05 μm was formed on the Al 2 O 3 substrate 13. Next, after applying a resist 12 on the Cu layer 9a, exposure was performed and an unnecessary resist was removed to form a mask pattern. Next, by electroplating, the Cu layer is plated by 30 μm, the Ni layer by 4.0 μm, and the Au layer by 4.0 μm, and then the Cu layer 9a between the mask and the electrodes is removed, and the lower substrate having a uniform electrode thickness Was made. The lower substrate was used and connected by wire bonding to produce a thermoelectric module of Comparative Example 2. The thickness of the Au layer of the lower electrode and the external connection terminal in the lower substrate of this comparative example was 4.0 μm.

前述の方法により作製した実施例、比較例1及び2の熱電モジュールの仕様を下記表1に示す。なお、本実施例においては、ワイヤボンディングには、直径20μmのAuワイヤを使用した。   Table 1 below shows the specifications of the thermoelectric modules of Examples and Comparative Examples 1 and 2 manufactured by the method described above. In this embodiment, Au wire having a diameter of 20 μm was used for wire bonding.

Figure 0004013895
Figure 0004013895

次に、実施例、比較例1及び2の熱電モジュールについて、ボンディング性及び耐久性試験を行った。ボンディング性試験は、試作した熱電モジュールのワイヤボンディングされたAuワイヤにフックをかけ、ワイヤが切断するか、又は接合面が剥離するまで上方向に引っ張り上げた。その際、ボンディング接合面に十分な強度がある場合は、ワイヤ自体が切断する。また、ボンディング接合面の接合力が弱ければ接合面が剥離する。ここでは、ワイヤ自体が切断する場合を合格とした。耐久性試験は、熱電モジュールのホット側を85℃で一定にし、I=2Aを1分間毎にON/OFFし、それを3万回繰り返し、試験前後における電気抵抗の変化率を確認した。これらの評価結果を下記表2に示す。   Next, bonding properties and durability tests were performed on the thermoelectric modules of Examples and Comparative Examples 1 and 2. In the bondability test, a hook was applied to the wire-bonded Au wire of the prototype thermoelectric module, and the wire was cut or pulled up until the joint surface peeled off. At that time, if the bonding interface has sufficient strength, the wire itself is cut. Further, if the bonding force of the bonding bonding surface is weak, the bonding surface peels off. Here, the case where the wire itself was cut was regarded as acceptable. In the durability test, the hot side of the thermoelectric module was kept constant at 85 ° C., I = 2A was turned ON / OFF every minute, and this was repeated 30,000 times to confirm the rate of change in electrical resistance before and after the test. The evaluation results are shown in Table 2 below.

Figure 0004013895
Figure 0004013895

上記表2に示すように、比較例1の熱電モジュールは外部接続端子のAu層の厚さが薄いため、ワイヤボンディングの接合強度が低く、Auワイヤと外部接続端子表面との界面で剥離した。しかしながら、下部電極のAu層の厚さも薄いため、熱電素子と基板との間のはんだに含まれるAu量が少なく、Au−Sn化合物の生成が押さえられ、クラック等は発生せず、耐久性は良好であった。また、比較例2の熱電モジュールは、外部接続端子のAu層の厚さを4.0μmと厚くしたため、Auワイヤと外部接続端子との接合界面では剥離せずにワイヤ自体が切断した。このように、外部接続端子のAu層の厚さを増すことで、ボンディング性が向上し、強力な接合力が得られたが、その一方で、電気抵抗率は3.2%に増加した。電気抵抗率が高いことは耐久性が低いことを示し、更に試験を繰り返すと、早い時期に断線することを意味する。また、電気抵抗率の増加は、下部電極のAu層が厚いため、熱電素子と基板との間のはんだに多量のAu−Sn化合物が生成したためである。   As shown in Table 2, since the thermoelectric module of Comparative Example 1 had a thin Au layer of the external connection terminal, the bonding strength of wire bonding was low, and peeling occurred at the interface between the Au wire and the external connection terminal surface. However, since the thickness of the Au layer of the lower electrode is also thin, the amount of Au contained in the solder between the thermoelectric element and the substrate is small, the generation of Au—Sn compound is suppressed, cracks do not occur, and the durability is It was good. In the thermoelectric module of Comparative Example 2, since the thickness of the Au layer of the external connection terminal was increased to 4.0 μm, the wire itself was cut without being peeled off at the bonding interface between the Au wire and the external connection terminal. As described above, by increasing the thickness of the Au layer of the external connection terminal, the bondability was improved and a strong bonding force was obtained. On the other hand, the electrical resistivity increased to 3.2%. High electrical resistivity indicates low durability, and further repetition of the test means disconnection at an early stage. Also, the increase in electrical resistivity is due to the fact that a large amount of Au—Sn compound was generated in the solder between the thermoelectric element and the substrate because the Au layer of the lower electrode was thick.

一方、実施例の熱電モジュールは、ボンディング性及び耐久性共に比較例1及び2の熱電モジュールよりも優れていた。更に、実施例の熱電モジュールは、比較例2の熱電モジュールよりも5%程度低いコストで基板を作製することができた。   On the other hand, the thermoelectric module of the example was superior to the thermoelectric modules of Comparative Examples 1 and 2 in both bonding properties and durability. Furthermore, the thermoelectric module of the example was able to produce a substrate at a cost about 5% lower than the thermoelectric module of Comparative Example 2.

本実施形態の熱電モジュールを示す断面図である。It is sectional drawing which shows the thermoelectric module of this embodiment. 本実施形態の熱電モジュールの下基板を示す平面図である。It is a top view which shows the lower board | substrate of the thermoelectric module of this embodiment. 本実施形態の熱電モジュールの電極及び外部接続端子の構成を示す断面図である。It is sectional drawing which shows the structure of the electrode of the thermoelectric module of this embodiment, and an external connection terminal. (a)乃至(g)は本実施例の熱電モジュールの作製方法をその工程順に示す断面図である。(A) thru | or (g) is sectional drawing which shows the preparation methods of the thermoelectric module of a present Example in the order of the process. 従来の熱電モジュールを模式的に示す断面図である。It is sectional drawing which shows the conventional thermoelectric module typically.

符号の説明Explanation of symbols

1;下基板 2;上基板 3;下部電極 4;上部電極 5a;p型熱電素子 5b;n型熱電素子 6;外部接続端子 7;リード線 8;Auワイヤ 9、9a、9b;Cu層 10;Ni層 11、11a、11b;Au層 12;レジスト 13;Al基板 14;はんだ 15;マスク DESCRIPTION OF SYMBOLS 1; Lower board | substrate 2; Upper board | substrate 3; Lower electrode 4; Upper electrode 5a; P-type thermoelectric element 5b; N-type thermoelectric element 6; External connection terminal 7; Lead wire 8; Au wire 9, 9a, 9b; ; Ni layer 11, 11a, 11b; Au layer 12; resist 13; Al 2 O 3 substrate 14; solder 15; mask

Claims (1)

複数個の熱電素子と、前記熱電素子を電気的に接続するための複数個の電極及び1対の外部接続端子が一方の面にパターン形成された基板と、を備え熱電モジュールにおいて、各前記外部接続端子とこの外部接続端子に接続される電極が一のパターンとして形成されており、この一のパターンの最表面にAu層が電解メッキにより形成されており、この一のパターンはAu層が厚い部分と薄い部分との2領域に分かれていて、Au層の厚い部分に外部接続用ボンディングワイヤが接続され、Au層の薄い部分に前記熱電素子が接続されるものであることを特徴とする熱電モジュール。 A plurality of thermoelectric elements, thermoelectric modules with a substrate on which the external connection terminals of the plurality of electrodes and a pair of patterned on one surface for electrically connecting the thermoelectric elements, each of said An external connection terminal and an electrode connected to the external connection terminal are formed as one pattern, and an Au layer is formed by electrolytic plating on the outermost surface of the one pattern. It is divided into two regions, a thick portion and a thin portion, wherein an external connection bonding wire is connected to a thick portion of the Au layer, and the thermoelectric element is connected to a thin portion of the Au layer. Thermoelectric module.
JP2003415046A 2002-12-12 2003-12-12 Thermoelectric module Expired - Fee Related JP4013895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003415046A JP4013895B2 (en) 2002-12-12 2003-12-12 Thermoelectric module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002361301 2002-12-12
JP2003415046A JP4013895B2 (en) 2002-12-12 2003-12-12 Thermoelectric module

Publications (2)

Publication Number Publication Date
JP2004207717A JP2004207717A (en) 2004-07-22
JP4013895B2 true JP4013895B2 (en) 2007-11-28

Family

ID=32828617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003415046A Expired - Fee Related JP4013895B2 (en) 2002-12-12 2003-12-12 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP4013895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321916A (en) * 2015-10-16 2016-02-10 杭州大和热磁电子有限公司 Semiconductor module with special structure

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844109B2 (en) * 2005-12-07 2011-12-28 ヤマハ株式会社 Thermoelectric conversion module
JP6164959B2 (en) * 2013-07-09 2017-07-19 シチズン電子株式会社 Electrode pattern structure of light emitting device
KR102358897B1 (en) * 2017-12-04 2022-02-07 엘지이노텍 주식회사 Thermo electric element
KR102487432B1 (en) * 2018-01-11 2023-01-11 엘지이노텍 주식회사 Heat conversion device
TW202118096A (en) * 2019-10-16 2021-05-01 日商科理克股份有限公司 Thermoelectric module and method for manufacturing thermoelectric module post

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105321916A (en) * 2015-10-16 2016-02-10 杭州大和热磁电子有限公司 Semiconductor module with special structure

Also Published As

Publication number Publication date
JP2004207717A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP2008098478A (en) Semiconductor device and its manufacturing method
CN109841715B (en) LED chip and LED module using the same
US20100071944A1 (en) Chip capacitor embedded pwb
JP6863846B2 (en) Substrate for mounting semiconductor elements and its manufacturing method
DE112013003902B4 (en) Semiconductor device and method for its manufacture
JP2008141027A (en) Bonding structure of thermoelectric conversion element and thermoelectric conversion module
JP4013895B2 (en) Thermoelectric module
KR20100131922A (en) Semiconductor device and method of manufacturing the same
US20040075168A1 (en) Semiconductor device bonded on circuit board via coil spring
JP2008537636A (en) Brazeable joint and method for forming the joint
JP3550355B2 (en) Pin standing board
US8581378B2 (en) Semiconductor device and method of manufacturing the same
JP2007158177A (en) Thermoelectric conversion module
US20120193784A1 (en) Method for joining bonding wire, semiconductor device, and method for manufacturing semiconductor device
JP4683466B2 (en) Electrode connection wire for solar cell and solar cell connected by the wire
CN100550363C (en) The bonding structure of terminal pad and scolder, semiconductor device and the manufacture method of this semiconductor device with this bonding structure
WO2020213133A1 (en) Semiconductor device
JP2007194495A (en) Method of manufacturing chip component
JP3552704B2 (en) Thermoelectric conversion module
JP2006032554A (en) Method of manufacturing electronic component
JP2004140250A (en) Ceramic substrate for thermoelectric exchanging module
JP2611715B2 (en) Manufacturing method of composite lead frame
JP2018125354A (en) Semiconductor device
JP2002184925A (en) Lead terminal member for semiconductor module, manufacturing method therefor and semiconductor module using the same
JP2017135275A (en) Electronic component module, circuit module, manufacturing method of electronic component module, and manufacturing method of circuit module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4013895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees