JP4012230B2 - Automotive cooler - Google Patents

Automotive cooler Download PDF

Info

Publication number
JP4012230B2
JP4012230B2 JP2006078008A JP2006078008A JP4012230B2 JP 4012230 B2 JP4012230 B2 JP 4012230B2 JP 2006078008 A JP2006078008 A JP 2006078008A JP 2006078008 A JP2006078008 A JP 2006078008A JP 4012230 B2 JP4012230 B2 JP 4012230B2
Authority
JP
Japan
Prior art keywords
cooler
wind
vehicle
traveling
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078008A
Other languages
Japanese (ja)
Other versions
JP2006240614A (en
Inventor
丈治 大島
博之 近藤
義次 長谷川
悟 古藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006078008A priority Critical patent/JP4012230B2/en
Publication of JP2006240614A publication Critical patent/JP2006240614A/en
Application granted granted Critical
Publication of JP4012230B2 publication Critical patent/JP4012230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transformer Cooling (AREA)

Description

この発明は、車両の走行によって生じる走行風との熱伝達により冷却を行う車載用冷却器に関するものである。   The present invention relates to an in-vehicle cooler that performs cooling by heat transfer with traveling wind generated by traveling of a vehicle.

従来より、車両に搭載された変圧器やリアクトル等の電気機器の冷却のために設けられる走行風を利用した車載用冷却器である車両用冷却器においては、例えば、特許文献1の車載変圧器用の油冷却器のように、走行方向に対して直角方向の平面内に複数本配列されたU字型油冷却管群を走行方向にさらに複数組配するよう構成されている。図20(a)は前記特許公報に示された従来の車両用油冷却変圧器の側面図を、図20(b)はその正面図を示している。図において、100は車両進行方向、101はU字型に整形された管状の冷却管、102はヘッダで、このヘッダ102に冷却管101は溶接等により取り付けられている。103は冷却媒体の出入口を形成する流通口で、同じくヘッダ102に溶接等で取り付けられている。104は取り付けられたU字型の冷却管101群の中心に位置する貫通部である。   2. Description of the Related Art Conventionally, in a vehicle cooler that is a vehicle-mounted cooler using traveling air provided for cooling electric devices such as a transformer and a reactor mounted on a vehicle, for example, for a vehicle-mounted transformer disclosed in Patent Document 1 Like this oil cooler, a plurality of U-shaped oil cooling pipe groups arranged in a plane perpendicular to the traveling direction are further assembled in the traveling direction. FIG. 20A is a side view of a conventional vehicle oil-cooled transformer disclosed in the patent publication, and FIG. 20B is a front view thereof. In the figure, 100 is a vehicle traveling direction, 101 is a tubular cooling pipe shaped in a U-shape, 102 is a header, and the cooling pipe 101 is attached to the header 102 by welding or the like. Reference numeral 103 denotes a circulation port that forms an inlet / outlet of the cooling medium, which is also attached to the header 102 by welding or the like. Reference numeral 104 denotes a penetrating portion located at the center of the attached U-shaped cooling pipe 101 group.

次に図を用いて冷却媒体の経路を示すと、車両用変圧器本体から配管を介して送られてきた例えば油などの冷却媒体は流通口103に入り、ヘッダ102から冷却管101内を通り再びヘッダ102へ流入する。そして流通口103から配管を介して再び車両用変圧器本体へ戻る。冷却媒体が冷却管101を流通する際に、冷却管101外表面において自然対流と、走行風が冷却管101群の表面を通過する際の強制対流とによる熱伝達により外部空気と熱交換が行われるので冷却媒体は冷却される。ここで、強制対流熱伝達による冷却効果を促進するために、前記冷却器101は走行風量の大きい車両側部に設置されていた。   Next, the route of the cooling medium is shown by using the figure. The cooling medium such as oil sent from the vehicle transformer body through the pipe enters the circulation port 103 and passes through the cooling pipe 101 from the header 102. It flows into the header 102 again. And it returns to the transformer body for vehicles from distribution port 103 via piping again. When the cooling medium flows through the cooling pipe 101, heat exchange with the external air is performed by heat transfer by natural convection on the outer surface of the cooling pipe 101 and forced convection when the traveling wind passes through the surface of the cooling pipe 101 group. The cooling medium is cooled. Here, in order to promote the cooling effect by forced convection heat transfer, the cooler 101 is installed on the side of the vehicle with a large traveling airflow.

また、車両用リアクトルの冷却方式において、同様に走行風を利用した発明に関しては、特許文献2があり、その外観図を図21に示す。図において、105は外周を円筒で覆われた円筒巻線、106は前記円筒巻線105を支持するための支持材、107は支持材106を介して円筒巻線105が固定される車体、108はリアクトルの冷却風出入口の口径に合わせた大きさを有する漏斗状あるいは一部欠損した漏斗状の風ガイド、109は通風方向である。また、車両107の床下に取り付けられた前記円筒巻線105は、円筒状に巻回し、水平方向に風を流通させるように設置されている。   Moreover, regarding the invention using the traveling wind in the cooling system for the vehicle reactor, there is Patent Document 2, and an external view thereof is shown in FIG. In the figure, 105 is a cylindrical winding whose outer periphery is covered with a cylinder, 106 is a support material for supporting the cylindrical winding 105, 107 is a vehicle body on which the cylindrical winding 105 is fixed via the support material 106, 108. Is a funnel-shaped wind guide having a size corresponding to the diameter of the cooling air inlet / outlet of the reactor or a partially broken funnel-shaped wind guide, and 109 is a ventilation direction. The cylindrical winding 105 attached under the floor of the vehicle 107 is installed so as to wind in a horizontal direction by winding it in a cylindrical shape.

車両が走行すると、リアクトル近傍には車両進行方向100とは反対方向に走行風が吹き、その走行風が漏斗状の風ガイド108によって集められ、円筒巻線105の内部に導びかれてそこに発生する熱を奪って巻線を冷却する。   When the vehicle travels, traveling wind blows in the vicinity of the reactor in a direction opposite to the vehicle traveling direction 100, and the traveling wind is collected by a funnel-shaped wind guide 108 and guided to the inside of the cylindrical winding 105. Takes the generated heat and cools the windings.

特公昭57−42203号公報Japanese Examined Patent Publication No.57-42203 実開昭55−47749号公報Japanese Utility Model Publication No. 55-47749

特許文献1に記載された従来の車載変圧器用の油冷却器では、以下のような欠点がある。まず、冷却管101により構成された圧力損失の大きな冷却器を圧力損失の存在しない開放空間に流れる走行風中に曝すため、走行風は圧力損失の大きな冷却管101群間には流れ難く、上流端から冷却管101群間に侵入した外部空気の大半は開放空間に流出することとなり、冷却能力が低下する。さらに、走行風を冷却管群間に導くための導風構造を有しないため、風取り入れ能力に劣る。また、冷却管が車側側に露出しているため、飛石や降雪等に対し強度的な問題があった。   The conventional oil cooler for on-vehicle transformers described in Patent Document 1 has the following drawbacks. First, since the cooler having a large pressure loss constituted by the cooling pipe 101 is exposed to the running wind flowing in the open space where there is no pressure loss, the running wind is difficult to flow between the cooling pipes 101 having a large pressure loss. Most of the external air that has entered between the cooling pipes 101 from the end flows out into the open space, and the cooling capacity is reduced. Furthermore, since there is no wind guide structure for guiding the traveling wind between the cooling tube groups, the wind intake capability is inferior. Further, since the cooling pipe is exposed on the vehicle side, there is a problem of strength against flying stones, snowfall, and the like.

次に、特許文献2に記載された従来の車載リアクトルの冷却方式では、走行風を効率よく取り入れるための風ガイドを有するものの、被冷却体である円筒巻線の外周が円筒により覆われ通気性を有しないため、上記特許文献1に記載された従来の車載変圧器用の油冷却器のような、冷却体に覆いを設けない露出構造の場合よりも圧力損失が増大し、風ガイド108による採風効果が相殺されてかえって冷却体の通過風量が減少して冷却効果が損なわれるという問題点がある。   Next, the conventional cooling system for an onboard reactor described in Patent Document 2 has a wind guide for efficiently taking in the traveling wind, but the outer periphery of the cylindrical winding that is the object to be cooled is covered with the cylinder and is air permeable. Therefore, the pressure loss increases as compared with the case of an exposed structure in which a cover is not provided on the cooling body, such as the conventional oil cooler for an in-vehicle transformer described in Patent Document 1, and wind sampling by the wind guide 108 is performed. There is a problem in that the effect is offset and the cooling air flow is reduced and the cooling effect is impaired.

この発明は以上のような問題点を解消するためになされたもので、熱伝達に有効な走行風の風量を少しでも多く確保して冷却能力の向上を図ることができる車載用冷却器を得ることを目的とする。
また、冷却能力を損なうことなく飛石等による損傷を防止することができる車載用冷却器を得ることを目的とする。
The present invention has been made to solve the above-described problems, and provides an in-vehicle cooler that can secure a large amount of running air that is effective for heat transfer and can improve the cooling capacity. For the purpose.
It is another object of the present invention to provide an in-vehicle cooler that can prevent damage caused by stepping stones without impairing the cooling capacity.

請求項1に係る車載用冷却器は、車両の走行方向に所定の長さを有し上記走行方向と直角に上記走行方向に沿って一定の面積を有する空間内に、その両端がヘッダに接続された略U字型の冷却管を、上記車両の走行方向と直角な面内に複数本、かつ上記走行方向に沿って複数列分布配設してなり、上記冷却管と上記車両の走行によって生じる走行風との熱伝達により冷却を行う車載用冷却器において、
空間の走行方向はその全長にわたり、上記空間の上記走行方向と直角の面積の外周方向は上記冷却管の上記略U字型の曲線部分を覆うように配設された保護カバーを備え、上記保護カバーの走行方向両端から所定長の部分を除いた上記保護カバーの中央の部分に、通風孔を設けたものである。
The on-vehicle cooler according to claim 1 has a predetermined length in the traveling direction of the vehicle, and has both ends connected to the header in a space having a certain area along the traveling direction perpendicular to the traveling direction. A plurality of the substantially U-shaped cooling pipes are arranged in a plurality of rows along the traveling direction in a plane perpendicular to the traveling direction of the vehicle, and the cooling pipe and the vehicle travel. In a vehicle-mounted cooler that cools by heat transfer with the generated traveling wind,
Over running direction entire length thereof spatial outer peripheral direction of the running direction at right angles with the area of the space is provided with a protective cover disposed so as to cover the curved portion component of the substantially U-shaped of the cooling tube, Ventilation holes are provided in the central portion of the protective cover, excluding a predetermined length from both ends of the protective cover in the traveling direction .

請求項1に係る車載用冷却器は、空間の走行方向はその全長にわたり、上記空間の上記走行方向と直角の面積の外周方向は上記冷却管の上記略U字型の曲線部分を覆うように配設された保護カバーを備え、上記保護カバーの走行方向両端から所定長の部分を除いた上記保護カバーの中央の部分に、通風孔を設けたので、飛石等の障害物に対する機械的保護が強化されるとともに、冷却管群の通過風量が増大して冷却性能が向上し、走行風に対する圧力損失が低減して通過風量が増大し冷却性能が向上する。 Vehicle cooler according to claim 1, the traveling direction of the space over its entire length, as the outer circumference of the area of the running direction at right angles with the space that covers the curved portion component of the substantially U-shaped of the cooling pipes Since a ventilation hole is provided in the central part of the protective cover excluding a predetermined length from both ends in the traveling direction of the protective cover, mechanical protection against obstacles such as stepping stones is provided. In addition, the air flow rate of the cooling pipe group is increased to improve the cooling performance , the pressure loss with respect to the traveling wind is reduced, the air flow rate is increased, and the cooling performance is improved.

実施の形態1.
なお、本願明細書においては、実施の形態1〜7は、参考例の内容を記載している。
図1は、本発明の実施の形態1における走行風を利用した車載用冷却器の車両への取り付け構造を車両進行方向から示した図である。図中、1は車両床下に設置された変圧器やリアクトル等の車載電気機器本体、2は車載電気機器本体1の発熱を奪った冷却媒体を冷却するための冷却器、3は冷却媒体を搬送するための駆動源であるポンプ、4はポンプ3と冷却器2とを結び冷却媒体を通す配管、5は車載電気機器本体1が取り付けられている車両、6は車輪、7はレール、8は道床である。
Embodiment 1 FIG.
In addition, in this-application specification, Embodiment 1-7 has described the content of the reference example.
FIG. 1 is a view showing a mounting structure of a vehicle-mounted cooler using traveling wind in Embodiment 1 of the present invention to a vehicle from the vehicle traveling direction. In the figure, 1 is an in-vehicle electric device main body such as a transformer or a reactor installed under the vehicle floor, 2 is a cooler for cooling the cooling medium that has deprived the heat generation of the in-vehicle electric device main body 1, and 3 is carrying the cooling medium 4 is a pipe that connects the pump 3 and the cooler 2 and passes the cooling medium, 5 is a vehicle to which the in-vehicle electric device main body 1 is attached, 6 is a wheel, 7 is a rail, The roadbed.

車載電気機器本体1より発生する熱は、水、油等の液体の顕熱変化、フロンガス、代替フロンガス等の圧縮サイクルにおける相変化を利用した潜熱/顕熱変化により冷却媒体に吸収され、ポンプ3より配管4を介して側面に設けられた冷却器2に搬送される。通常、冷却器は鉄、アルミ、銅等の熱伝導率の高い金属管をU字型に形成し、それらの冷却管を複数本車両の進行方向と垂直な平面内及び車両の進行方向に配置して構成されている。配管4を介して冷却器2に送られてきた冷却媒体は、冷却器2を構成する冷却管内部に導かれた後、管内対流熱伝達により管内壁に熱を奪われる。管内壁に移動した熱は、熱伝導により管壁を移動して管外壁へ至る。管外壁は低温且つ高速の走行風と接しているため、管外空気との対流熱伝達により熱は走行風に持ち去られる。冷却器2を通過することで冷却された冷却媒体は、再び配管4を介して車載電気機器本体1へ戻り車載電気機器本体1からの発熱を奪う。このようなサイクルを繰り返すことにより、走行風を利用して車載電気機器本体1を冷却することができる。   The heat generated from the in-vehicle electrical device main body 1 is absorbed by the cooling medium by the latent heat / sensible heat change utilizing the sensible heat change of liquid such as water, oil, etc., and the phase change in the compression cycle such as chlorofluorocarbon gas, alternative chlorofluorocarbon gas, etc. Then, it is conveyed to the cooler 2 provided on the side surface via the pipe 4. Usually, the cooler is formed in a U-shaped metal pipe with high thermal conductivity such as iron, aluminum, copper, etc., and these cooling pipes are arranged in a plane perpendicular to the traveling direction of the vehicle and in the traveling direction of the vehicle. Configured. The cooling medium sent to the cooler 2 via the pipe 4 is guided to the inside of the cooling pipe constituting the cooler 2 and then deprived of heat to the inner wall of the pipe by the convection heat transfer in the pipe. The heat transferred to the inner wall of the pipe moves through the pipe wall by heat conduction and reaches the outer wall of the pipe. Since the outer wall of the tube is in contact with the low-temperature and high-speed traveling wind, heat is carried away by the traveling wind by convective heat transfer with the outside air. The cooling medium cooled by passing through the cooler 2 returns to the in-vehicle electric device main body 1 through the pipe 4 again and takes heat from the in-vehicle electric device main body 1. By repeating such a cycle, the vehicle-mounted electrical device main body 1 can be cooled using traveling wind.

ところが、走行風を利用した車両用冷却器2は車両5の床下に設置されるため、冷却器の走行方向上流側に他の車載電気機器が設置されることも多く、十分な走行風が冷却器前面に当たらない場合も多い。また冷却器自体は、外周にカバーを有しない冷却管の集合体であるため、冷却器前面より管群間に侵入した走行風が冷却管群間内部を流れる際に、圧力損失の大きい冷却管群間より外部の開放空間へ急速に漏れだしていき、冷却器の走行風下流部では熱交換能力が著しく低下する問題があった。   However, since the vehicle cooler 2 using traveling wind is installed under the floor of the vehicle 5, other in-vehicle electric devices are often installed upstream in the traveling direction of the cooler, and sufficient traveling wind is cooled. In many cases, it does not hit the front of the vessel. In addition, since the cooler itself is an aggregate of cooling pipes that do not have a cover on the outer periphery, when the traveling wind that has entered between the pipe groups flows from the front of the cooler through the inside of the cooling pipe groups, the cooling pipes that have a large pressure loss. There was a problem that the heat exchange capacity was remarkably lowered at the downstream part of the cooler running wind as the air leaked rapidly to the outside open space between the groups.

図2(a)は、上記の2つの問題点を解決するための車載用冷却器の正面図であり、図2(b)はその側面図である。図において9は鉄、アルミ、銅等の熱伝導率の高い金属を肉厚の薄いU字型に整形した冷却管で、その両端は溶接等によりヘッダHに接続されている。10(10a、10b)は冷却器2の走行方向の両端部から約4列目の冷却管9群の最外周に位置する冷却管9を取り巻き覆うように設けられた2枚の導風板、11は最内周の冷却管9とヘッダHとにより形成される風貫通部である。なお、この風貫通部11に侵入した走行風は、冷却のための熱伝達にほとんど寄与することなく通過してしまうので、この風貫通部11の断面積は極力小さい方がよいが金属管をU字型に曲げ加工する際の工作上の制限から冷却管9の最小曲率半径が定まり、これに応じて風貫通部11の断面積が決まることになる。12は車両走行方向で、図では両方の向き12a、12bを矢印で示している。13は走行風方向で、その向き13a、13bは走行方向の向きと逆となる。14は冷却器2が車両進行とともに通過していく開放空間、15(15a、15b)は走行風が流入する風取込口、16(16a、16b)は2つに分断して設けられた導風板10a、10bのうち風上側に位置するものの風下端である風出口である。   FIG. 2A is a front view of an in-vehicle cooler for solving the above two problems, and FIG. 2B is a side view thereof. In the figure, reference numeral 9 denotes a cooling pipe obtained by shaping a metal having high thermal conductivity such as iron, aluminum, copper or the like into a thin U-shape, and both ends thereof are connected to the header H by welding or the like. 10 (10a, 10b) are two air guide plates provided so as to surround and cover the cooling pipes 9 positioned on the outermost periphery of the cooling pipe 9 group in the fourth row from both ends in the traveling direction of the cooler 2, Reference numeral 11 denotes an air penetration part formed by the innermost cooling pipe 9 and the header H. In addition, since the traveling wind that has entered the wind penetration part 11 passes with little contribution to the heat transfer for cooling, the cross-sectional area of the wind penetration part 11 is preferably as small as possible, but the metal tube is used. The minimum radius of curvature of the cooling pipe 9 is determined due to work limitations when bending into a U-shape, and the cross-sectional area of the wind penetration portion 11 is determined accordingly. Reference numeral 12 denotes a vehicle traveling direction, and both directions 12a and 12b are indicated by arrows in the drawing. Reference numeral 13 denotes a traveling wind direction, and its directions 13a and 13b are opposite to the traveling direction. 14 is an open space through which the cooler 2 passes as the vehicle travels, 15 (15a, 15b) is a wind intake port through which running wind flows, and 16 (16a, 16b) is a guide that is divided into two. It is an air outlet which is a wind lower end of what is located in a windward side among wind plates 10a and 10b.

車両が矢印12aの向きに進行している場合、冷却器2には矢印13aの向きから走行風が吹く。この場合、走行風は走行風上流側の導風板10aの風取込口15aより冷却器2内部に侵入し、走行風上流端の冷却管9に衝突して冷却管9外壁面から熱を奪いつつさらに冷却管9群の内部に侵入する。この際、前面冷却管9から約4列目の冷却管までの長さに渡って、冷却器2の最外周の冷却管9を取り囲むように導風板10aが設置されているため、風取込口15aより侵入した走行風は、管群間から開放空間14中に流出せず、そのまま矢印13aの向きに直進しながら熱交換を行う。導風板10aに覆われた空間を通過した走行風は、冷却器2中央部の導風板10の無い空間に至り、通過する際の圧力損失が大きい冷却管9群間から風貫通部11あるいは開放空間14に流出する。逆に車両が矢印12bの向きに進行している場合には、走行風は矢印13bの向きから導風板10bの風取込口15bを介して冷却器2内部へ侵入するので、同様の動作が実現する。   When the vehicle is traveling in the direction of the arrow 12a, traveling wind blows to the cooler 2 from the direction of the arrow 13a. In this case, the traveling wind enters the cooler 2 through the wind intake port 15a of the wind guide plate 10a on the upstream side of the traveling wind, collides with the cooling pipe 9 at the upstream end of the traveling wind, and heat is generated from the outer wall surface of the cooling pipe 9. While taking it, it further enters the inside of the cooling tube 9 group. At this time, the wind guide plate 10a is installed so as to surround the cooling pipe 9 on the outermost periphery of the cooler 2 over the length from the front cooling pipe 9 to the cooling pipe in the fourth row. The traveling wind that has entered through the inlet 15a does not flow into the open space 14 from between the tube groups, and performs heat exchange while moving straight in the direction of the arrow 13a. The traveling wind that has passed through the space covered with the air guide plate 10a reaches the space without the air guide plate 10 in the center of the cooler 2, and the wind penetration part 11 passes between the cooling pipes 9 having a large pressure loss when passing. Alternatively, it flows into the open space 14. Conversely, when the vehicle travels in the direction of the arrow 12b, the traveling wind enters the cooler 2 from the direction of the arrow 13b through the air intake port 15b of the air guide plate 10b. Is realized.

ここで、従来の冷却器と本発明の冷却器の内部の風の流れの違いを図を用いて説明する。図3は、従来の冷却器を走行方向を含む平面で切断して内部の風の流れを示した側断面図であり、図4は本発明の冷却器2の同じく内部の風の流れを示した側断面図である。図中矢印は走行風の流れを示す速度ベクトルで、大きさは流速の速さを、方向は流れの向きを示す。まず、図3の従来の冷却器では、大部分の走行風は、矢印13aの向きから冷却管9群に侵入した直後に、通過する際の圧力損失が大きい冷却管9群間から圧力損失のない開放空間14へ流出する。図から明らかなように、冷却器2の走行風上流側近傍のみで流速が速く、3列目以降急速に流速が低下し、5列目以降ではほとんど流れが存在しないことが分かる。従って、車両走行方向に複数列の冷却管9を設けた冷却器では、前縁効果によって走行風上流端の冷却管9で局所熱伝達率が最大となり、その後走行風が開放空間14に流出して管群間の流速が激減するため、対流熱伝達に伴う局所熱伝達率も急激に低下する。つまり、図3のような従来の冷却器では、走行風が侵入する走行風上流近傍の数列の冷却管9でしか効率の良い熱交換が行われないことが分かる。   Here, the difference in the flow of wind inside the conventional cooler and the cooler of the present invention will be described with reference to the drawings. FIG. 3 is a side sectional view showing the flow of the internal wind by cutting a conventional cooler along a plane including the traveling direction, and FIG. 4 shows the flow of the internal wind of the cooler 2 of the present invention. FIG. The arrows in the figure are velocity vectors indicating the flow of the traveling wind, the magnitude indicates the speed of the flow velocity, and the direction indicates the direction of the flow. First, in the conventional cooler of FIG. 3, most of the traveling wind immediately enters the cooling tube 9 group from the direction of the arrow 13 a, and the pressure loss between the cooling tube 9 groups having a large pressure loss when passing is reduced. Flows into the open space 14 that is not. As is apparent from the figure, the flow velocity is fast only near the upstream side of the traveling wind of the cooler 2, and the flow velocity decreases rapidly after the third row, and there is almost no flow after the fifth row. Therefore, in the cooler provided with a plurality of rows of cooling pipes 9 in the vehicle traveling direction, the local heat transfer coefficient is maximized in the cooling pipe 9 at the upstream end of the traveling wind due to the leading edge effect, and then the traveling wind flows out into the open space 14. Since the flow velocity between the tube groups is drastically reduced, the local heat transfer coefficient associated with convective heat transfer also decreases rapidly. That is, in the conventional cooler as shown in FIG. 3, it can be seen that efficient heat exchange is performed only with a few rows of the cooling pipes 9 in the vicinity of the upstream side of the traveling wind in which the traveling wind enters.

一方、本発明の冷却器2を示した図4では、冷却器2の走行風上流側から侵入した走行風は、導風板10aが存在するため走行風上流の冷却管2列を通過直後に解放空間14へ流出することができない。導風板10aに囲まれた冷却管9群間を導風板10aと平行に直進する走行風は、若干風貫通部11へ流出するものの、ほとんどその流量を減少させることなく冷却管9群の外表面から熱を奪う。導風板10aに囲まれた領域を通過した走行風は、開放空間14と連通するため、冷却管9群間から開放空間14へ流出する。このような流れ場を有する冷却器2では、走行風が侵入する走行風の最上流端冷却管9で前縁効果により局所熱伝達率が最大となり、導風板10aに覆われている部分では流量がほとんど変化しないため、対流熱伝達により大きな熱伝達率が維持される。走行方向中央の導風板10aに覆われていない部分では、開放空間14へ走行風が流出するものの、従来の冷却器と比べて冷却管9群間で大きな通過流速があり、充分な局所熱伝達率が得られる。   On the other hand, in FIG. 4 showing the cooler 2 of the present invention, the traveling wind that has entered from the upstream side of the traveling wind of the cooler 2 immediately after passing through the two rows of cooling pipes upstream of the traveling wind due to the presence of the air guide plate 10a. It cannot flow out into the release space 14. The traveling wind that travels straight in parallel with the wind guide plate 10a between the cooling tube 9 groups surrounded by the wind guide plate 10a slightly flows into the wind penetration portion 11, but the flow rate of the cooling pipe 9 group hardly decreases without reducing the flow rate. Take heat away from the outer surface. The traveling wind that has passed through the region surrounded by the air guide plate 10 a communicates with the open space 14, and therefore flows out from between the cooling tube 9 groups to the open space 14. In the cooler 2 having such a flow field, the local heat transfer coefficient is maximized by the leading edge effect in the uppermost end cooling pipe 9 of the traveling wind in which the traveling wind enters, and the portion covered by the air guide plate 10a Since the flow rate hardly changes, a large heat transfer coefficient is maintained by convective heat transfer. In the portion not covered by the air guide plate 10a at the center in the running direction, the running wind flows out to the open space 14, but there is a large passage flow rate between the cooling tube 9 groups compared to the conventional cooler, and sufficient local heat is generated. A transmission rate is obtained.

ここで、冷却器2の走行方向中央部に導風板10を設けていない理由を述べる。冷却器2の全面が導風板10で覆われている場合には、風取込口15から冷却器内部に侵入した走行風は外部に流出できないため圧力損失が大きくなり、流入量は激減する。勿論、冷却器2の熱交換能力も低下する。そこで、冷却器2の走行方向中央部に導風板10を設けず導風板10を走行風の上流側と下流側に2分して設けることで、冷却器2全体の圧力損失を低減し、内部への風の流入量を増大させて冷却性能を向上させることができる。   Here, the reason why the air guide plate 10 is not provided in the central portion in the traveling direction of the cooler 2 will be described. When the entire surface of the cooler 2 is covered with the air guide plate 10, the traveling wind that has entered the cooler through the air intake port 15 cannot flow out to the outside, so that the pressure loss increases and the inflow amount drastically decreases. . Of course, the heat exchange capability of the cooler 2 also decreases. Therefore, the pressure loss of the entire cooler 2 is reduced by providing the wind guide plate 10 in two on the upstream side and the downstream side of the running wind without providing the wind guide plate 10 in the central portion of the cooler 2 in the running direction. In addition, the cooling performance can be improved by increasing the amount of wind flowing into the interior.

また、車両が駅に停車した場合を想定すると、車載電気機器本体1の発生損失は十分低い値になるが、停車中の冷却器2の冷却能力が極端に低下するとそれまでの蓄熱容量のために冷却媒体の温度が上昇することが考えられる。この場合、この発明のように、冷却器2の中央には導風板10が設けられていないので、停車中で走行風が存在しなくても、この中央部分に自然対流による上昇気流が発生し、これが導風板10a、10b内の空気を引き込むので、冷却器2の冷却能力の極端な低下が防止され、冷却媒体の温度の上昇を防ぐという利点もある。   In addition, assuming that the vehicle stops at a station, the loss generated in the in-vehicle electrical device main body 1 becomes a sufficiently low value. However, if the cooling capacity of the cooler 2 that is stopped is extremely reduced, the heat storage capacity until then is reduced. It is conceivable that the temperature of the cooling medium rises. In this case, since the air guide plate 10 is not provided in the center of the cooler 2 as in the present invention, an updraft due to natural convection is generated in the central portion even when there is no traveling wind while the vehicle is stopped. However, since this draws in the air in the air guide plates 10a and 10b, an extreme decrease in the cooling capacity of the cooler 2 is prevented, and there is also an advantage that the temperature of the cooling medium is prevented from rising.

以上のように構成されているため、冷却器は大流量の走行風を冷却器の走行方向中央部まで保持しつつ、その冷却性能を向上させることができる。   Since it is configured as described above, the cooler can improve the cooling performance while maintaining a large flow of traveling wind up to the central portion in the traveling direction of the cooler.

なお、本実施の形態では、導風板10a、10bは冷却器2の走行方向の両端から4列目までを覆うように設けられていたが、覆うべき長さ(列数)は冷却器2の置かれる外環境によりその最適長さは若干変わるものであり、少なくとも走行方向の両端から1列目以上を覆い、走行方向中央部には設けないものであればよい。   In this embodiment, the air guide plates 10a and 10b are provided so as to cover the fourth row from both ends of the cooler 2 in the traveling direction, but the length (number of rows) to be covered is the cooler 2. The optimum length is slightly different depending on the external environment where the vehicle is placed, and it is sufficient that it covers at least the first row from both ends in the traveling direction and is not provided in the central portion in the traveling direction.

実施の形態2.
次に、風取込口15の開口面積を増大させて採風量を増大させる発明について述べる。図5(a)は本発明の実施の形態2における車載用冷却器の正面図、図5(b)はその側面図である。図において導風板10a、10bは冷却器2の走行方向両端部から4列目までの冷却管9の最外周を取り囲むように設けられている。さらに、風取込口15a、15bの開口面積は導風板10a、10bの中央側に位置する風出口16a、16bの開口面積よりも大きく、その間を直線状に結ぶよう薄板によって導風板10a、10bが設けられている。
Embodiment 2. FIG.
Next, an invention for increasing the amount of wind by increasing the opening area of the air intake 15 will be described. FIG. 5 (a) is a front view of the on-vehicle cooler in Embodiment 2 of the present invention, and FIG. 5 (b) is a side view thereof. In the drawing, the air guide plates 10a and 10b are provided so as to surround the outermost periphery of the cooling pipe 9 from the both ends in the running direction of the cooler 2 to the fourth row. Furthermore, the opening area of the wind inlets 15a and 15b is larger than the opening area of the wind outlets 16a and 16b located in the center side of the wind guide plates 10a and 10b, and the wind guide plate 10a is formed by a thin plate so as to connect them linearly. 10b.

車両が矢印12aの向きに走行している場合、走行風は矢印13aの向きに吹く。一般に車両用の冷却器は床下等の車体に近接した部位に設置される。従って、より多くの走行風を冷却器2内部に取り入れるためには、車体近傍に発達した走行風の境界層の外側に冷却器2を設置すべきである。ところが、寸法上、車両には安全上の問題から車両限界と呼ばれる機器取り付けの突出量制限が存在する。そのため、冷却器2は境界層内部にしか取り付けられないことになり、冷却器2には車両走行速度よりも低い流速の風が当たる。そこで、より効率的に走行風を取り込むために、図に示したような開口面積を増大させた風取込口15a、15bを設ける。図2の導風板と比較して、より多くの走行風を冷却器内部に導入することができ、延いては風量増加に伴い冷却性能が飛躍的に向上することは明らかである。   When the vehicle is traveling in the direction of the arrow 12a, the traveling wind blows in the direction of the arrow 13a. In general, a cooler for a vehicle is installed at a site close to the vehicle body such as under the floor. Therefore, in order to incorporate more traveling wind into the cooler 2, the cooler 2 should be installed outside the boundary layer of the traveling wind developed near the vehicle body. However, in terms of dimensions, there is a limitation on the amount of protrusion of equipment attachment called a vehicle limit due to safety problems. Therefore, the cooler 2 can be attached only inside the boundary layer, and the cooler 2 is hit by wind at a flow velocity lower than the vehicle traveling speed. Therefore, in order to capture the traveling wind more efficiently, the wind intake ports 15a and 15b having an increased opening area as shown in the figure are provided. Compared with the air guide plate of FIG. 2, it is clear that more traveling air can be introduced into the cooler, and as a result, the cooling performance is dramatically improved as the air volume increases.

従って、風取込口15a、15bの開口面積を風出口16a、16bの開口面積よりも大きくすることにより、冷却器2通過風量を増大させ、冷却性能を向上させることができる。   Therefore, by making the opening area of the air inlets 15a and 15b larger than the opening area of the air outlets 16a and 16b, the amount of air passing through the cooler 2 can be increased and the cooling performance can be improved.

さらに、導風板の曲面形状を最適化することにより、より多くの走行風を冷却器2に導入することができる。即ち、図6(a)は導風板の形状を最適化した冷却器2の正面図、図6(b)はその側面図である。図において、導風板10a、10bは風取込口15a、15bの開口面積を風出口16a、16bの開口面積よりも大きくし、かつ、車両走行方向を含む平面で切断した断面形状が、風取込口15a、15bと風出口16a、16bにおいて極値をとり換言すれば走行方向と平行の水平となり、両端からの中央で変極点となるような3次曲線により構成されている。このような断面形状が3次曲線となるような構成とすることにより、風取込口15a、15bより取り入れられた走行風は、導風板10a、10bの内壁に沿って滑らかに縮流されるため、その壁面上で剥離が生じず、縮流に伴う圧力損失を抑制することができる。   Furthermore, more traveling air can be introduced into the cooler 2 by optimizing the curved surface shape of the air guide plate. 6A is a front view of the cooler 2 in which the shape of the air guide plate is optimized, and FIG. 6B is a side view thereof. In the figure, the air guide plates 10a and 10b have a sectional shape obtained by making the opening area of the air intake ports 15a and 15b larger than the opening area of the air outlets 16a and 16b and cutting along a plane including the vehicle traveling direction. In other words, the extreme values at the intake ports 15a, 15b and the air outlets 16a, 16b are horizontal and parallel to the traveling direction, and are constituted by a cubic curve that becomes an inflection point at the center from both ends. By adopting a configuration in which such a cross-sectional shape becomes a cubic curve, the traveling wind taken from the wind intake ports 15a and 15b is smoothly contracted along the inner walls of the air guide plates 10a and 10b. Therefore, peeling does not occur on the wall surface, and pressure loss due to contraction can be suppressed.

従って、このような3次曲線の断面形状を有する導風板を設けることにより、より多くの走行風を冷却器に導入し、その冷却効率を向上させることができる。   Therefore, by providing an air guide plate having such a cubic curved cross section, more traveling air can be introduced into the cooler and its cooling efficiency can be improved.

本実施の形態では、導風板10a、10bは冷却器2の走行方向両端から4列目までを覆うように設けられていたが、覆うべき長さ(列数)は冷却器2の置かれる外環境によりその最適長さは若干変わるものであり、少なくとも冷却器2の走行方向両端から1列目以上を覆い、走行方向中央部には設けないものであればよい。   In the present embodiment, the air guide plates 10a and 10b are provided so as to cover up to the fourth row from both ends in the running direction of the cooler 2, but the length (number of rows) to be covered is placed in the cooler 2. The optimum length varies slightly depending on the external environment, as long as it covers at least the first row from both ends of the cooler 2 in the traveling direction and is not provided in the central portion in the traveling direction.

実施の形態3.
実施の形態1ないし2においては、導風板10a、10bは冷却器2の走行風上流側と下流側の2つの部分に分け、それぞれ一枚の板材を加工変形して構成されていた。ここで、導風板10a、10bはそれぞれ複数の板材より構成されていてもよく、例えば図7(a)は本発明の実施の形態3におけるもので、導風板10a、10bをそれぞれ4枚の導風板片10A〜10Dより構成した場合の冷却器2の正面図であり、図7(b)はその側面図である。図において導風板10aを構成する複数の導風板片10A〜10Dは、冷却器2の最外周の冷却管9を取り囲むように設けられ、それぞれ風取込口15A〜15Dと風出口16A〜16Dとそれらを直線的に結ぶ板材とにより成っており、各導風板片10A〜10Dの風取込口15A〜15Dの開口面積は風出口16A〜16Dの開口面積よりも大きくなるように漏斗状に形成されている。また、各導風板片10A〜10Dの風取込口15A〜15Dの開口面積は、冷却器2の走行方向端部に位置するものほど小さくなるように構成されている。
なお、導風板10bについては説明を省略するが、走行方向中央に対して対称に同じく4枚の導風板片で構成されている。
Embodiment 3 FIG.
In the first and second embodiments, the air guide plates 10a and 10b are divided into two parts on the upstream side and the downstream side of the running wind of the cooler 2, and each plate is processed and deformed. Here, each of the air guide plates 10a and 10b may be composed of a plurality of plate members. For example, FIG. 7 (a) is the embodiment 3 of the present invention, and each of the four air guide plates 10a and 10b. It is a front view of the cooler 2 at the time of comprising from this air guide plate piece 10A-10D, FIG.7 (b) is the side view. In the figure, a plurality of air guide plate pieces 10A to 10D constituting the air guide plate 10a are provided so as to surround the cooling pipe 9 on the outermost periphery of the cooler 2, and each of the air intake ports 15A to 15D and the air outlets 16A to 16A. 16D and a plate material that linearly connects them, and the funnels so that the opening areas of the air inlets 15A to 15D of the air guide plate pieces 10A to 10D are larger than the opening areas of the air outlets 16A to 16D. It is formed in a shape. In addition, the opening areas of the air intake ports 15A to 15D of the air guide plate pieces 10A to 10D are configured to be smaller as they are located at the end of the cooler 2 in the traveling direction.
In addition, although description is abbreviate | omitted about the baffle plate 10b, it is similarly comprised by the four baffle plate pieces symmetrically with respect to the center of a running direction.

次に動作について説明する。本実施の形態においても、冷却器2の走行方向中央には導風板を設けないため、冷却管9群間を通り抜ける際の圧力損失が小さく、冷却器2内部へ流入する走行風の量を増大させることができる。さらに、導風板10が複数の採風効果を有する漏斗状の導風板片10A〜10Dにより構成され、各導風板片10A〜10Dの風取込口15A〜15Dの開口面積が走行風上流側に隣接する導風板片のそれよりも大きくなるよう形成されているため、走行風上流より供給される走行風を風上側導風板片の風取り込みによって阻害されることなく風下に至るまで冷却器2内部に取り込むことができる。また、それぞれの導風板片10A〜10Dが走行風上流から下流に向かってその断面積を減少させるように構成されているため、冷却器2内部へ侵入した走行風は、導風板片10A〜10Dに沿った冷却管9群内部へ向かうベクトル成分を与えられるため、冷却器2内部の通過流速を増大させる。   Next, the operation will be described. Also in the present embodiment, since the wind guide plate is not provided at the center of the cooler 2 in the running direction, the pressure loss when passing through the group of the cooling pipes 9 is small, and the amount of running wind flowing into the cooler 2 is reduced. Can be increased. Furthermore, the air guide plate 10 is constituted by a plurality of funnel-shaped air guide plate pieces 10A to 10D having a wind effect, and the opening areas of the air intake ports 15A to 15D of the air guide plate pieces 10A to 10D are upstream of the traveling wind. Since it is formed so as to be larger than that of the wind guide plate piece adjacent to the side, the running wind supplied from the upstream of the running wind reaches the leeward without being obstructed by the wind intake of the windward wind guide plate piece. It can be taken into the cooler 2. Further, since each of the air guide plate pieces 10A to 10D is configured to reduce the cross-sectional area from the upstream side of the traveling wind toward the downstream side, the traveling wind that has entered the inside of the cooler 2 is the air guide plate piece 10A. Since a vector component toward the inside of the cooling tube 9 group along -10D is given, the passage flow velocity inside the cooler 2 is increased.

以上のように、より多くの走行風を冷却器2に導入し、冷却効率を向上させることができる。
更に、車両が停車中の場合、先述した通り、導風板10が存在しない走行方向中央部分は自然対流による熱伝達が行われるが、導風板10が存在する部分も、各導風板片10A〜10Dの間隙を通って気流の上昇が可能となり、その分停車中の冷却器2の冷却能力が増大するという利点もある。
As described above, more traveling air can be introduced into the cooler 2 to improve the cooling efficiency.
Further, when the vehicle is stopped, as described above, heat transfer by natural convection is performed in the central portion in the running direction where the air guide plate 10 does not exist, but each portion of the air guide plate 10 is also provided with each air guide plate piece. The airflow can be increased through the gaps of 10A to 10D, and there is an advantage that the cooling capacity of the cooler 2 while the vehicle is stopped increases accordingly.

なお、図7では各導風板片10A〜10Dは、その開口面積が直線状に変化するものとしたが、曲線状に変化する例えば円弧翼状のものとすれば、風の流れがより円滑となって流入風量も増大し、その分冷却器2の冷却能力が増大する。   In FIG. 7, the air guide plate pieces 10 </ b> A to 10 </ b> D each have an opening area that changes in a straight line. As a result, the inflow air volume also increases, and the cooling capacity of the cooler 2 increases accordingly.

本実施の形態では、導風板10は冷却器2の走行方向の両端部から4列目までの冷却管9の最外周を覆うように設けられていたが、覆うべき長さ(列数)は冷却器2の置かれる外環境によりその最適長さは若干変わるものであり、少なくとも冷却器2の走行方向両端から1列目以上を覆い、走行方向中央部には設けないものであればよい。   In the present embodiment, the air guide plate 10 is provided so as to cover the outermost periphery of the cooling pipe 9 from both ends in the traveling direction of the cooler 2 to the fourth row, but the length to be covered (number of rows). The optimum length varies slightly depending on the external environment where the cooler 2 is placed, and at least covers the first row from both ends in the running direction of the cooler 2 and may not be provided in the central portion in the running direction. .

実施の形態4.
実施の形態1ないし3において、導風板10は最外周の冷却管9を取り囲むように設けられており、最外周の冷却管9とは接しなくてもその性能を発揮することができた。ここでは、前記導風板10を最外周の冷却管9と接するように配置することにより、冷却効率をさらに向上させる発明につき述べる。図8(a)は、本発明の実施の形態4における車載用冷却器の正面図であり、図8(b)はその側面図である。図において導風板10(10a、10b)は最外周に位置する冷却管9の外周側壁面に溶接されて固定されている。
Embodiment 4 FIG.
In the first to third embodiments, the air guide plate 10 is provided so as to surround the outermost peripheral cooling pipe 9, and the performance can be exhibited without contacting the outermost peripheral cooling pipe 9. Here, the invention for further improving the cooling efficiency by arranging the air guide plate 10 so as to be in contact with the outermost cooling pipe 9 will be described. FIG. 8 (a) is a front view of the on-vehicle cooler in Embodiment 4 of the present invention, and FIG. 8 (b) is a side view thereof. In the figure, the air guide plate 10 (10a, 10b) is welded and fixed to the outer peripheral side wall surface of the cooling pipe 9 located on the outermost periphery.

導風板10は鉄、アルミ、銅、或いはその他の合金のように高い熱伝導率を有し、且つ堅牢な素材により成っており、同様に熱伝導率の高い金属により構成された冷却管9に溶接接続されることにより、最外周の冷却管9から溶接部を介して導風板10に対して接触熱抵抗を発生せず効率的に熱が伝導する。この場合、導風板10は採風作用を有するばかりでなく、放熱フィンとして作用し、冷却器全体の伝熱面積を増大させるため、冷却効率を大幅に向上させることができる。   The air guide plate 10 has a high thermal conductivity such as iron, aluminum, copper, or other alloys, and is made of a solid material. Similarly, the cooling pipe 9 is made of a metal having a high thermal conductivity. As a result, the heat is efficiently conducted from the outermost cooling pipe 9 through the welded portion to the air guide plate 10 without generating a contact thermal resistance. In this case, the air guide plate 10 not only has a wind-collecting action, but also acts as a radiating fin and increases the heat transfer area of the entire cooler, so that the cooling efficiency can be greatly improved.

以上のように、導風板10を最外周の冷却管9に溶接接続させることにより、より多くの走行風を冷却器2に導入し、且つ伝熱面積を増大させて冷却効率を向上させることができる。なお、本実施の形態では導風板10と最外周の冷却管9を溶接により接続する例について示したが、導風板10と冷却管9を接続し接触熱抵抗を低減できるものであればどのような接続方法を用いても同様の効果が得られる。   As described above, by introducing the wind guide plate 10 to the outermost cooling pipe 9 by welding, more traveling wind is introduced into the cooler 2 and the heat transfer area is increased to improve the cooling efficiency. Can do. In the present embodiment, an example in which the air guide plate 10 and the outermost cooling pipe 9 are connected by welding has been described. However, as long as the air guide plate 10 and the cooling pipe 9 are connected to reduce the contact thermal resistance. The same effect can be obtained by using any connection method.

本実施の形態では、導風板10は冷却器2の走行方向両端部から4列目までの冷却管9の最外周を覆うように設けられていたが、覆うべき長さ(列数)は冷却器2の置かれる外環境によりその最適長さは若干変わるものであり、少なくとも冷却器の走行方向両端から1列目以上を覆い、走行方向中央部には設けないものであればよい。   In the present embodiment, the air guide plate 10 is provided so as to cover the outermost periphery of the cooling pipe 9 from both ends in the running direction of the cooler 2 to the fourth row, but the length (number of rows) to be covered is The optimum length varies slightly depending on the external environment in which the cooler 2 is placed, and it is sufficient that it covers at least the first row from both ends in the running direction of the cooler and is not provided in the central portion in the running direction.

なお、以上の各実施の形態では、U字型の冷却管9を使用し、これを走行風がその径方向から当たるように配列した冷却器2に適用した場合について説明したが、この発明はこれに限らず、例えば、その軸方向が走行方向と一致する部分を含む形で冷却管が配列された冷却器であっても、要は、走行方向に所定の長さを有し走行方向と直角に所定の面積を有する空間内に複数本の冷却管を分布配設してなる冷却器には同様に適用することができ同等の効果を奏する。   In each of the above embodiments, the case where the U-shaped cooling pipe 9 is used and applied to the cooler 2 arranged so that the traveling wind hits from the radial direction has been described. However, the present invention is not limited to this. For example, even in a cooler in which cooling pipes are arranged so that the axial direction thereof includes a portion that coincides with the traveling direction, the main point is that the traveling direction has a predetermined length. The present invention can be similarly applied to a cooler in which a plurality of cooling pipes are distributed and disposed in a space having a predetermined area at a right angle.

実施の形態5.
U字型冷却管9を複数集積して形成された冷却器2では、既述した通り、金属管の曲げ加工の限界に起因する工作上の問題によりその曲げの半径に下限が存在するため冷却管2群の内側に風貫通部11が生じる。図20に示した従来の車載用冷却器では、図3に示した冷却器2内部の流れの様子から分かるように、風貫通部11の走行方向両端部に到達した走行風は、流体抵抗がごく僅かしか存在しない風貫通部11を流量を減少させることなく通過する。しかしながら、このような高速の流れが存在する前記風貫通部11に隣接する冷却管9は最内周に位置するものに限られるため、風貫通部11を通り抜ける大部分の走行風は熱交換に寄与せず冷却器2を通過する。以下は、この点の不具合を解消するものである。
Embodiment 5 FIG.
In the cooler 2 formed by integrating a plurality of U-shaped cooling pipes 9, as described above, there is a lower limit in the bending radius due to a working problem due to the limit of bending of the metal pipe. The wind penetration part 11 arises inside the tube 2 group. In the conventional vehicle-mounted cooler shown in FIG. 20, as can be seen from the state of the flow inside the cooler 2 shown in FIG. It passes through the wind penetration part 11 which exists very little, without reducing a flow volume. However, since the cooling pipe 9 adjacent to the wind penetration part 11 where such a high-speed flow exists is limited to the one located in the innermost circumference, most of the traveling wind passing through the wind penetration part 11 is used for heat exchange. It passes through the cooler 2 without contributing. The following solves this problem.

図9(a)は本発明の実施の形態5における車載用冷却器の正面図を示す。また、図9(b)はその側面図である。図において、17は最内周のU字型冷却管9の外表面に接することなく風貫通部11内に設置された貫通部導風体であり、前記貫通部導風体17は冷却器2の走行方向に対して両端あるいはその途中より中央に向かって徐々に走行方向に垂直方向の断面積を増大させ、冷却器2の中心において最大断面積を有し、その断面積は最大でも最内周冷却管9の外表面に接触せず、できるかぎり前記最内周冷却管9群の形状に沿うよう構成されている。例えば図9においては、貫通部導風体17は6面体部17Aと中心軸を通る平面で2分割した2つの円錐体部17Bを合わせた柱状を有しており、最内周側の冷却管9に接することなくその最内周包絡面とほぼ相似の表面形状を備えたものとなっている。   Fig.9 (a) shows the front view of the vehicle-mounted cooler in Embodiment 5 of this invention. FIG. 9B is a side view thereof. In the figure, reference numeral 17 denotes a penetrating part air guide installed in the wind penetrating part 11 without contacting the outer surface of the innermost U-shaped cooling pipe 9. The cross-sectional area in the direction perpendicular to the running direction is gradually increased toward the center from both ends or in the middle with respect to the direction, and has a maximum cross-sectional area at the center of the cooler 2, and the cross-sectional area is cooled at the innermost circumference at the maximum. The outermost surface of the tube 9 is not contacted, and is configured to follow the shape of the innermost cooling tube group 9 as much as possible. For example, in FIG. 9, the penetrating portion air guide body 17 has a columnar shape in which a hexahedral portion 17A and two conical portions 17B divided into two by a plane passing through the central axis are combined, and the cooling pipe 9 on the innermost peripheral side is formed. It has a surface shape almost similar to its innermost envelope surface without touching it.

次に前記冷却器2内部の流れ場の様子を明らかにする。図10は、紙面右から左方向に車両が進行した場合の図9に示した車両走行風によって冷却器2内部に生じる空気の流れ場を図示したものである。図において、走行風は矢印13aの向きに冷却管9群間及び風貫通部11に侵入する。冷却管9群間の走行風は、管群間を通過する際に流体損失を受けるため、より損失の少ない開放空間14へ徐々に流出する。一方、風貫通部11へ侵入した走行風は、風貫通部11に設けられた、上述した形状の貫通部導風体17によってその流路が徐々に狭められるため、走行風下流に向かって徐々に冷却管9群間側へ導かれ、冷却器2の走行方向中央部に至るまでにほぼ全流量が冷却管9群間へ流入する。従って、冷却管9群間には風貫通部11を通る走行風が走行方向中央部に至るまで徐々に流入することにより、ほぼ全域に渡って高速の流れが形成される。勿論、貫通部導風板17の走行方向に垂直な断面積が減少する風貫通部11の後半領域では、図に示すような剥離領域18が形成されてこの渦に接する管壁における対流熱伝達率を減少させるが、走行風上流における冷却管9群間の流速増大による局所熱伝達率の顕著な増大が、上記対流熱伝達率減少分を充分に補い全体として冷却効率は大幅に向上する。   Next, the state of the flow field inside the cooler 2 will be clarified. FIG. 10 illustrates a flow field of air generated in the cooler 2 by the vehicle traveling wind illustrated in FIG. 9 when the vehicle travels from the right to the left in the drawing. In the figure, the traveling wind enters between the cooling pipe 9 groups and the wind penetration part 11 in the direction of the arrow 13a. Since the traveling wind between the 9 groups of cooling pipes is subjected to fluid loss when passing between the groups of tubes, it gradually flows out to the open space 14 with less loss. On the other hand, the flow of the traveling wind that has entered the wind penetration portion 11 is gradually narrowed toward the downstream of the running wind because the flow passage is gradually narrowed by the penetration portion guide body 17 having the shape described above provided in the wind penetration portion 11. By being led to the side between the cooling pipe 9 groups and reaching the central portion in the running direction of the cooler 2, almost the entire flow rate flows between the cooling pipe 9 groups. Accordingly, the traveling wind passing through the wind penetration portion 11 gradually flows between the cooling pipe 9 groups until reaching the central portion in the traveling direction, so that a high-speed flow is formed over almost the entire region. Of course, in the second half region of the wind penetration portion 11 where the cross-sectional area perpendicular to the traveling direction of the penetration portion wind guide plate 17 decreases, a separation region 18 as shown in the figure is formed, and convective heat transfer in the tube wall in contact with this vortex. Although the rate is reduced, the remarkable increase in the local heat transfer coefficient due to the increase in the flow velocity between the cooling tube 9 groups upstream of the traveling wind sufficiently compensates for the decrease in the convective heat transfer coefficient, and the cooling efficiency is greatly improved as a whole.

以上のように、風貫通部11に貫通部導風板17を設けたので、風貫通部11への走行風の流れを冷却管9群間に導入して冷却効率を大幅に向上させることができる。   As described above, since the penetration portion wind guide plate 17 is provided in the wind penetration portion 11, the flow of the traveling wind to the wind penetration portion 11 can be introduced between the cooling tube 9 groups to greatly improve the cooling efficiency. it can.

ここで、貫通部導風体17の形状は、前記風貫通部11の流路が徐々に減少するよう、その断面積を、冷却器2の走行方向両端あるいはその途中から走行方向中央へかけて徐々に増大させ、冷却器2の走行方向中央において最大断面積を有し、その断面積は最大でも最内周冷却管9の外表面に接触せず、できるかぎり前記最内周冷却管9群の形状に沿うよう構成されていれば如何なる形状でもよい。例えば、図11に示した貫通部導風体17は、図8のものの6面体部17Aの両端の梁の高さを減少させ、走行方向に垂直な断面積が冷却器2の走行方向中央に向かって増大するよう構成されたものである。また、図12に示した貫通部導風体17は、6面体部17Aと2つの四面体部17Cとを組み合わせた形状を有している。図13の貫通部導風体17は、図12のものの両端の梁の高さを減少させ、その断面積が中心に向かって滑らかに増大するよう構成したものである。   Here, the shape of the penetrating portion air guide body 17 is such that its cross-sectional area gradually increases from both ends of the cooler 2 in the traveling direction or from the middle to the center in the traveling direction so that the flow path of the wind penetrating portion 11 gradually decreases. And has a maximum cross-sectional area at the center in the running direction of the cooler 2, and the cross-sectional area does not contact the outer surface of the innermost peripheral cooling pipe 9 at the maximum, and the innermost peripheral cooling pipe 9 group has as much as possible. Any shape may be used as long as the shape is configured. For example, the penetrating air guide body 17 shown in FIG. 11 reduces the height of the beams at both ends of the hexahedron part 17A of FIG. 8, and the cross-sectional area perpendicular to the traveling direction is directed toward the center of the cooler 2 in the traveling direction. It is configured to increase. Moreover, the penetration part air guide body 17 shown in FIG. 12 has the shape which combined the hexahedron part 17A and the two tetrahedron parts 17C. The penetrating portion air guide body 17 of FIG. 13 is configured to reduce the height of the beams at both ends of FIG. 12 so that the cross-sectional area increases smoothly toward the center.

これらの貫通部導風体17においても、風貫通部11の走行風流路が走行方向中央に向かって徐々に狭まり、風貫通部11に流入した走行風を冷却管9群間に導入することができるので、同様の効果を奏することは言うまでもない。   Also in these through-portion air guides 17, the travel air flow path of the wind through-portion 11 gradually narrows toward the center in the travel direction, and the travel wind that has flowed into the wind through-portion 11 can be introduced between the cooling tube 9 groups. Therefore, it goes without saying that the same effect is produced.

実施の形態6.
図14(a)はこの発明の実施の形態6における車載用冷却器の正面図、図14(b)はその側面図である。ここでは、貫通部導風体17を略平行に所定の間隔を介して配設された複数の導風体片17A〜17Dで構成している。そして、図に示すように、各導風体片17A〜17Dは、走行方向端部側が凸となる略傘形状をしており、風貫通部11に流入した走行風が円滑に冷却管9群側へ導かれるようにしている。更に、その全体としての包絡外形が先の形態例で説明した柱状体の貫通部導風体17と同等となるよう、走行方向から見た各導風体片17A〜17Dの面積は、走行方向中央から端部へかけて順次減少させている。勿論、各導風体片17A〜17Dは走行方向中央に対して対称に構成されている。
Embodiment 6 FIG.
FIG. 14A is a front view of a vehicle-mounted cooler according to Embodiment 6 of the present invention, and FIG. 14B is a side view thereof. Here, the penetrating portion air guide body 17 is composed of a plurality of air guide body pieces 17A to 17D disposed substantially parallel to each other at a predetermined interval. As shown in the figure, each of the air guide body pieces 17A to 17D has a substantially umbrella shape in which the traveling direction end portion is convex, and the traveling wind flowing into the wind penetration portion 11 smoothly moves to the cooling pipe 9 group side. To be guided to. Further, the area of each of the air guide body pieces 17A to 17D viewed from the traveling direction is from the center in the traveling direction so that the envelope envelope as a whole is equivalent to the columnar penetrating portion air guiding body 17 described in the previous embodiment. It gradually decreases toward the edge. Of course, each of the air guide body pieces 17A to 17D is configured symmetrically with respect to the center in the traveling direction.

以上のように、ここでは、貫通部導風体17が一定の間隔を介して配設された複数の導風体片17A〜17Dにより構成されているので、車両の走行中は、先の実施の形態5で説明したと同様、風貫通部11に侵入した走行風をこの貫通部導風体17が冷却管群へ導き全体として冷却器2の冷却能力が増大することは勿論、車両の停車中は、各導風体片17A〜17Dの間隙を経て自然対流による上昇気流を流し得るので、貫通部導風体17を設けたことによる車両停車中の自冷能力の低下がなくなるという利点がある。   As described above, here, the penetrating portion air guide body 17 is configured by the plurality of air guide body pieces 17A to 17D arranged at a constant interval. 5, the traveling wind that has entered the wind penetrating portion 11 is guided by the penetrating portion guide body 17 to the cooling pipe group, and the cooling capacity of the cooler 2 is increased as a whole. Ascending airflow due to natural convection can flow through the gaps between the respective air guide body pieces 17A to 17D, there is an advantage that there is no reduction in the self-cooling capability while the vehicle is stopped due to the provision of the penetrating portion air guide body 17.

実施の形態7.
以上に示した実施の形態において、U字型に形成された冷却管9を複数本集積し、その最外周の冷却管9を覆うように中間部が断絶した導風板10を設けたり、または風貫通部11の走行風流路を走行方向中央に向かって走行方向両端から徐々に狭めるように貫通部導風体17を設けた。本実施の形態では、前記導風板10と貫通部導風体17を同時に備えた場合の冷却器2について説明する。図15(a)は、本発明の実施の形態7における冷却器2の正面図であり、図15(b)はその側面図、図15(c)はその上面図である。
Embodiment 7 FIG.
In the embodiment described above, a plurality of U-shaped cooling pipes 9 are integrated, and a wind guide plate 10 with an intermediate portion cut off is provided so as to cover the outermost cooling pipe 9 or The through-portion air guide body 17 is provided so as to gradually narrow the traveling wind passage of the wind penetrating portion 11 from both ends in the traveling direction toward the center in the traveling direction. In the present embodiment, the cooler 2 in the case where the air guide plate 10 and the penetrating portion air guide body 17 are provided at the same time will be described. FIG. 15A is a front view of the cooler 2 according to Embodiment 7 of the present invention, FIG. 15B is a side view thereof, and FIG. 15C is a top view thereof.

図16は、本冷却器の内部の走行風の流れ状況を示す、車両走行方向中央における垂直断面図である。車両が紙面右から左の方向に走行する場合、走行風は矢印13aの向きから冷却器2の内部に侵入する。走行風は、走行風上流側の導風板10aの滑らかな絞り覆い形状により増速されながら管群間へ侵入する上、導風板10の働きによって開放空間14への流出が阻害される。一方、風貫通部11へ流入した走行風は、貫通部導風体17によりその流路が徐々に狭められるに従い、強制的に管群間へ導入される。従って、風貫通部11を流れる走行風の流量分だけ管群間の流速が増大し、且つ開放空間14への流出が抑制されつつ高効率の熱交換が行われる。ここで、導風板10と貫通部導風体17を設置することにより、冷却器2全体の圧力損失が増大して、通過風量が減少することが危惧されるが、導風板10が冷却器2の走行方向中央に設けられていないので、走行風の流出経路が確保され、圧力損失の増大は微量に留まる。   FIG. 16 is a vertical cross-sectional view at the center of the vehicle traveling direction, showing the flow of traveling wind inside the cooler. When the vehicle travels from the right to the left in the drawing, the traveling wind enters the cooler 2 from the direction of the arrow 13a. The running wind enters between the tube groups while being accelerated by the smooth throttle cover shape of the wind guide plate 10 a on the upstream side of the running wind, and the action of the wind guide plate 10 prevents the outflow to the open space 14. On the other hand, the traveling wind that has flowed into the wind penetration portion 11 is forcibly introduced between the tube groups as the flow passage 17 is gradually narrowed by the penetration portion guide body 17. Accordingly, the flow velocity between the tube groups is increased by the flow rate of the traveling wind flowing through the wind penetration part 11, and highly efficient heat exchange is performed while the outflow to the open space 14 is suppressed. Here, by installing the air guide plate 10 and the penetrating portion air guide body 17, there is a concern that the pressure loss of the entire cooler 2 increases and the amount of passing air decreases. Is not provided at the center in the traveling direction of the vehicle, so that an outflow path for traveling wind is secured, and the increase in pressure loss remains small.

このように、冷却器2に導風板10と貫通部導風体17とを共に設けたので、一度冷却管9群間へ流入した走行風の冷却管9群間から開放空間14への流出を抑制しつつ、風貫通部11の走行風を冷却管9群間へ導入し、管群間の流速を増大させて冷却効率を大幅に増大させることができる。   As described above, since the wind guide plate 10 and the penetration portion wind guide body 17 are provided in the cooler 2, the running wind once flowing between the cooling pipe 9 groups is allowed to flow out from the cooling pipe 9 groups to the open space 14. While suppressing, the running wind of the wind penetration part 11 can be introduce | transduced between 9 groups of cooling pipes, the flow velocity between pipe groups can be increased, and cooling efficiency can be increased significantly.

さらに、導風板10及び貫通部導風体17の組み合わせは、図に示したものだけではなく、実施の形態1ないし実施の形態6までに詳述した何れの形態を有するものの組み合わせでも同様の効果を奏する。   Further, the combination of the air guide plate 10 and the penetrating portion air guide body 17 is not limited to the one shown in the figure, but the same effect can be obtained by a combination of any of the embodiments detailed in the first to sixth embodiments. Play.

実施の形態8.
北海道や東北地方のような寒冷地を走行する車両に、走行風を利用した冷却器を装着する場合、ホーム側壁と道床とより成る角部に雪が吹き溜まって堅牢な雪塊に成長し、車両床下に取り付けられた前記冷却器に衝突してこれを破損させる恐れがある。このような問題を解決するために、従来では網状の金属性保護カバーを冷却管9の周囲に設けた例もあるが、前述のように採風構造を有していなかったため、冷却器全面にわたって高効率の熱交換をすることは不可能であった。
Embodiment 8 FIG.
When a vehicle that travels in a cold region such as Hokkaido or Tohoku region is equipped with a cooler that uses traveling wind, snow accumulates on the corners consisting of the side walls of the platform and the roadbed, and grows into a solid snow mass. There is a risk of colliding with and destroying the cooler mounted under the floor. In order to solve such a problem, there is an example in which a net-like metallic protective cover is conventionally provided around the cooling pipe 9, but since it does not have a wind sampling structure as described above, the entire cooling device has a high height. It was impossible to exchange heat efficiently.

そこで、採風構造を有しつつ、構造強度を増大させるための発明につき、図を用いて説明する。図17(a)は本発明の実施の形態8を示す車載用冷却器の正面図であり、図17(b)はその側面図である。図において、19は採風効果と構造強化効果とを有した保護カバーである。この保護カバー19は、最外周の冷却管9を冷却器2の走行方向全長に渡り、かつ、冷却管9の車両方向には車側側の飛石や雪塊等の障害物が衝突すると考えられる一部に限定して覆うようになっている。前記保護カバー19は、導風板10と同様に冷却管9群間に流入した走行風の開放空間14への流出を防止する。ここで、保護カバー19は最外周の冷却管9を完全に覆うように設けられてはいないので、冷却器2全体の圧力損失は微量しか増大せず、通過風量を減少させない。さらに、板状の保護カバーを設けることにより、飛石や雪塊等の衝突に対しても、冷却管9が破損することを防止することができる。   An invention for increasing the structural strength while having a wind sampling structure will be described with reference to the drawings. FIG. 17 (a) is a front view of an in-vehicle cooler showing Embodiment 8 of the present invention, and FIG. 17 (b) is a side view thereof. In the figure, reference numeral 19 denotes a protective cover having a wind effect and a structure strengthening effect. It is considered that the protective cover 19 covers the outermost cooling pipe 9 over the entire length of the cooler 2 in the traveling direction, and obstacles such as stepping stones and snow blocks on the vehicle side collide with the cooling pipe 9 in the vehicle direction. It is designed to cover only a part. The protective cover 19, like the air guide plate 10, prevents the traveling wind that has entered between the cooling tube 9 groups from flowing into the open space 14. Here, since the protective cover 19 is not provided so as to completely cover the outermost cooling pipe 9, the pressure loss of the entire cooler 2 is increased only by a small amount and does not decrease the passing air volume. Furthermore, by providing a plate-shaped protective cover, it is possible to prevent the cooling pipe 9 from being damaged even when a stepping stone or a snow mass collides.

このように、冷却器2に保護カバー19を設けたので、冷却器2の通過風量を増大させて冷却効率を増大させ、且つ飛石や雪塊等の衝突に対する保護機能を有することができる。   As described above, since the protective cover 19 is provided on the cooler 2, it is possible to increase the passing air amount of the cooler 2 to increase the cooling efficiency and to have a protection function against a collision of a stepping stone or a snow lump.

また、ここでは導風板10は車両進行方向と平行な形状となっていたが、走行方向両端の開口面積を走行方向中央の断面積よりも大きくなるように直線或いは先の実施の形態2の導風板10の説明で触れた3次曲線等のような滑らかな曲線となるよう構成すると、同様の効果に加えて採風効果による冷却効率の向上を図ることができることは言うまでもなく、さらに風貫通部11に貫通部導風体17を設けることにより、より一層冷却効率を向上させることができる。   Here, the air guide plate 10 has a shape parallel to the traveling direction of the vehicle. However, the opening area at both ends in the traveling direction is a straight line or the former embodiment 2 so that the cross-sectional area at the center of the traveling direction is larger. Needless to say, if a smooth curve such as the cubic curve mentioned in the explanation of the air guide plate 10 is used, it is possible to improve the cooling efficiency by the wind effect in addition to the same effect. By providing the penetrating part air guide body 17 in the part 11, the cooling efficiency can be further improved.

実施の形態9.
実施の形態8では、保護カバー19は板状の部材により形成されていたため、保護カバー19に覆われている管群間を通過する際の圧力損失が、他の部位と比較して若干大きくなるため、保護カバー19の無い管群間あるいは風貫通部11への走行風の流出が発生する。そこで、保護カバー19を通気性を有するよう加工することにより、保護カバー19に覆われた部位の圧力損失を低減して冷却器2の通過風量を増大させることができる。図18(a)は、本発明の実施の形態9における、通気性を保持した保護カバー19を設けた車載用冷却器の正面図であり、図18(b)はその側面図である。図において、20は保護カバー19の走行方向両端所定長を除く走行方向中央付近に保護カバー19を貫通するように複数個設けられた通風孔である。
Embodiment 9 FIG.
In the eighth embodiment, since the protective cover 19 is formed of a plate-like member, the pressure loss when passing between the tube groups covered with the protective cover 19 is slightly larger than other parts. Therefore, outflow of traveling wind to the tube groups without the protective cover 19 or to the wind penetration part 11 occurs. Therefore, by processing the protective cover 19 so as to have air permeability, the pressure loss at the portion covered by the protective cover 19 can be reduced and the amount of air passing through the cooler 2 can be increased. FIG. 18 (a) is a front view of an in-vehicle cooler provided with a protective cover 19 that retains air permeability in Embodiment 9 of the present invention, and FIG. 18 (b) is a side view thereof. In the figure, a plurality of ventilation holes 20 are provided so as to penetrate the protective cover 19 near the center in the traveling direction excluding a predetermined length at both ends in the traveling direction of the protective cover 19.

この場合、保護カバー19は、走行風の入口部には通風孔20を有しないため、冷却器2の最も局所熱伝達率の高い、走行方向両端の走行風入口近傍の流れを開放空間14へ流出させること無く冷却管9群間に保持する効果を有し、さらにその下流中央部には複数の通風孔20を有するので、それらの通風孔20より冷却管9群間の走行風を開放空間14へ漏洩させて冷却器2全体の圧力損失が著しく増大することを抑制する働きを有する。ここで、通風孔20は冷却器2の全体構造に依存した最適な位置に配置すべきであり、少なくとも保護カバー19の走行方向両端には設けないよう配置すればよい。また、通風孔20の径は、障害物が貫通しない大きさで、その形状は、丸型、楕円型、四角型、菱形、スリット等何れのものでもよく、少なくとも飛石或いは雪塊等の障害物の衝突に対し強度を維持できるよう設けられなければならない。   In this case, since the protective cover 19 does not have the ventilation hole 20 at the inlet portion of the traveling wind, the flow near the traveling wind inlet at both ends in the traveling direction with the highest local heat transfer coefficient of the cooler 2 is passed to the open space 14. Since it has the effect of holding between the cooling tube 9 groups without flowing out, and further has a plurality of ventilation holes 20 at the downstream central portion thereof, the traveling wind between the cooling tube 9 groups is opened from these ventilation holes 20 to an open space. 14 to prevent the pressure loss of the entire cooler 2 from significantly increasing. Here, the ventilation holes 20 should be arranged at optimum positions depending on the entire structure of the cooler 2, and may be arranged so as not to be provided at least at both ends in the traveling direction of the protective cover 19. Further, the diameter of the ventilation hole 20 is a size that does not allow obstacles to penetrate, and the shape thereof may be any of round, oval, square, diamond, slit, etc., and at least obstacles such as stepping stones or snow blocks. Must be provided to maintain strength against collisions.

以上のように、保護カバー19に通風孔20を設けることにより、衝突に対する強度を向上させつつ、且つ採風量を増大させて冷却効率を向上させることができる。   As described above, by providing the ventilation hole 20 in the protective cover 19, it is possible to improve the cooling efficiency by increasing the amount of wind sampling while improving the strength against the collision.

さらに、図19(a)は、保護カバー19の代わりにルーバー構造の板材である複数の保護ルーバー21を設置した冷却器2の正面図であり、図19(b)はその側面図である。図において、各保護ルーバー21は、冷却器の走行方向両端方向に向かって開口するよう走行方向中央を対称面として設置されており、車両が何れの方向に進行しても、採風能力を発揮できるよう構成されている。また、飛石或いは雪塊等の衝突に耐え得るようできる限り冷却管9が露出しないよう各保護ルーバー20を走行方向に重ねるか或いは保護ルーバー20の走行方向長さと同一ピッチで設置するものである。ここで、図では各冷却管9につき1つの保護ルーバーが覆うよう構成されているが、保護ルーバー21の長手方向長さは最大、冷却器2の走行方向長さの1/2以下であれば如何なる長さであってもよい。   Further, FIG. 19A is a front view of the cooler 2 in which a plurality of protective louvers 21 which are plate members having a louver structure are installed instead of the protective cover 19, and FIG. 19B is a side view thereof. In the figure, each protection louver 21 is installed with the center in the traveling direction as a symmetrical plane so as to open toward both ends of the cooler in the traveling direction, and can exhibit wind-capturing ability regardless of which direction the vehicle travels. It is configured as follows. In addition, the protective louvers 20 are stacked in the traveling direction or installed at the same pitch as the traveling direction length of the protective louvers 20 so that the cooling pipes 9 are not exposed as much as possible so as to be able to withstand the collision of flying stones or snow blocks. Here, in the figure, one protection louver is configured to cover each cooling pipe 9, but the longitudinal length of the protection louver 21 is at most ½ or less of the running direction length of the cooler 2. Any length is possible.

以上のように衝突に対する強度を向上させつつ、且つ採風量を増大させて冷却効率を向上させることができる。
また、車両の停車時には、自然対流による上昇気流がこれら保護ルーバー21間を通過することができるので、その分、停車時の冷却能力の低下が緩和される。
なお、実施の形態8、9で説明した保護カバー19と、実施の形態5、6で説明した貫通部導風体17とを併設するようにしてもよい。この場合、飛来物に対する機械的強度が向上するとともに、走行風の冷却管群への導入量が増大して冷却器の冷却能力も一層向上する。
As described above, the cooling efficiency can be improved by increasing the amount of wind sampling while improving the strength against the collision.
Further, when the vehicle is stopped, an updraft caused by natural convection can pass between these protective louvers 21, and accordingly, a decrease in the cooling capacity when the vehicle is stopped is alleviated.
The protective cover 19 described in the eighth and ninth embodiments and the penetrating portion air guide body 17 described in the fifth and sixth embodiments may be provided side by side. In this case, the mechanical strength against flying objects is improved, and the amount of traveling wind introduced into the cooling pipe group is increased, so that the cooling capacity of the cooler is further improved.

また、以上の各実施の形態では、車両の床下に取り付けられる変圧器またはリアクトルを冷却するための冷却器に適用した場合について説明したが、この発明はこれらに限られるものではなく、車両に搭載されその走行によって生じる走行風との熱伝達により冷却を行う冷却管を備えた車載用冷却器に広く適用することができ同等の効果を奏する。   Further, in each of the embodiments described above, the case where the present invention is applied to a transformer or a cooler for cooling a reactor attached under the floor of the vehicle has been described. However, the present invention is not limited to these and is mounted on a vehicle. In addition, the present invention can be widely applied to a vehicle-mounted cooler including a cooling pipe that performs cooling by heat transfer with traveling wind generated by the traveling, and has an equivalent effect.

車載用冷却器の車両への取り付け構造を示す図である。It is a figure which shows the attachment structure to the vehicle of a vehicle-mounted cooler. この発明の実施の形態1における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 1 of this invention. 従来の冷却器における走行風の流れの様子を示す図である。It is a figure which shows the mode of the flow of the driving | running | working wind in the conventional cooler. この発明の実施の形態1の車載用冷却器における走行風の流れの様子を示す図である。It is a figure which shows the mode of the flow of the driving | running | working wind in the vehicle-mounted cooler of Embodiment 1 of this invention. この発明の実施の形態2における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 2 of this invention. 図5の車載用冷却器の変形例を示す図である。It is a figure which shows the modification of the vehicle-mounted cooler of FIG. この発明の実施の形態3における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 3 of this invention. この発明の実施の形態4における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 4 of this invention. この発明の実施の形態5における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 5 of this invention. この発明の実施の形態5の車載用冷却器における走行風の流れの様子を示す図である。It is a figure which shows the mode of the flow of the driving | running | working wind in the vehicle-mounted cooler of Embodiment 5 of this invention. 図9の車載用冷却器の変形例を示す図である。It is a figure which shows the modification of the vehicle-mounted cooler of FIG. 図9の車載用冷却器の更に他の変形例を示す図である。It is a figure which shows the further another modification of the vehicle-mounted cooler of FIG. 図9の車載用冷却器の更に他の変形例を示す図である。It is a figure which shows the further another modification of the vehicle-mounted cooler of FIG. この発明の実施の形態6における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 6 of this invention. この発明の実施の形態7における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 7 of this invention. この発明の実施の形態7の車載用冷却器における走行風の流れの様子を示す図である。It is a figure which shows the mode of the flow of the driving | running | working wind in the vehicle-mounted cooler of Embodiment 7 of this invention. この発明の実施の形態8における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 8 of this invention. この発明の実施の形態9における車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler in Embodiment 9 of this invention. 図18の車載用冷却器の変形例を示す図である。It is a figure which shows the modification of the vehicle-mounted cooler of FIG. 従来の車載用冷却器を示す図である。It is a figure which shows the conventional vehicle-mounted cooler. 従来の図20とは異なる車載用冷却器を示す図である。It is a figure which shows the vehicle-mounted cooler different from the conventional FIG.

符号の説明Explanation of symbols

1 車載電気機器本体、2 冷却器、5 車両、9 冷却管、
10,10a,10b 導風板、10A〜10D 導風板片、11 風貫通部、
12(12a、12b) 車両走行方向、14 開放空間、17 貫通部導風体、
17A〜17D 導風体片、19 保護カバー、20 通風孔、21 保護ルーバー。
1 in-vehicle electrical equipment body, 2 cooler, 5 vehicle, 9 cooling pipe,
10, 10a, 10b Air guide plate, 10A to 10D Air guide plate piece, 11 Wind penetration part,
12 (12a, 12b) Vehicle traveling direction, 14 open space, 17 penetrating part air guide,
17A-17D Air guide body piece, 19 protective cover, 20 ventilation hole, 21 protective louver.

Claims (1)

車両の走行方向に所定の長さを有し上記走行方向と直角に上記走行方向に沿って一定の面積を有する空間内に、その両端がヘッダに接続された略U字型の冷却管を、上記車両の走行方向と直角な面内に複数本、かつ上記走行方向に沿って複数列分布配設してなり、上記冷却管と上記車両の走行によって生じる走行風との熱伝達により冷却を行う車載用冷却器において、
空間の走行方向はその全長にわたり、上記空間の上記走行方向と直角の面積の外周方向は上記冷却管の上記略U字型の曲線部分を覆うように配設された保護カバーを備え
上記保護カバーの走行方向両端から所定長の部分を除いた上記保護カバーの中央の部分に、通風孔を設けたことを特徴とする車載用冷却器。
In a space having a predetermined length in the traveling direction of the vehicle and having a certain area along the traveling direction perpendicular to the traveling direction, a substantially U-shaped cooling pipe having both ends connected to headers, A plurality of lines are arranged in a plane perpendicular to the traveling direction of the vehicle and a plurality of rows are arranged along the traveling direction, and cooling is performed by heat transfer between the cooling pipe and traveling wind generated by the traveling of the vehicle. In the car cooler,
Over running direction entire length thereof spatial outer peripheral direction of the running direction at right angles with the area of the space is provided with a protective cover disposed so as to cover the curved portion component of the substantially U-shaped of the cooling pipe,
An in-vehicle cooler characterized in that a ventilation hole is provided in a central portion of the protective cover excluding a predetermined length from both ends in the traveling direction of the protective cover .
JP2006078008A 2006-03-22 2006-03-22 Automotive cooler Expired - Fee Related JP4012230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078008A JP4012230B2 (en) 2006-03-22 2006-03-22 Automotive cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078008A JP4012230B2 (en) 2006-03-22 2006-03-22 Automotive cooler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35812897A Division JP3877408B2 (en) 1997-12-25 1997-12-25 Automotive cooler

Publications (2)

Publication Number Publication Date
JP2006240614A JP2006240614A (en) 2006-09-14
JP4012230B2 true JP4012230B2 (en) 2007-11-21

Family

ID=37047427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078008A Expired - Fee Related JP4012230B2 (en) 2006-03-22 2006-03-22 Automotive cooler

Country Status (1)

Country Link
JP (1) JP4012230B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101240101B1 (en) 2009-06-23 2013-03-06 미쓰비시덴키 가부시키가이샤 Transformer
JP2011151924A (en) * 2010-01-20 2011-08-04 Toshiba Corp Power converter for railway vehicle
EP2789518B9 (en) * 2011-12-09 2019-12-25 Mitsubishi Electric Corporation Cooling device for under-floor device for vehicle
US10011154B2 (en) * 2012-12-11 2018-07-03 Mitsubishi Electric Corporation In-vehicle cooling device
JP6143983B1 (en) * 2016-09-12 2017-06-07 三菱電機株式会社 Transformer for vehicle
CN113098237B (en) * 2021-05-12 2022-05-31 郑州铁路职业技术学院 Power converter and electric railway vehicle equipped with power converter

Also Published As

Publication number Publication date
JP2006240614A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4012230B2 (en) Automotive cooler
JP5351263B2 (en) Transformer
US20120080173A1 (en) Heat exchanger assembly having multiple heat exchangers
JP2010139088A (en) Heat exchanger
WO2012086333A1 (en) Heat exchanger and air conditioner equipped with same
US20080173436A1 (en) Plastic intercooler
JP3877408B2 (en) Automotive cooler
JP5946651B2 (en) Heat exchanger
JP6180684B1 (en) Transformer for vehicle
JP6494384B2 (en) Transformer for vehicle
WO2015059890A1 (en) Cooling system
EP2843345B1 (en) Fin-tube heat exchanger and refrigeration cycle device using same
JP6051641B2 (en) Intercooler for vehicle
JP2007273777A (en) Cooling device of transformer for vehicle
JP2010175167A (en) Cold storage heat exchanger
WO2021187371A1 (en) Intercooler
WO2014010675A1 (en) Vehicle intercooler
JP6143983B1 (en) Transformer for vehicle
JP6494408B2 (en) Cooling device for vehicle equipment
JP2008209025A (en) Heat transfer member and heat exchanger using the same
JP4947001B2 (en) Heat exchanger
EP3367398A1 (en) Vehicle-use transformer
US6237680B1 (en) Laminar flow radiator for motor vehicle
JP2020143873A (en) Heat exchanger manufacturing method and heat exchanger
KR102545847B1 (en) Cooling pipe of electric vehicle battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees