JP4010087B2 - Axis compensator for test equipment - Google Patents

Axis compensator for test equipment Download PDF

Info

Publication number
JP4010087B2
JP4010087B2 JP2000032943A JP2000032943A JP4010087B2 JP 4010087 B2 JP4010087 B2 JP 4010087B2 JP 2000032943 A JP2000032943 A JP 2000032943A JP 2000032943 A JP2000032943 A JP 2000032943A JP 4010087 B2 JP4010087 B2 JP 4010087B2
Authority
JP
Japan
Prior art keywords
temperature
signal
pedestal
environmental tank
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000032943A
Other languages
Japanese (ja)
Other versions
JP2001221717A (en
Inventor
克則 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2000032943A priority Critical patent/JP4010087B2/en
Publication of JP2001221717A publication Critical patent/JP2001221717A/en
Application granted granted Critical
Publication of JP4010087B2 publication Critical patent/JP4010087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Of Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試験機器用軸の自動補正装置に関するものである。
【0002】
【従来の技術】
試験用機器である動力計を用いて回転体を試験する一手法として環境試験がある。その場合、試験設備費の低減を目的として被試験機器である供試体(回転体)を環境槽に入れ、動力計等の試験設備は環境槽外に設置することが行われている。 図5はその試験設備を示したもので、1はベッド、2は環境槽で、密閉された構造物よりなって温度等の環境変化が模擬できるように構成されている。3は動力計,4はペデスタル,5は回転軸で、この回転軸5の一端は環境槽2の側壁を貫通して環境槽2内に突出しており、その他端はペデスタル4を介して動力計3の軸と直結されている。7は環境槽2内に設けられたペデスタルで、回転軸8が支承される。6は供試体で回転軸5と8に連結れる。
【0003】
【発明が解決しようとする課題】
供試体6を試験するとには、回転軸5と8との軸芯Cは合致するように設置されるので、各軸とベッド1との高さA,Bは同一にて試験は開始される。しかし、環境槽2内の温度を高めて試験を開始すると、動力計3側の外気温と環境槽2内との温度差により同一高さを保つことが出来なくなって両者の高さに誤差が発生する。このため、ペデスタル4または7における振動が発生して徐々に大きくなり、その状態にて使用を継続するとペデスタル内でのベアリングに異常摩擦が発生してペデスタルの破損につながる虞れを有している。したがって従来は、環境槽2の温度設定は外気温によって上限設定が決ってしまう問題を有していた。
【0004】
本発明の目的は、上記のような試験設備において、外気温に左右されないよう回転軸の軸芯調整が自動的に出来る装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、環境槽内に配置した第2のペデスタルに支承された回転軸と、環境槽外に配置した第1のペデスタルて支承され、その一端が側壁を貫通して環境槽内に突出された回転軸とに連結された供試体を試験するものにおいて、
前記各ペデスタルにヒータを取り付けると共に、前記環境槽内の各回転軸に軸芯変動を各別に検出するためのセンサーを設け、このセンサーにて検出された信号に基づいて前記ペデスタルのヒータを制御する温度制御部を設けたものである。
【0006】
本発明の第2は、前記温度制御部として、各センサーにて検出された信号を比較し、信号の大小結果の比較によって前記ペデスタルのヒータを切替え制御する切替部を備えたものてあ。
【0007】
本発明の第3は、環境槽内に配置した第2のペデスタルに支承された回転軸と、環境槽外に配置した第1のペデスタルて支承され、その一端が側壁を貫通して環境槽内に突出された回転軸とに連結された供試体を試験するものにおいて、
前記各ペデスタルにヒータを取り付けると共に、前記環境槽の内外と、第1,第2の各ペデスタルにそれぞれ温度検出器を設け、この温度検出器にて検出された信号に基づいて前記ペデスタルのヒータを制御する温度制御部を設けたものである。
【0008】
本発明の第4は、前記温度制御部には、環境槽の内外の検出温度信号を比較し、前記ペデスタルの第1か第2かを選択するための出力信号を発する温度比較検出部と、この環境槽の内外の検出温度信号を個別に導入してそれぞれ温度信号に対応した歪量に変換する温度ー歪量変換部と、各変換部間の歪量の偏差信号をそれぞれ生成し、各偏差信号が個別に導入されてそれぞれ補正用歪量から補正用温度信号に変換する歪量ー温度変換部と、前記環境槽の内外の温度信号のうち、低い方の温度検出信号と歪量ー温度変換部から出力された補正用信号とを加算して設定信号として一方の端子に入力され、且つ、他方の端子には前記第1,第2のペデスタルのうち低い方の温度検出信号が入力され、両信号の差信号に応じて低い温度信号側のペデスタルのヒータを制御する制御部とを備えたものである。
【0009】
【発明の実施の形態】
図1は、本発明の実施形態を示す構成図である。10は環境槽外に配設された第1のペデスタルで、このペデスタル10は、図示省略されたヒータが埋め込まれて温度制御が可能となるように構成されている。11は熱絶縁材で、ベッド1とペデスタル10との間の熱伝導を防止するよう設けられる。13は環境槽2内に配置された第2のペデスタルで、第1のペデスタル10同様にヒータが埋め込まれていて温度制御が可能となっている。14は熱絶縁材、D1,D2はそれぞれ距離センサーで、距離センサーD1は回転軸5とベッド1との距離A1を測定し、距離センサーD2は回転軸8とベッド1との距離B1を測定する。他は図5で示す従来のものと同じであるのでその説明を省略する。
図2は温度制御部20の構成図で、距離センサーD1,D2によって検出された信号に基づいてペデスタル10,13のヒータを制御する。同図において、21は距離の比較検出部、S1,S2,S3は切替スイッチで、比較検出部21の出力によって切替えられる。22はPI演算を行う制御部である。
【0010】
次にその動作を説明するに、例えば、環境槽2内の温度を外気温より高くして供試体6の試験を実施しているとすると、環境槽2内のペデスタル13の温度もペデスタル10と比較して高くなって熱膨張現象が発生し、回転軸8の軸芯がCからずれることになる。距離センサーD1,D2は距離A1,B1を検出し、その検出信号を比較検出部21に入力する。比較検出部21は、距離A1,B1に対応する距離信号を比較し、その結果、両者間において一定値以上の差信号が発生している場合には切替え信号をスイッチS1,S2,S3に出力し、スイッチを切替える。ここでは、環境槽高温に伴いA1<B1であるので、各スイッチは接点b(図示状態)から接点a側に切替えられる。制御部22の一方の入力端子には、スイッチS1の接点aを介して距離センサーD2よりの信号B1が目標値(距離設定値)として入力され、また、他方の入力端子にはスイッチS2の接点aを介して距離センサーD1よりの信号A1が距離検出として入力され、その差信号に対応した信号を出力し、スイッチS3の接点aを通してペデスタル10のヒータを制御してペデスタル温度を調節し、回転軸5の軸芯を回転軸8の軸芯に合わせるよう制御される。なお、距離信号A1>B1の場合には上記説明とは逆のペデスタル側が制御される。すなわち、供試体6と連結される左右の回転軸の位置(ベッドとの距離)を検出し、距離の長い方を設定とし、距離の短い方を検出としてPI制御をし、距離短い方のヒータを制御することによって温度調節を距離の長い方(軸芯のずれた方)の軸芯に合わせるようにしたものである。
【0011】
図3は他の実施例を示したものである。この実施例は、図1で示す距離センサーに代えて、温度検出器T1〜T4を設けたものである。すなわち、T1は、環境槽の外,ここでは各ペデスタルが共通とするベッド1の温度を検出する検出器、T2は、環境槽2内の温度を検出する検出器、T3は、第2のペデスタル13の温度を検出する検出器、T4は、第1のペデスタル10の温度を検出する検出器である。他は図1と同じである。
【0012】
図4は、図3における温度制御部の構成図を示したものである。同図において、31は温度比較検出部で、温度検出器T1によって検出されたベッド1の温度信号と、温度検出器T2によって検出された環境槽2内の温度信号とが入力され比較される。比較結果、T1とT2間に一定値以上の温度差が生じ、例えばT1<T2時に検出信号を発生して切替えスイッチS11〜S15の接点を切替える。32は回転軸5用(A点)の温度ー歪量変換部、33は回転軸13用(B点)の温度ー歪量変換部で、各変換部32,33は前もって実験に基づくデータとして収録され、グラフ化されている。34は絶対値変換部、35は回転軸5用(A点)の歪量ー温度変換部、36は回転軸13用(B点)の歪量ー温度変換部で、各変換部は歪量の変化による温度特性をデータとしてもっている。37はヒータ温度をコントロールする制御部である。
【0013】
以上のように構成されたものにおいて、環境槽2内の温度を外気温より高くして供試体6の試験を実施しているものとする。温度検出器T1,T2によって検出されたベッド1(環境槽外)の温度信号と環境槽2内の温度信号とは、それぞれ温度ー歪量変換部32,33に入力されて温度変化に対する歪量に変換され、加算部Ad1,Ad2に印加される。加算部Ad1では、変換部32の出力を正とし、変換部33の出力を負として両者の偏差が生成され、加算部Ad2では、変換部33の出力を正とし、変換部32の出力を負とした偏差信号が生成される。一方、温度検出器T1,T2の検出信号は、温度比較検出部31にも入力されて温度比較され、T1<T2となったときに信号を出力して各切替えスイッチS11〜S15の接点をbからa側に切替える。スイッチS13の切替えによって、加算部Ad2からの偏差信号が絶対値変換部34を通ることにより温度差による補正歪量となって歪量ー温度変換部35に入力され、ここで補正歪量より補正温度が求められる。この補正量は、スイッチS14を介して加算部Ad3に印加される。加算部Ad3には、スイッチS11を介してベッド1の温度信号が印加されており、両信号は同極性にて加算されて温度調節用の設定信号として制御部37の一方の端子に入力される。また、制御部37の他方の端子には、スイッチS12を介してペデスタル10の温度信号が検出信号として入力されている。制御部37は、両信号の差がなくなる方向にスイッチS15を介してペデスタル10のヒータを制御し、ペデスタル10,13の温度差に基づく回転軸5,8間の芯ずれが防止される。
【0014】
【発明の効果】
以上のとおり本発明は、環境槽の内部に設置された供試体である回転体を、環境槽内部の回転軸と外部から環境槽内部に突出した回転軸とで連結して試験するとき、環境槽内部と外部との温度差に基づく軸ずれを防止するために、回転体に連結される回転軸の歪みを測定して、その歪量に対応して回転軸を支承するペデスタルの温度を制御するか、又は、環境槽の内部と外部との温度差より歪量を推定してペデスタルの温度調節をするようにしたものである。したがって、本発明によれば、回転体の軸ずれ発生に基づく試験設備の破損が防止できるものである。
【図面の簡単な説明】
【図1】本発明の実施形態を示す構成図。
【図2】本発明に使用される温度制御部の回路図。
【図3】本発明の第2の実施形態を示す構成図。
【図4】本発明の第2の実施形態に使用される回路図。
【図5】従来の環境槽による試験設備の構成図。
【符号の説明】
1…ベッド
2…環境槽
3…動力計
4,7,10,13…ペデスタル
5,8…回転軸
6…供試体
20,30…温度制御部
D1,D2…距離センサー
T1〜T4…温度検出器
21…比較検出器
31…温度比較検出器
22,37…制御部
32,33…温度ー歪量変換部
35,36…歪量ー温度変換部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic correction device for a test instrument shaft.
[0002]
[Prior art]
There is an environmental test as one method for testing a rotating body using a dynamometer which is a test device. In that case, for the purpose of reducing the cost of the test equipment, a specimen (rotating body) which is a device under test is placed in an environmental tank, and test equipment such as a dynamometer is installed outside the environmental tank. FIG. 5 shows the test equipment, wherein 1 is a bed, 2 is an environmental tank, and is composed of a sealed structure so as to simulate environmental changes such as temperature. 3 is a dynamometer, 4 is a pedestal, 5 is a rotating shaft, one end of the rotating shaft 5 penetrates the side wall of the environmental tank 2 and protrudes into the environmental tank 2, and the other end is dynamometer via the pedestal 4. 3 is directly connected to the shaft. Reference numeral 7 denotes a pedestal provided in the environmental tank 2 on which the rotating shaft 8 is supported. 6 is a specimen and is connected to the rotating shafts 5 and 8.
[0003]
[Problems to be solved by the invention]
In order to test the specimen 6, the shafts C of the rotary shafts 5 and 8 are installed so as to coincide with each other, so that the test is started with the same height A and B of each shaft and the bed 1. . However, when the test is started with the temperature in the environmental tank 2 raised, the same height cannot be maintained due to the temperature difference between the outside temperature on the dynamometer 3 side and the environment tank 2, and there is an error in the height of both. appear. For this reason, the vibration in the pedestal 4 or 7 is generated and gradually increases, and if the use is continued in that state, there is a possibility that abnormal friction occurs in the bearing in the pedestal, leading to damage to the pedestal. . Therefore, conventionally, the temperature setting of the environmental tank 2 has a problem that the upper limit setting is determined by the outside air temperature.
[0004]
An object of the present invention is to provide an apparatus capable of automatically adjusting the axis of a rotating shaft so as not to be affected by the outside air temperature in the test facility as described above.
[0005]
[Means for Solving the Problems]
The present invention is supported by a rotating shaft supported by a second pedestal disposed in the environmental tank and a first pedestal disposed outside the environmental tank, one end of which protrudes into the environmental tank through the side wall. In testing a specimen connected to a rotating shaft,
A heater is attached to each of the pedestals, and a sensor is provided for each of the rotating shafts in the environmental tank to detect axial fluctuations. The heater of the pedestal is controlled based on a signal detected by the sensor. A temperature control unit is provided.
[0006]
According to a second aspect of the present invention, the temperature control unit includes a switching unit that compares signals detected by the sensors and switches and controls the heater of the pedestal by comparing the magnitude results of the signals.
[0007]
The third aspect of the present invention is a rotary shaft supported by a second pedestal disposed in the environmental tank and a first pedestal disposed outside the environmental tank, one end of which penetrates the side wall and passes through the side wall. In testing a specimen connected to a rotating shaft protruding into
A heater is attached to each of the pedestals, and a temperature detector is provided in each of the first and second pedestals, and the heaters of the pedestal are installed on the basis of signals detected by the temperature detectors. A temperature control unit to be controlled is provided.
[0008]
A fourth aspect of the present invention is a temperature comparison detection unit that compares the detected temperature signals inside and outside the environmental tank to the temperature control unit and issues an output signal for selecting the first or second of the pedestal, A temperature-strain amount conversion unit that individually introduces detected temperature signals inside and outside the environmental tank and converts them into strain amounts corresponding to the temperature signals, and generates a strain amount deviation signal between each conversion unit, Strain amount that individually introduces the deviation signal and converts the correction strain amount to the correction temperature signal, the temperature conversion unit, and the lower temperature detection signal and the strain amount among the temperature signals inside and outside the environmental tank The correction signal output from the temperature conversion unit is added and input to one terminal as a setting signal, and the lower temperature detection signal of the first and second pedestals is input to the other terminal. Pedestal on the low temperature signal side according to the difference signal of both signals It is obtained and a control unit for controlling the Le heater.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram showing an embodiment of the present invention. Reference numeral 10 denotes a first pedestal disposed outside the environmental tank. The pedestal 10 is configured so that a heater (not shown) is embedded and temperature control is possible. Reference numeral 11 denotes a heat insulating material provided to prevent heat conduction between the bed 1 and the pedestal 10. 13 is the 2nd pedestal arrange | positioned in the environmental tank 2, The heater is embedded like the 1st pedestal 10, and temperature control is possible. 14 is a thermal insulating material, D1 and D2 are distance sensors, the distance sensor D1 measures the distance A1 between the rotating shaft 5 and the bed 1, and the distance sensor D2 measures the distance B1 between the rotating shaft 8 and the bed 1. . Others are the same as the conventional one shown in FIG.
FIG. 2 is a configuration diagram of the temperature control unit 20, and controls the heaters of the pedestals 10 and 13 based on signals detected by the distance sensors D1 and D2. In the figure, reference numeral 21 denotes a distance comparison detection unit, and S1, S2 and S3 are changeover switches, which are switched by the output of the comparison detection unit 21. A control unit 22 performs PI calculation.
[0010]
Next, the operation will be described. For example, when the test of the specimen 6 is performed with the temperature in the environmental tank 2 higher than the outside air temperature, the temperature of the pedestal 13 in the environmental tank 2 is also the same as that of the pedestal 10. As a result, the temperature becomes higher and a thermal expansion phenomenon occurs, so that the axis of the rotary shaft 8 deviates from C. The distance sensors D1 and D2 detect the distances A1 and B1 and input the detection signals to the comparison detection unit 21. The comparison detection unit 21 compares the distance signals corresponding to the distances A1 and B1 and, as a result, outputs a switching signal to the switches S1, S2 and S3 when a difference signal of a certain value or more is generated between them. Switch the switch. Here, since A1 <B1 with the environmental tank high temperature, each switch is switched from the contact b (shown state) to the contact a side. The signal B1 from the distance sensor D2 is input as a target value (distance setting value) to one input terminal of the control unit 22 via the contact a of the switch S1, and the contact of the switch S2 is input to the other input terminal. The signal A1 from the distance sensor D1 is input as a distance detection via a, a signal corresponding to the difference signal is output, the heater of the pedestal 10 is controlled through the contact a of the switch S3, and the pedestal temperature is adjusted and rotated. Control is performed so that the axis of the shaft 5 is aligned with the axis of the rotary shaft 8. When the distance signal A1> B1, the pedestal side opposite to the above description is controlled. That is, the positions of the left and right rotating shafts connected to the specimen 6 (distance from the bed) are detected, the longer distance is set, the shorter distance is detected, PI control is performed, and the shorter distance heater By adjusting the temperature, the temperature adjustment is adjusted to the axis with the longer distance (the axis that has shifted).
[0011]
FIG. 3 shows another embodiment. In this embodiment, temperature detectors T1 to T4 are provided in place of the distance sensor shown in FIG. That is, T1 is a detector that detects the temperature of the bed 1 that is common to each pedestal outside the environmental tank, T2 is a detector that detects the temperature in the environmental tank 2, and T3 is a second pedestal. A detector T <b> 13 for detecting the temperature of T <b> 4 is a detector for detecting the temperature of the first pedestal 10. Others are the same as FIG.
[0012]
FIG. 4 shows a configuration diagram of the temperature control unit in FIG. In the figure, reference numeral 31 denotes a temperature comparison / detection unit which receives and compares the temperature signal of the bed 1 detected by the temperature detector T1 and the temperature signal in the environmental tank 2 detected by the temperature detector T2. As a result of the comparison, a temperature difference of a certain value or more is generated between T1 and T2, for example, a detection signal is generated when T1 <T2, and the contacts of the changeover switches S11 to S15 are switched. 32 is a temperature-strain amount conversion unit for the rotary shaft 5 (point A), 33 is a temperature-strain amount conversion unit for the rotary shaft 13 (point B), and the conversion units 32 and 33 are data based on experiments in advance. Recorded and graphed. Reference numeral 34 denotes an absolute value conversion unit, 35 denotes a strain amount-temperature conversion unit for the rotary shaft 5 (point A), and 36 denotes a strain amount-temperature conversion unit for the rotary shaft 13 (point B). The temperature characteristics due to changes in the data are used as data. A control unit 37 controls the heater temperature.
[0013]
In what is configured as described above, it is assumed that the test of the specimen 6 is performed with the temperature in the environmental tank 2 higher than the outside air temperature. The temperature signal of the bed 1 (outside the environmental tank) and the temperature signal in the environmental tank 2 detected by the temperature detectors T1 and T2 are input to the temperature-strain amount conversion units 32 and 33, respectively, and the strain amount with respect to the temperature change. And applied to the adders Ad1 and Ad2. In the adder Ad1, the output of the converter 32 is positive and the output of the converter 33 is negative to generate a deviation between them. In the adder Ad2, the output of the converter 33 is positive and the output of the converter 32 is negative. A deviation signal is generated. On the other hand, the detection signals of the temperature detectors T1 and T2 are also input to the temperature comparison / detection unit 31 for temperature comparison, and when T1 <T2, a signal is output to connect the contacts of the changeover switches S11 to S15 to b. Switch from side to side. By switching the switch S13, the deviation signal from the addition unit Ad2 passes through the absolute value conversion unit 34 and is input to the distortion amount-temperature conversion unit 35 as a correction distortion amount due to a temperature difference, and is corrected from the correction distortion amount here. Temperature is required. This correction amount is applied to the adder Ad3 via the switch S14. The temperature signal of the bed 1 is applied to the adding unit Ad3 via the switch S11, and both signals are added with the same polarity and input to one terminal of the control unit 37 as a setting signal for temperature adjustment. . In addition, the temperature signal of the pedestal 10 is input to the other terminal of the control unit 37 as a detection signal via the switch S12. The control unit 37 controls the heater of the pedestal 10 via the switch S15 in such a direction that the difference between both signals disappears, and misalignment between the rotating shafts 5 and 8 based on the temperature difference between the pedestals 10 and 13 is prevented.
[0014]
【The invention's effect】
As described above, when the present invention is tested by connecting the rotating body, which is a specimen installed inside the environmental tank, with the rotating shaft inside the environmental tank and the rotating shaft protruding into the environmental tank from the outside, In order to prevent shaft misalignment based on the temperature difference between the inside and outside of the tank, the strain of the rotating shaft connected to the rotating body is measured, and the temperature of the pedestal that supports the rotating shaft is controlled according to the amount of strain. Alternatively, the amount of strain is estimated from the temperature difference between the inside and outside of the environmental tank, and the temperature of the pedestal is adjusted. Therefore, according to the present invention, it is possible to prevent the test equipment from being damaged due to the occurrence of the axial deviation of the rotating body.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 is a circuit diagram of a temperature control unit used in the present invention.
FIG. 3 is a configuration diagram showing a second embodiment of the present invention.
FIG. 4 is a circuit diagram used in a second embodiment of the present invention.
FIG. 5 is a configuration diagram of a conventional test facility using an environmental tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Bed 2 ... Environmental tank 3 ... Dynamometer 4, 7, 10, 13 ... Pedestal 5, 8 ... Rotating shaft 6 ... Specimen 20,30 ... Temperature control part D1, D2 ... Distance sensor T1-T4 ... Temperature detector DESCRIPTION OF SYMBOLS 21 ... Comparison detector 31 ... Temperature comparison detector 22, 37 ... Control part 32, 33 ... Temperature-strain amount conversion part 35, 36 ... Strain amount-temperature conversion part

Claims (4)

環境槽内に配置した第2のペデスタルに支承された回転軸と、環境槽外に配置した第1のペデスタルて支承され、その一端が側壁を貫通して環境槽内に突出された回転軸とに連結された供試体を試験するものにおいて、
前記各ペデスタルにヒータを取り付けると共に、前記環境槽内の各回転軸に軸芯変動を各別に検出するためのセンサーを設け、このセンサーにて検出された信号に基づいて前記ペデスタルのヒータを制御する温度制御部を設けたことを特徴とした試験機器用軸補正装置。
A rotating shaft supported by a second pedestal disposed in the environmental tank, and a rotating shaft supported by the first pedestal disposed outside the environmental tank, one end of which passes through the side wall and protrudes into the environmental tank. For testing specimens connected to
A heater is attached to each of the pedestals, and a sensor is provided for each of the rotating shafts in the environmental tank to detect axial fluctuations. The heater of the pedestal is controlled based on a signal detected by the sensor. An axis correction apparatus for test equipment, characterized in that a temperature control unit is provided.
前記温度制御部は、各センサーにて検出された信号を比較し、信号の大小結果の比較によって前記ペデスタルのヒータを切替え制御する切替部を備えたことを特徴とした請求項1記載の試験機器用軸補正装置。The test apparatus according to claim 1, wherein the temperature control unit includes a switching unit that compares signals detected by the sensors and controls switching of the heater of the pedestal by comparing the magnitude results of the signals. Axis correction device. 環境槽内に配置した第2のペデスタルに支承された回転軸と、環境槽外に配置した第1のペデスタルて支承され、その一端が側壁を貫通して環境槽内に突出された回転軸とに連結された供試体を試験するものにおいて、
前記各ペデスタルにヒータを取り付けると共に、前記環境槽の内外と、第1,第2の各ペデスタルにそれぞれ温度検出器を設け、この温度検出器にて検出された信号に基づいて前記ペデスタルのヒータを制御する温度制御部を設けたことを特徴とした試験機器用軸補正装置。
A rotating shaft supported by a second pedestal disposed in the environmental tank, and a rotating shaft supported by the first pedestal disposed outside the environmental tank, one end of which passes through the side wall and protrudes into the environmental tank. For testing specimens connected to
A heater is attached to each of the pedestals, and a temperature detector is provided in each of the first and second pedestals, and the heaters of the pedestal are installed on the basis of signals detected by the temperature detectors. An axis correction apparatus for test equipment, characterized in that a temperature control unit for controlling is provided.
前記温度制御部には、環境槽の内外の検出温度信号を比較し、前記ペデスタルの第1か第2かを選択するための出力信号を発する温度比較検出部と、この環境槽の内外の検出温度信号を個別に導入してそれぞれ温度信号に対応した歪量に変換する温度ー歪量変換部と、各変換部間の歪量の偏差信号をそれぞれ生成し、各偏差信号が個別に導入されてそれぞれ補正用歪量から補正用温度信号に変換する歪量ー温度変換部と、前記環境槽の内外の温度信号のうち、低い方の温度検出信号と歪量ー温度変換部から出力された補正用信号とを加算して設定信号として一方の端子に入力され、且つ、他方の端子には前記第1,第2のペデスタルのうち低い方の温度検出信号が入力され、両信号の差信号に応じて低い温度信号側のペデスタルのヒータを制御する制御部とを備えたことを特徴とした請求項3記載の試験機器用軸補正装置。The temperature control unit compares the detected temperature signals inside and outside the environmental tank, and outputs an output signal for selecting the first or second of the pedestal, and the internal and external detection of the environmental tank A temperature-strain amount conversion unit that individually introduces a temperature signal and converts it into a strain amount corresponding to the temperature signal, and a distortion amount deviation signal between each conversion unit are generated, and each deviation signal is individually introduced. Output from the distortion amount-temperature conversion section for converting the correction distortion amount to the correction temperature signal, and the lower temperature detection signal and the distortion amount-temperature conversion section among the internal and external temperature signals of the environmental tank. The correction signal is added to be input to one terminal as a setting signal, and the lower temperature detection signal of the first and second pedestals is input to the other terminal. The pedestal heater on the low temperature signal side is controlled accordingly. Features and claims 3 axis testing apparatus according correcting device further comprising a control section for.
JP2000032943A 2000-02-10 2000-02-10 Axis compensator for test equipment Expired - Fee Related JP4010087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032943A JP4010087B2 (en) 2000-02-10 2000-02-10 Axis compensator for test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032943A JP4010087B2 (en) 2000-02-10 2000-02-10 Axis compensator for test equipment

Publications (2)

Publication Number Publication Date
JP2001221717A JP2001221717A (en) 2001-08-17
JP4010087B2 true JP4010087B2 (en) 2007-11-21

Family

ID=18557495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032943A Expired - Fee Related JP4010087B2 (en) 2000-02-10 2000-02-10 Axis compensator for test equipment

Country Status (1)

Country Link
JP (1) JP4010087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067101A (en) * 2012-01-23 2014-09-24 株式会社明电舍 Transmission testing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499968B2 (en) * 2010-07-09 2014-05-21 シンフォニアテクノロジー株式会社 Automotive rotating body testing equipment
CN115106770A (en) * 2022-07-22 2022-09-27 上海凯泉泵业(集团)有限公司 Efficient and convenient shaft-to-shaft centering device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104067101A (en) * 2012-01-23 2014-09-24 株式会社明电舍 Transmission testing device
US9074964B2 (en) 2012-01-23 2015-07-07 Meidensha Corporation Transmission testing device
CN104067101B (en) * 2012-01-23 2017-06-30 株式会社明电舍 Transmission testing device
USRE46753E1 (en) 2012-01-23 2018-03-13 Meidensha Corporation Transmission testing device

Also Published As

Publication number Publication date
JP2001221717A (en) 2001-08-17

Similar Documents

Publication Publication Date Title
JP4010087B2 (en) Axis compensator for test equipment
JPH10221183A (en) Method and device for compensating temperature for load cell load detector
EP2108924B1 (en) Position detecting device and method
US5528940A (en) Process condition detecting apparatus and semiconductor sensor condition detecting circuit
JP2002195822A (en) Method for compensating offset drift of angle-measuring apparatus
CN111272289A (en) Real-time calibration device for thermal infrared imager
JP2004138548A (en) Sensor and output characteristic switchover method for same
JP5824630B2 (en) Induction heating cooker
JP2004191189A (en) Bridge type resistance circuit device
JP2520283B2 (en) Steam Turbine Cabin-Axial Expansion Difference Measuring Device
JPH0820075B2 (en) Control device for combustion equipment
JP7534198B2 (en) Diaphragm Vacuum Gauge
JP2842466B2 (en) Torque measuring device
JPH08105812A (en) Gas leak detector for gas-insulated electric equipment
CN115420307B (en) Real-time self-calibration self-diagnosis low-temperature drift data acquisition system
WO2012049130A1 (en) Methods of and apparatuses for balancing electrode arms of a welding device taking into account spatial orientation
JP3121587U (en) Ultra high viscosity measuring device
KR101274667B1 (en) Apparatus for diagnosing Remote Radical Generator and method for the same
US7486490B2 (en) Actuator for the actuation of a clutch and/or a gear mechanism
JP3588377B2 (en) Refrigeration cycle pressure controller
US4628196A (en) Temperature measuring apparatus
JPH06241934A (en) Examination device for magnetostrictive torque sensor
JP2002013996A (en) Pressure detecting device
KR200161723Y1 (en) Vibration sensor system for automatic temperature calibration
JPH05133763A (en) Sensor changeover device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4010087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees