JP4009951B2 - Photoelectric sensor device - Google Patents

Photoelectric sensor device Download PDF

Info

Publication number
JP4009951B2
JP4009951B2 JP2003110677A JP2003110677A JP4009951B2 JP 4009951 B2 JP4009951 B2 JP 4009951B2 JP 2003110677 A JP2003110677 A JP 2003110677A JP 2003110677 A JP2003110677 A JP 2003110677A JP 4009951 B2 JP4009951 B2 JP 4009951B2
Authority
JP
Japan
Prior art keywords
light
photoelectric sensor
reception level
sensor device
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003110677A
Other languages
Japanese (ja)
Other versions
JP2004320372A (en
Inventor
節 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2003110677A priority Critical patent/JP4009951B2/en
Publication of JP2004320372A publication Critical patent/JP2004320372A/en
Application granted granted Critical
Publication of JP4009951B2 publication Critical patent/JP4009951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、投光器から発せられた光の受光器による受光レベルの変化から上記投光器と受光器との間に形成される光路内の光学的状態、具体的には光路内への物体の侵入等を検出する光電センサ装置に関する。
【0002】
【関連する背景技術】
投光器と受光器とを備えた光電センサ装置には、透過形のものと反射形のものとがある。透過形の光電センサ装置は、基本的には投光器(投光部)と受光器(受光部)とを所定の距離を隔てて対峙させ、これらの投光器と受光器との間に形成される光路内に物体が侵入したとき、これによって投光器から発せられた光の受光器による受光レベル(受光量)が変化することを利用して物体検出を行うものである。
【0003】
また反射形の光電センサ装置は、投光器(投光部)と受光器(受光部)とその光軸方向を揃えて並べて設け、投光器から発した光の物体による反射光を受光器にて検出することで物体検出を行うものである。即ち、この反射形の光電センサは、光軸上に物体が存在しないときには物体による反射光がなくなり、また光軸上に物体が存在する場合には、物体までの距離に応じた強度(受光量)の反射光が受光されることを利用して物体検出を行うように構成される(例えば特許文献1,2を参照)。
【0004】
このような投光器と受光器との間に形成される光路内の光学的状態を、上記受光器による受光量(受光レベル)の変化として検出する光電センサ装置は、物体検出や物体判定等の各種の用途に利用される。尚、光路内の光学的状態とは、検出対象物における光の反射率や透過率、更にはその形状のみならず、検出対象物までの距離に依存する光の伝達量(伝搬率)等を指す。
【0005】
【特許文献1】
特開平5−308268号公報
【特許文献2】
特開平9−116411号公報
【0006】
【発明が解決しようとする課題】
ところでこの種の光電センサ装置においては、例えば投光器や受光器の経時的な特性劣化や検出対象物の汚れに起因する光学的特性変化、更には背景の明るさ等に伴って、受光器による受光レベルが次第に低下してくることが否めない。このような現象は、一般的には光電センサの感度低下と称せられる。そこで従来一般的には、特許文献1,2に開示されるように、所定の条件下において光電センサの受光感度を校正することが行われている。この受光感度の校正は、具体的には物体が存在するか否かによって変化する受光レベルの判定閾値(スレシュホールド)を、そのときの受光レベルに応じて調整することによって行われる。尚、センシングアンプの利得(ゲイン)を調整したり、或いは投光器からの投光量を調整して、受光感度を調整することもある。
【0007】
ちなみに従来の光電センサ装置においては、専ら、リモートチューニングと称されるように感度調整(校正)の為の制御信号を外部から遠隔的に与えるものなっている。そしてこのようなリモートチューニングを実現するべく、光電センサ装置に対して、その動作電力を供給する一対の電源線と、物体検出信号を出力する出力線に加えて、リモート制御用の制御線とからなる4芯のケーブルを接続するようにしている。
【0008】
しかしながら工場等の各種の現場等において数多くの光電センサ装置が設けられるような場合、光電センサ装置1台当たりの結線数が4本と少なくても、全体的には数多くの結線を行う必要があり、その結線作業に多大な手間と時間が掛かることが否めない。また各光電センサ装置の動作状況を把握しながら適切なタイミングでオートチューニングの指令(制御信号)を個々に与える必要がある。しかも各光電センサ装置の動作状況を把握すること自体が非常に煩わしいと言う問題がある。
【0009】
本発明はこのような事情を考慮してなされたもので、その目的は、結線作業の簡素化を図ると共に、投光器や受光器の経時的な特性劣化等に応じてその受光感度を自動的に適正設定することで、その動作状況の把握と感度調整の指令とを不要にすることのできる取り扱い性に優れた光電センサ装置を提供することにある。
【0010】
【課題を解決するための手段】
上述した目的を達成するべく本発明に係る光電センサ装置は、所定の光路を形成する投光器および受光器を備え、上記投光器から発した光またはその反射光を前記受光器にて受光してその受光レベルから上記光路内の光学的状態を、具体的には光路内への物体の侵入等を検出するものであって、
前記受光器による受光レベルを所定の閾値と比較して前記物体の有無を示す信号を出力する比較器と、
この比較器から出力される信号の所定の変化を呈するタイミング、例えば立上りおよび/または立下りのタイミングから一定の時間が経過したタイミングにおいて前記受光器による受光レベルに従って前記閾値を校正する校正手段と
を具備したことを特徴としている。
【0011】
即ち、本発明に係る光電センサ装置は、受光器による受光レベルを所定の閾値と比較して前記物体の有無を示す信号を出力する比較器を備えること、そしてこの比較器の出力信号の立上りおよび/または立下りのタイミングから一定の時間が経過したタイミングにおいては前記受光器による受光レベルが安定していることに着目したもので、
前記比較器の出力信号の立上りおよび/または立下りのタイミングから一定の時間が経過したタイミングにおける前記受光器による受光レベルを検出し、この受光レベルに従って前記比較器に与える閾値(検出感度)を自動的に校正するようにしたことを特徴としている。具体的には比較器の出力信号の立上りおよび/または立下りのタイミングを一定時間遅延し、その遅延したタイミングにて受光器による受光レベルに基づく閾値(検出感度)の再設定処理を実行するようにしたことを特徴としている。
【0012】
このように構成された光電センサ装置によれば、該光電センサ装置の動作状況を外部にて把握する必要がなくなり、また外部から感度調整の指令を与える必要がなくなる。そして外部から感度調整の指令を与える必要がないので、光電センサ装置に接続すべき芯線数を、例えばその動作電力を供給する一対の電源線と、物体検出信号を出力する出力線との3本にすることができるので、結線作業の負担を軽減することが可能となる。尚、一対の電源線間のインピーダンスを変化させることで検出信号を出力するように構成し、電源線を信号出力線と兼用するようにすれば、更にその芯線数を少なくして結線作業の負担を更に軽減することが可能となる。
【0013】
尚、前記校正手段に前記受光器による受光レベルの安定状態を判定し、受光レベルが不安定なときには前記閾値の校正処理を禁止する校正制御手段を組み込んでおくことが好ましい。そして受光レベルが不安定な場合には閾値の校正(再調整)を中止し、既に設定されている閾値をそのまま用いて物体検出(受光レベルの判定)処理を行うようにすれば良い。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態に係る光電センサ装置について説明する。
図1はこの実施形態に係る光電センサ装置の要部概略構成を示すもので、1は、例えば波長660nmのレーザ光を発光する発光ダイオード(LED)からなる投光器、2は上記レーザ光を、或いはその反射光を受光するフォトダイオード(PD)からなる受光器である。これらの投光器1および受光器2は、反射形の光電センサを構成するものであっても良く、或いは透過型の光電センサを構成するものであっても良い。
【0015】
尚、ここでは投光器1から所定の物体検出対象領域に対して光を直接を投射し、また受光器2は上記物体検出対象領域からの光を直接受光するものとして説明するが、図示しない光ファイバを介して所定の物体検出対象領域に光を投射し、物体検出対象領域からの光を図示しない光ファイバを介して受光するものであっても良い。
【0016】
さて受光器2は、受光した光の強度(受光量)に応じたレベルの信号を出力するものであり、その出力信号(受光レベル)は図示しない周波数選別フィルタ等を含む前置増幅回路(ヘッドアンプ)を介して増幅された後、AD変換器3を介してデジタル変換されてマイクロコンピュータ等からなる信号処理回路4に、例えば200μSec毎に取り込まれるようになっている。この信号処理回路4は、基本的にはメモリ5に設定された判定閾値Tと、前記AD変換器3から与えられる前記受光器2による受光レベルRとを比較して前記物体検出対象領域における物体の有無を示す判定信号を出力するレベル判定器(比較器)6を備えて構成される。このレベル判定器(比較器)6による判定信号が、光電センサ装置による検出信号として外部出力される。尚、設定手段9は、後述する遅延時間Tdや受光レベルRの安定性を判定するための時間等、光電センサ装置における動作条件を設定する役割を担う。
【0017】
ちなみにレベル判定器(比較器)6は、例えば受光レベルRが判定閾値Tを上回る場合に[L]レベルの信号を出力し、受光レベルRが判定閾値Tを下回る場合には[H]レベルの信号を出力する機能を備える。受光レベルRの安定性を重視する場合には、前記レベル判定器(比較器)6を、受光レベルRが所定時間に亘って判定閾値Tを上回る場合に[L]レベルの信号を出力し、受光レベルRが所定時間に亘って判定閾値Tを下回る場合には[H]レベルの信号を出力するように構成するようにしても良い。尚、逆に受光レベルRが判定閾値Tを上回る場合に[H]レベルの信号を出力し、受光レベルRが判定閾値Tを下回る場合には[L]レベルの信号を出力するようにレベル判定器(比較器)6を構成することも勿論可能である。
【0018】
このような基本的な機能を備えた光電センサ装置において、この発明(実施形態)が特徴とするところは、前記レベル判定器(比較器)6の出力の立上りタイミングまたは立ち下りタイミングを一定時間Tdに亘って遅延する遅延回路7を備え、その遅延出力を入力して判定閾値Tを再設定(校正)する校正回路8を備える点にある。遅延回路7については、ハードウェア的には前記レベル判定器(比較器)6の出力をそのまま一定時間Tdに亘って遅延するものであっても良いが、ソフトウェア的には、例えばレベル判定器(比較器)6の出力の立上りおよび/または立ち下りエッジを検出し、そのエッジ検出タイミングから一定時間Td後に前記校正回路8に対してトリガパルスを与えるようなものであれば良い。
【0019】
一方、前記校正回路8は、上述したトリガパルスが与えられたとき、そのときの前記受光器2による受光レベル(AD変換器3の出力値)Rに従って、例えばその75%のレベルを判定閾値Tとして設定し、これを前記メモリ5に登録することで判定閾値Tを更新する役割を担う。そして更新した判定閾値Tをその後の受光レベルRの判定に用いるように、自動的に判定閾値Tの校正を行うものとなっている(オートキャリブレーション)。
【0020】
具体的には図2に例示するように受光レベルの立ち上がりを検出したとき、その検出タイミングを一定時間Tdだけ遅延したタイミングで校正回路8がトリガがされて判定閾値Tを校正するものとなっている。この受光レベルRの立ち上がりタイミングから一定時間Tdを経過したタイミングは、受光レベルRが十分に立ち上がり、そのレベルが安定した状態である。換言すれば上記遅延時間Tdは、受光レベルRが立ち上がって十分に安定する状態に至る時間を見込んで設定される。そして校正回路8においては安定した状態での受光レベルRを検出し、この受光レベルRに従って判定閾値Tを校正している。この判定閾値Tの校正処理は、受光レベルの立ち上がりが検出される都度、繰り返し実行される。従って受光レベルRが経時的な変化に伴って徐々に低下するような場合には、その受光レベルRの低下に伴って判定閾値Tも徐々に低減補正されて行くことになる。
【0021】
但し、上記遅延時間Tdが経過する前に受光レベルRが、その判定閾値Tを跨いで変化してしまった場合には、遅延時間Tdを計時する遅延回路7は校正回路8をトリガすることなくリセットされる。これによって遅延回路7は計時待ちの状態に戻り、受光レベルRが判定閾値Tを上回る次のタイミングまで待機することになる。
【0022】
尚、受光器2による受光量が低いときの受光レベルRをも勘案して判定閾値Tを設定する必要がある場合には、例えば受光レベルの立ち下がりの検出タイミングを一定時間Tdだけ遅延したタイミングで検出される受光レベルRlowを記憶しておき、その後、受光レベルの立ち上がりの検出タイミングを一定時間Tdだけ遅延したタイミングで受光レベルRhighを検出した時点で、これらの受光レベルRhigh,Rlowに従って判定閾値Tを設定するようにすれば良い。
【0023】
かくしてこのような判定閾値Tの自動校正機能を備えた光電センサ装置によれば、物体有無を示す検出信号の出力タイミングを利用して、その時点で求められる受光レベルに従って自らその判定閾値Tを自動的に校正するので、外部からわざわざ判定閾値校正の為の制御信号を与える必要がない。従って外部から光電センサ装置に対して制御信号を与えるための制御線を接続する必要がないので、制御線を必要としない分、光電センサ装置に対して接続すべき芯線数を少なくすることができる。これ故、光電センサ装置に対する結線負担を軽減することができる。
【0024】
また上述した判定閾値Tの自動校正機能を備えているので、外部において光電センサ装置の動作状態を監視し、その動作状態に応じて光電センサ装置に対して感度調整(判定閾値の校正)の為の制御信号を与える必要もなくなる。従って光電センサ装置に対する監視負担を無くすことができる上、その都度、光電センサ装置に対して適切なタイミングで上記制御信号を与えると言う作業負担もなくなるので、その遣い勝手を格段に向上させることが可能となる。特に工場等の現場においては、この種の光電センサ装置が、例えば100台以上に亘って併設されることが多々あるので、このような使用環境における上述した自動校正機能が果たす結線作業負担の軽減等の効果は絶大である。特に一定速度で移動するベルトコンベア上に等間隔で並べられて搬送される複数の同一形状の製品を検出対象とするような場合、上述した自動校正機能を備えた光電センサ装置は極めて有用である。
【0025】
ところで、例えば投光器1と受光器2とが形成する光路内への物体の侵入の周期に比較して受光器2による受光レベルの検出周期が十分に短いような場合には、校正回路8において受光レベルの立ち上がりおよび/または立ち下がりの検出タイミングから所定時間経過後の一定期間に亘って該受光レベルの変動を監視するようにしても良い。そして図3に示すように受光レベルの変動量の判定し(ステップS1)、変動量が大きいときには前述した判定閾値Tの校正処理を禁止し(ステップS2)、変動量が少ないときにだけ判定閾値Tの校正処理の実行を許可する(ステップS3)、校正制御手段を備えることが好ましい。
【0026】
ちなみに上述した受光レベルの変動量の検出については、例えば前記受光レベルの立ち上がりおよび/または立ち下がりの検出タイミングから所定時間経過後の一定時間における受光レベルのピーク値とボトム値とをそれぞれ検出し、これらの検出値の差が大きいか否かを判定すれば良い。或いは上記一定期間における受光レベル平均値を求め、この平均値と上記一定期間における受光レベルのピーク値またはボトム値との差が大きいか否かを判定して変動量の大きさを判定するようにしても良い。具体的には、例えば200μSec程度の短いサンプリング周期で受光器2による受光レベルRを逐次検出しているような場合には、10〜20mSec程度の期間に亘って受光レベルRの平均値とその変動量を求めて該受光レベルの安定性を判定するようにすれば良い。
【0027】
このようにして判定閾値Tの校正処理の実行を制御手段を備えれば、受光器2による受光レベルRが不安定な状態であるとき、その不安定な受光レベルRに基づいて判定閾値Tを校正するような不具合を回避することができる。従って物体検出の要となる判定閾値Tの信頼性が損なわれることがなくなり、常に信頼性の高い物体検出を行うことが可能となる。
【0028】
尚、本発明は上述した実施形態に限定されるものではない。例えば物体検出に用いる光については、前述したLED光のみならずランプから発せられる可視光や赤外光等を用いることも可能である。またここでは受光器2による受光レベルをデジタル変換して信号処理したが、アナログ信号レベルでそのまま処理することも勿論可能である。また受光レベルの立上りまたは立下りタイミングからの遅延時間Tdについても、物体の検出使用に応じて定めれば良いものであり、光電センサ装置に対してプリセットし得るように構成しておけば十分である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。
【0029】
【発明の効果】
以上説明したように本発明に係る光電センサ装置よれば、受光レベルの所定の変化を呈するタイミング、具体的には受光レベルの立上りおよび/または立下りのタイミングを基準として、一定時間だけ遅延したタイミングでそのときの受光レベルを検出して物体検出の為の上記受光レベルに対する判定閾値を自動的に校正するので、即ち、検出感度を自動的に校正するので、受光レベルの経時的な変動に拘わることなく常に安定した物体検出を行い得る。しかも外部から検出感度調整の為の制御信号を与える必要がないので、光電センサ装置の動作状態を監視する必要がなくなることのみならず、光電センサ装置に接続すべき芯線数を減らすことができるので、その結線作業負担を大幅に軽減することができる等の実用上多大なる効果が奏せられる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る光電センサ装置の要部概略構成図。
【図2】図1に示す光電センサ装置における判定閾値の校正タイミングを示す図。
【図3】本発明に係る受光レベルの変動量に応じた閾値校正処理の実行/禁止制御の形態を示す図。
【符号の説明】
1 投光器
2 受光器
3 AD変換器
4 信号処理回路(マイクロコンピュータ)
5 メモリ(判定閾値)
6 レベル判定器(比較器)
7 遅延回路
8 校正回路
9 設定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical state in an optical path formed between the light projector and the light receiver from a change in a light receiving level of the light emitted from the light projector by the light receiver, specifically an object intrusion into the light path, etc. The present invention relates to a photoelectric sensor device that detects the above.
[0002]
[Related background]
Photoelectric sensor devices including a projector and a light receiver include a transmission type and a reflection type. A transmissive photoelectric sensor device basically has a light projector (light projecting unit) and a light receiver (light receiving unit) facing each other with a predetermined distance, and an optical path formed between the light projecting device and the light receiving device. When an object enters the inside, the object detection is performed by utilizing the change in the light reception level (light reception amount) of the light emitted from the projector by the light receiver.
[0003]
In addition, the reflective photoelectric sensor device is provided with a light projector (light projecting unit) and a light receiver (light receiving unit) aligned in the optical axis direction, and the light reflected from the object emitted from the light projector is detected by the light receiver. Thus, object detection is performed. That is, this reflective photoelectric sensor has no reflected light from the object when there is no object on the optical axis, and when there is an object on the optical axis, the intensity (the amount of received light) depends on the distance to the object. ) Is received to receive the reflected light (see, for example, Patent Documents 1 and 2).
[0004]
A photoelectric sensor device that detects the optical state in the optical path formed between the projector and the light receiver as a change in the amount of light received by the light receiver (light reception level) is used for various types of object detection, object determination, and the like. It is used for The optical state in the optical path means not only the reflectance and transmittance of light in the detection target, but also its shape, as well as the amount of light transmission (propagation rate) that depends on the distance to the detection target. Point to.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 5-308268 [Patent Document 2]
JP-A-9-116411 [0006]
[Problems to be solved by the invention]
By the way, in this type of photoelectric sensor device, for example, due to the deterioration of the characteristics of the projector and the receiver over time, the change in the optical characteristics due to the contamination of the detection object, the brightness of the background, etc. It cannot be denied that the level gradually decreases. Such a phenomenon is generally referred to as a decrease in sensitivity of the photoelectric sensor. Therefore, conventionally, as disclosed in Patent Documents 1 and 2, calibration of the light receiving sensitivity of the photoelectric sensor under a predetermined condition has been performed. Specifically, the calibration of the light reception sensitivity is performed by adjusting a determination threshold (threshold) of the light reception level that changes depending on whether or not an object exists in accordance with the light reception level at that time. The light receiving sensitivity may be adjusted by adjusting the gain (gain) of the sensing amplifier or adjusting the amount of light emitted from the projector.
[0007]
Incidentally, in a conventional photoelectric sensor device, a control signal for sensitivity adjustment (calibration) is given remotely from the outside exclusively as referred to as remote tuning. And in order to realize such remote tuning, in addition to a pair of power supply lines for supplying the operating power to the photoelectric sensor device and an output line for outputting an object detection signal, a control line for remote control is used. A four-core cable is connected.
[0008]
However, when a large number of photoelectric sensor devices are provided at various sites such as factories, even if the number of connections per photoelectric sensor device is as small as four, it is necessary to perform a large number of connections overall. Therefore, it cannot be denied that the connection work takes a lot of time and effort. Further, it is necessary to individually give an auto-tuning command (control signal) at an appropriate timing while grasping the operation state of each photoelectric sensor device. Moreover, there is a problem that it is very troublesome to grasp the operation state of each photoelectric sensor device.
[0009]
The present invention has been made in view of such circumstances, and its purpose is to simplify the wiring work and automatically adjust the light receiving sensitivity according to the deterioration of the characteristics of the projector and the receiver over time. It is an object of the present invention to provide a photoelectric sensor device with excellent handling properties that can eliminate the necessity of grasping the operation status and commanding sensitivity adjustment by appropriately setting.
[0010]
[Means for Solving the Problems]
In order to achieve the above-described object, a photoelectric sensor device according to the present invention includes a projector and a light receiver that form a predetermined optical path, and receives light emitted from the light projector or reflected light thereof by the light receiver. Detecting the optical state in the optical path from the level, specifically the intrusion of an object into the optical path,
A comparator that compares the light reception level of the light receiver with a predetermined threshold value and outputs a signal indicating the presence or absence of the object;
Calibration means for calibrating the threshold according to the light reception level of the light receiver at a timing at which a predetermined change of the signal output from the comparator is exhibited, for example, at a timing when a predetermined time has elapsed from the rise and / or fall timing. It is characterized by having.
[0011]
That is, the photoelectric sensor device according to the present invention includes a comparator that outputs a signal indicating the presence / absence of the object by comparing a light reception level of the light receiver with a predetermined threshold, and a rise of an output signal of the comparator and At the timing when a certain time has elapsed from the falling timing, attention is paid to the fact that the light receiving level by the light receiver is stable,
A light reception level by the light receiver is detected at a timing when a predetermined time has elapsed from the rise and / or fall timing of the output signal of the comparator, and a threshold value (detection sensitivity) given to the comparator is automatically set according to the light reception level. It is characterized in that it is calibrated automatically. Specifically, the rising and / or falling timing of the output signal of the comparator is delayed by a predetermined time, and the threshold value (detection sensitivity) resetting process based on the light reception level by the light receiver is executed at the delayed timing. It is characterized by that.
[0012]
According to the photoelectric sensor device configured as described above, it is not necessary to externally grasp the operation state of the photoelectric sensor device, and it is not necessary to give a sensitivity adjustment command from the outside. Since there is no need to give a sensitivity adjustment command from the outside, the number of core wires to be connected to the photoelectric sensor device is, for example, three pairs of a power supply line for supplying operating power and an output line for outputting an object detection signal. Therefore, it is possible to reduce the burden of wiring work. If the detection signal is output by changing the impedance between the pair of power supply lines, and the power supply line is also used as the signal output line, the number of core wires is further reduced and the burden of the wiring work is reduced. Can be further reduced.
[0013]
It is preferable that a calibration control means for determining a stable state of the light receiving level by the light receiver and for prohibiting the threshold value calibration processing when the light receiving level is unstable is incorporated in the calibration means. If the light reception level is unstable, calibration (readjustment) of the threshold value is stopped, and the object detection (light reception level determination) process may be performed using the already set threshold value as it is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a photoelectric sensor device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of the main part of a photoelectric sensor device according to this embodiment. 1 is a projector made of a light emitting diode (LED) that emits laser light having a wavelength of 660 nm, for example, 2 is the laser light, or It is a light receiver composed of a photodiode (PD) that receives the reflected light. The light projector 1 and the light receiver 2 may constitute a reflection type photoelectric sensor, or may constitute a transmission type photoelectric sensor.
[0015]
Here, it is assumed that light is directly projected from the light projector 1 to a predetermined object detection target area, and that the light receiver 2 directly receives light from the object detection target area. It is also possible to project light onto a predetermined object detection target area via a light and receive light from the object detection target area via an optical fiber (not shown).
[0016]
The light receiver 2 outputs a signal having a level corresponding to the intensity (amount of received light) of the received light. The output signal (light reception level) is a preamplifier circuit (head) including a frequency selection filter (not shown). After being amplified via an amplifier), it is digitally converted via an AD converter 3 and taken into a signal processing circuit 4 comprising a microcomputer or the like, for example, every 200 μSec. The signal processing circuit 4 basically compares the determination threshold T set in the memory 5 with the light reception level R of the light receiver 2 provided from the AD converter 3 to compare the object in the object detection target region. And a level determination unit (comparator) 6 that outputs a determination signal indicating the presence or absence of the signal. A determination signal from the level determination unit (comparator) 6 is output to the outside as a detection signal from the photoelectric sensor device. The setting means 9 plays a role of setting operation conditions in the photoelectric sensor device such as a delay time Td described later and a time for determining the stability of the light reception level R.
[0017]
Incidentally, the level determiner (comparator) 6 outputs a signal of [L] level, for example, when the light reception level R exceeds the determination threshold T, and when the light reception level R is lower than the determination threshold T, the level determination unit (comparator) 6 A function for outputting a signal is provided. When importance is attached to the stability of the light reception level R, the level determination device (comparator) 6 outputs a signal of [L] level when the light reception level R exceeds the determination threshold T for a predetermined time, When the light reception level R falls below the determination threshold T for a predetermined time, it may be configured to output a [H] level signal. Conversely, when the light reception level R exceeds the determination threshold value T, a [H] level signal is output, and when the light reception level R is lower than the determination threshold value T, a level determination is performed so that an [L] level signal is output. It is of course possible to configure the comparator (comparator) 6.
[0018]
In the photoelectric sensor device having such a basic function, the present invention (embodiment) is characterized in that the rising timing or falling timing of the output of the level judging device (comparator) 6 is set to a predetermined time Td. The delay circuit 7 is provided with a delay circuit 7, and a calibration circuit 8 for resetting (calibrating) the determination threshold T by inputting the delay output is provided. The delay circuit 7 may be the one that delays the output of the level determiner (comparator) 6 as it is over a predetermined time Td in terms of hardware. However, in terms of software, for example, a level determiner ( Any comparator may be used as long as it detects a rising edge and / or a falling edge of the output of the comparator 6 and gives a trigger pulse to the calibration circuit 8 after a predetermined time Td from the edge detection timing.
[0019]
On the other hand, when the above-described trigger pulse is given, the calibration circuit 8 determines, for example, 75% of the level according to the light reception level (output value of the AD converter 3) R by the light receiver 2 at that time, as a determination threshold T. And registering this in the memory 5 serves to update the determination threshold T. Then, the determination threshold T is automatically calibrated so that the updated determination threshold T is used for the subsequent determination of the received light level R (auto calibration).
[0020]
Specifically, as illustrated in FIG. 2, when the rising of the light reception level is detected, the calibration circuit 8 is triggered at a timing delayed by a predetermined time Td to calibrate the determination threshold T. Yes. At a timing when a predetermined time Td has elapsed from the rising timing of the light receiving level R, the light receiving level R rises sufficiently and the level is stable. In other words, the delay time Td is set in anticipation of the time until the light receiving level R rises and becomes sufficiently stable. The calibration circuit 8 detects the light reception level R in a stable state, and calibrates the determination threshold T according to the light reception level R. The calibration process of the determination threshold T is repeatedly executed every time the rising of the light reception level is detected. Accordingly, when the light reception level R gradually decreases with time, the determination threshold T is gradually reduced and corrected as the light reception level R decreases.
[0021]
However, if the light receiving level R changes across the determination threshold T before the delay time Td elapses, the delay circuit 7 that measures the delay time Td does not trigger the calibration circuit 8. Reset. As a result, the delay circuit 7 returns to the time-waiting state and waits until the next timing when the light reception level R exceeds the determination threshold value T.
[0022]
When it is necessary to set the determination threshold value T in consideration of the light reception level R when the amount of light received by the light receiver 2 is low, for example, the timing at which the detection timing of the fall of the light reception level is delayed by a certain time Td. The light reception level Rlow detected in step 1 is stored, and then the detection threshold value is detected according to the light reception level Rhigh and Rlow when the light reception level Rhigh is detected at a timing delayed from the detection timing of the rise of the light reception level by a predetermined time Td. T may be set.
[0023]
Thus, according to the photoelectric sensor device equipped with such an automatic calibration function of the determination threshold T, the determination threshold T is automatically set according to the received light level obtained at that time by using the output timing of the detection signal indicating the presence or absence of the object. Therefore, it is not necessary to give a control signal for calibration of the determination threshold value from the outside. Accordingly, since it is not necessary to connect a control line for supplying a control signal to the photoelectric sensor device from the outside, the number of core wires to be connected to the photoelectric sensor device can be reduced by the amount that the control line is not required. . Therefore, it is possible to reduce the wiring load on the photoelectric sensor device.
[0024]
In addition, since the automatic calibration function of the determination threshold value T described above is provided, the operation state of the photoelectric sensor device is monitored externally, and sensitivity adjustment (calibration of the determination threshold value) is performed on the photoelectric sensor device according to the operation state. There is no need to provide the control signal. Therefore, the monitoring burden on the photoelectric sensor device can be eliminated, and the work load of giving the control signal to the photoelectric sensor device at an appropriate timing is eliminated each time. It becomes possible. Especially in the field of factories and the like, this type of photoelectric sensor device is often installed, for example, over 100 units, so the wiring work burden of the automatic calibration function described above in such a use environment is reduced. The effect of etc. is great. The photoelectric sensor device having the above-described automatic calibration function is extremely useful particularly when the detection target is a plurality of products having the same shape that are arranged and transported at regular intervals on a belt conveyor that moves at a constant speed. .
[0025]
By the way, for example, when the detection period of the light reception level by the light receiver 2 is sufficiently short compared to the period of entry of the object into the optical path formed by the projector 1 and the light receiver 2, the calibration circuit 8 receives the light. You may make it monitor the fluctuation | variation of this light reception level over the fixed period after progress of predetermined time from the detection timing of the rise and / or fall of a level. Then, as shown in FIG. 3, the fluctuation amount of the received light level is determined (step S1). When the fluctuation amount is large, the above-described calibration processing of the determination threshold value T is prohibited (step S2). It is preferable to provide calibration control means for permitting execution of the calibration process for T (step S3).
[0026]
By the way, for the detection of the fluctuation amount of the light reception level described above, for example, the peak value and the bottom value of the light reception level at a predetermined time after the detection timing of the rise and / or fall of the light reception level are detected, respectively. What is necessary is just to determine whether the difference of these detected values is large. Alternatively, the average value of the received light level in the predetermined period is obtained, and it is determined whether the difference between the average value and the peak value or the bottom value of the received light level in the fixed period is large. May be. Specifically, for example, when the light reception level R by the light receiver 2 is sequentially detected at a short sampling period of about 200 μSec, the average value of the light reception level R and its fluctuation over a period of about 10 to 20 mSec. The stability of the received light level may be determined by obtaining the amount.
[0027]
If the control means is provided to execute the calibration processing of the determination threshold T in this way, when the light reception level R by the light receiver 2 is in an unstable state, the determination threshold T is set based on the unstable light reception level R. Problems such as calibration can be avoided. Therefore, the reliability of the determination threshold value T, which is essential for object detection, is not impaired, and it is possible to always perform object detection with high reliability.
[0028]
The present invention is not limited to the embodiment described above. For example, as the light used for object detection, visible light or infrared light emitted from a lamp as well as the above-described LED light can be used. Further, here, the light reception level by the light receiver 2 is converted into a digital signal and processed, but it is of course possible to process the signal as it is with an analog signal level. Further, the delay time Td from the rising or falling timing of the light receiving level may be determined in accordance with the detection and use of the object, and it is sufficient that the photoelectric sensor device can be preset. is there. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.
[0029]
【The invention's effect】
As described above, according to the photoelectric sensor device of the present invention, the timing at which a predetermined change in the light reception level is exhibited, specifically, the timing delayed by a predetermined time with reference to the rise and / or fall timing of the light reception level. Therefore, the detection threshold value for the object detection is automatically calibrated by detecting the light reception level at that time, that is, the detection sensitivity is automatically calibrated. Therefore, stable object detection can always be performed. Moreover, since it is not necessary to provide a control signal for adjusting detection sensitivity from the outside, it is not only necessary to monitor the operation state of the photoelectric sensor device, but also the number of core wires to be connected to the photoelectric sensor device can be reduced. In addition, a great effect in practice, such as being able to significantly reduce the wiring work burden, is achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a main part of a photoelectric sensor device according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating calibration timing of a determination threshold value in the photoelectric sensor device illustrated in FIG.
FIG. 3 is a diagram showing a form of threshold value calibration process execution / prohibition control according to the amount of fluctuation in received light level according to the present invention.
[Explanation of symbols]
1 Light Emitter 2 Light Receiver 3 AD Converter 4 Signal Processing Circuit (Microcomputer)
5 memory (judgment threshold)
6 Level judging device (comparator)
7 Delay circuit 8 Calibration circuit 9 Setting means

Claims (2)

所定の光路を形成する投光器および受光器を備え、上記投光器から発した光またはその反射光を前記受光器にて受光してその受光レベルから上記光路内の光学的状態を検出する光電センサ装置であって、
前記受光器による受光レベルを所定の閾値と比較して前記物体の有無を示す信号を出力する比較器と、
この比較器から出力される信号の所定の変化を呈するタイミングから一定の時間が経過したタイミングにおいて前記受光器による受光レベルに従って前記閾値を校正する校正手段と
を具備したことを特徴とする光電センサ装置。
A photoelectric sensor device that includes a projector and a light receiver that form a predetermined optical path, and receives light emitted from the projector or reflected light by the light receiver and detects an optical state in the optical path from the received light level. There,
A comparator that compares the light reception level of the light receiver with a predetermined threshold value and outputs a signal indicating the presence or absence of the object;
A photoelectric sensor device comprising: calibration means for calibrating the threshold according to a light reception level by the light receiver at a timing when a predetermined time has elapsed from a timing at which a predetermined change in a signal output from the comparator is exhibited. .
前記校正手段は、前記受光器による受光レベルの安定状態を判定し、受光レベルが不安定なときには前記閾値の校正処理を禁止する校正制御手段を備えている請求項1に記載の光電センサ装置。The photoelectric sensor device according to claim 1, wherein the calibration unit includes a calibration control unit that determines a stable state of a light reception level by the light receiver and prohibits the threshold value calibration process when the light reception level is unstable.
JP2003110677A 2003-04-15 2003-04-15 Photoelectric sensor device Expired - Fee Related JP4009951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110677A JP4009951B2 (en) 2003-04-15 2003-04-15 Photoelectric sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110677A JP4009951B2 (en) 2003-04-15 2003-04-15 Photoelectric sensor device

Publications (2)

Publication Number Publication Date
JP2004320372A JP2004320372A (en) 2004-11-11
JP4009951B2 true JP4009951B2 (en) 2007-11-21

Family

ID=33471476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110677A Expired - Fee Related JP4009951B2 (en) 2003-04-15 2003-04-15 Photoelectric sensor device

Country Status (1)

Country Link
JP (1) JP4009951B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730898B2 (en) * 2005-11-16 2011-07-20 株式会社キーエンス Photoelectric sensor
JP5211872B2 (en) * 2008-06-10 2013-06-12 オムロン株式会社 Photoelectric sensor
JP5713932B2 (en) * 2012-02-24 2015-05-07 京セラドキュメントソリューションズ株式会社 Image forming apparatus
DE112014006728B4 (en) 2014-06-06 2018-08-30 Mitsubishi Electric Corporation Method for controlling a sensor system
JP7066113B2 (en) * 2019-03-06 2022-05-13 オムロン株式会社 Photoelectric sensor

Also Published As

Publication number Publication date
JP2004320372A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US20080296502A1 (en) Flame detector
US7183533B2 (en) Optical multi-axis optoelectronic sensor
KR20120053276A (en) Infrared sensor module
EP1586919A2 (en) Emitter-detector assembly for a reflex photoelectric object detection system
JP4129768B2 (en) Detection device
FR2865834A1 (en) SECURITY DETECTION DEVICE HAVING OPTICAL AXIS ADJUSTMENT CAPACITY
JP4009951B2 (en) Photoelectric sensor device
JPH11326515A (en) Light wave distance measuring apparatus
US6392214B1 (en) Optical unit photoelectric switch fiber-type photoelectric switch and color discrimination sensor
TW200939628A (en) Photoelectric sensor
JPH10111365A (en) Reflection type photoelectric sensor
JP5980111B2 (en) Photoelectric sensor
US6998982B2 (en) Anti-thief security sensor assembly with variable amount of emitted infrared beam
JP4576528B2 (en) Security sensor device
JP2004246756A (en) Photoelectric smoke sensor
JP4103111B2 (en) Photoelectric sensor device
JPH0694843A (en) Photoelectric switch
JPH11120451A (en) Detector
JP7037770B2 (en) Optical sensor
JP2007104119A (en) Multiple-optical-axis photoelectric sensor, beam lighting device, and light receiving unit
US20050168743A1 (en) Measuring apparatus
JP2582606Y2 (en) Light beam detector
JP7021631B2 (en) Photoelectric sensor
JP6920945B2 (en) Smoke detector and fire receiver
US20230314609A1 (en) Proximity sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070823

R150 Certificate of patent or registration of utility model

Ref document number: 4009951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140914

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees