JP4009714B2 - 走査型電磁波顕微鏡および制御方法 - Google Patents

走査型電磁波顕微鏡および制御方法 Download PDF

Info

Publication number
JP4009714B2
JP4009714B2 JP2001305962A JP2001305962A JP4009714B2 JP 4009714 B2 JP4009714 B2 JP 4009714B2 JP 2001305962 A JP2001305962 A JP 2001305962A JP 2001305962 A JP2001305962 A JP 2001305962A JP 4009714 B2 JP4009714 B2 JP 4009714B2
Authority
JP
Japan
Prior art keywords
probe
sample
electromagnetic wave
scanning
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001305962A
Other languages
English (en)
Other versions
JP2003106976A (ja
Inventor
龍太郎 前田
光郎 服部
民生 谷川
悟 藤澤
毅 宇田
寛 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001305962A priority Critical patent/JP4009714B2/ja
Publication of JP2003106976A publication Critical patent/JP2003106976A/ja
Application granted granted Critical
Publication of JP4009714B2 publication Critical patent/JP4009714B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は導体、半導体、絶縁体表面近傍の表面観察(凹凸像や場の3次元分布等)、情報の読み書きや消去などの情報処理、表面加工や物性測定などを行うことを目的とする走査型電磁波顕微鏡において、サンプル表面に近接し先端部を先鋭化したプローブとサンプルの一方、または双方に電磁波入射もしくは伝播により生じる相互作用を検出、制御し、サンプル表面から任意の距離に位置決めしたプローブとサンプル間に任意の相互作用を付加し、プローブとサンプル間距離一定走査やサンプル表面に吸着している原子、分子、クラスターまたは微粒子の操作を電磁波発生手段の出力制御やXYZ移動手段の出力制御により行う方式の走査型電磁波顕微鏡に関する。
【0002】
【従来の技術】
従来のトンネル顕微鏡や原子間力顕微鏡や近接場顕微鏡のプローブ先端部とサンプル表面の最も代表的な距離制御や走査制御は、プローブとサンプル間に流れるトンネル電流が一定になるようにZ方向移動機構をフィードバック制御しながら、XY方向微動機構によりプローブとサンプルを相対的に2次元平面内で走査するものや、プローブ先端の先鋭性を利用してプローブとサンプル間に働く原子間力やその他の相互作用によるプローブ先端のZ方向振幅や捻れの変化や、プローブの振動振幅の変化を、光てこを利用したレーザー反射光量の変化および、ピエゾ素子にかかる応力変化として検出し、それらの変化量がゼロとなるよう、ピエゾ素子等でZ方向微動を制御しながら、XY方向微動機構によりプローブとサンプルを相対的に2次元平面内で走査するものであった。
【0003】
また、従来、高周波や磁場をサンプルに照射する事により生じる電気および磁気モーメントや核磁気共鳴をプローブのアンテナとして、局所的な物性を測定しているものがある。
【0004】
【発明が解決しようとする課題】
しかし、従来の走査型原子間力顕微鏡や走査型近接場顕微鏡やトンネル顕微鏡では、プローブとサンプルの距離制御は原子間力やトンネル電流という微弱な近距離力を用い、ピエゾ素子を介して行っているため、分解能は原子分解能を得られるが、プローブとサンプルの距離は原子間力やトンネル電流生じる範囲をピエゾ制御で走査させなければならないため、走査速度が非常に遅く、捜査範囲もZ方向は原子間力やトンネル電流の生じる範囲に、XY方向はピエゾ素子の稼動範囲に限られ、非常に狭いものであった。
本発明の第一の目的は、サンプル表面から任意距離に分布する物理量測定や必要な分解能に応じたプローブ先端部とサンプル間距離の位置決めが可能で、距離一定走査による分解能選択走査と、相互作用一定走査による高速走査が行える走査型電磁波顕微鏡を得ることにある。
【0006】
【課題を解決するための手段】
(1)このような目的を達成するために、本発明の走査型電磁波顕微鏡は、電磁波発生手段と、電磁波発生手段で発生させた電磁波をプローブやサンプルの一方、または双方に入射または伝播させる電磁波入射手段または電磁波誘導手段と、サンプル表面に近接して設けられたプローブとからなる走査型電磁波顕微鏡において、電磁波をプローブとサンプル間に入射または伝播させることにより生じるプローブとサンプル間の相互作用力をプローブの位置、振動数および振幅の変化を検出する検出手段と、プローブとサンプルの位置を制御する移動手段と、
該検出手段の検出信号に基づいて、プローブとサンプル間の相互作用力が一定になるように電磁波発生手段をフィードバック制御する制御手段とを設けたことを特徴とする。
(2)また、本発明の走査型電磁波顕微鏡は、上記(1)において、制御手段は、プローブとサンプル間に働く原子間力、その他の相互作用、電磁波入射により生じる相互作用力を制御するため、プローブとサンプル間に働く相互作用力の変化をプローブの変化として検出し、電磁波発生手段の出力をフィードバック制御することを特徴とする。
(3)また、本発明の走査型電磁波顕微鏡は、上記(1)又は(2)において、プローブ自身が電磁波誘導手段または電磁波入射手段を兼ねるようにしたことを特徴とする。
(4)また、本発明の走査型電磁波顕微鏡は、上記(1)ないし(3)のいずれかにおいて、プローブを、金属、半導体、誘電体から形成するとともに無開口先鋭先端、開口先端または導光路先端を設けたことを特徴とする。
(5)また、本発明の走査型電磁波顕微鏡は、上記(1)ないし(4)のいずれかにおいて、プローブを、複数具備する事により同時走査も可能とすることを特徴とする。
(6)また、本発明の走査型電磁波顕微鏡は、上記(1)ないし(5)のいずれかにおいて、サンプルを真空中に保持することを特徴とする。
(7)また、本発明の走査型電磁波顕微鏡は、上記(1)ないし(5)のいずれかにおいて、サンプルを液体中に保持することを特徴とする。
【0007】
また、本発明の走査型電磁波顕微鏡の制御方法は、プローブ先端をサンプル表面から任意の距離に位置決めし、任意の相互作用を付加した状態で、制御手段により移動手段のZ方向出力を固定し、プローブとサンプル表面とを2次元的に相対移動する際、プローブの振動数、振幅、変位などの変化が一定に維持されるように電磁波発生手段の出力をフィードバック制御することによりプローブとサンプル間相互作用を任意一定に保ちながら高速走査することを特徴とする。
【0008】
【発明の実施の形態】
以下の説明では、まず、本発明の原理について説明した後、この原理を利用した各実施の形態に係る走査型電磁波顕微鏡について、添付図面を参照して説明する。
【0009】
プローブやサンプルの一方または双方に電磁波を入射または伝播させると、プローブとサンプル間に引力、斥力およびねじれなどの相互作用が生じる。この相互作用は、プローブとサンプルの一方または双方に入射または伝播させる電磁波出力、例えば、波長や振幅あるいは、パルスや連続出力の周期により大きく変化する。
【0010】
例として、本発明において電磁波発生手段により電磁場出力を変化させる事により、プローブとサンプル間の相互作用の生じる距離や大きさが図6や図7に示すように変化する事が原子間力顕微鏡測定により観測された。
図6は、横軸にサンプル表面からプローブまでの距離を、縦軸にサンプル−プローブ間の力をとった場合の電磁波出力変化によるプローブとサンプル間の相互作用変化をを示したもので、左上の図から右下の図に向かって入射電磁波の振動数(フォトンエネルギ)を増加させたときにプローブとサンプル間の相互作用の生じる距離や大きさが変化する状態を表したものである。
図7は、図6と同様、横軸にサンプル表面からプローブまでの距離を、縦軸にサンプル−プローブ間の力をとった場合の電磁波出力変化によるプローブとサンプル間の相互作用変化をを示したもので、左上の図から右下の図に向かって入射電磁波の振幅(フォトン数)を増加させることによりプローブとサンプル間の相互作用の生じる距離や大きさが変化する状態を表したものである。
また、電磁波照射時のプローブとサンプル間の相互作用の繰り返し特性は、図8に示すように、プローブはサンプル表面から一定の距離で強く相互作用(図8の場合は引力)が生じ、高い繰り返し特性のある事が、原子間力顕微鏡測定により観測された。
【0011】
本発明の原理は、電磁波をプローブやサンプルの一方、または双方に入射もしくは伝播させる事により生ずるプローブとサンプル間の相互作用に着目しているため、プローブとサンプル間の相互作用は、プローブとサンプルの一方または双方に入射または伝播させる電磁波出力、例えば、波長や振幅または、パルスや連続出力の周期など、制御が容易な電磁気信号で制御可能であり、また、プローブとサンプル間の相互作用到達距離は、従来の原子間力やトンネル電流到達距離という近距離だけでなく、遠距離まで任意に調整可能であるため、プローブ先端とサンプル表面間距離を任意の相互作用を付加した状態で制御する事や、プローブとサンプル間距離を必要な分解能や測定時間に応じて、任意一定に保ちながら分解能選択走査できるとともに、Z方向に分布する物理量を任意のZ位置で測定する事や、プローブとサンプル間相互作用を電磁波発生手段の制御により一定に保つ高速走査により、表面情報観察や情報処理や物性測定や表面加工などを行う事ができる。
【0012】
更に、本発明の原理では、プローブやサンプルの一方、または双方に電磁波を入射もしくは伝播させるだけの構成であるため、従来のNSOM(近接視野光学顕微観測)のように電磁波をプローブ先端の非常に微小な開口に通す位置決め作業や、電磁波を誘導するためのもろくて細いファイバーを扱う作業や、プリズムやレンズ系を用いて微弱で検出困難なエバネッセント場を扱う必要は無い。この結果、従来よりも装置構成を簡略化し、大きな信号を扱うことが可能となる。
【0013】
更に、本発明の原理では、入射や伝播電磁波の波長に長波長を利用した場合、サンプルへの電磁波透過性や電磁波伝搬性がよくなり、電磁波入射手段など、プローブやサンプルの一方または双方に電磁波を入射または伝播する手段のサンプルに対する空間的配置の自由度を大きくとれ、正確な空間的配置が不要となり、特にサンプル下面からの電磁波入射も可能となる。
【0014】
以下、図面に示した実施例を参照して本発明をさらに詳細に説明する。
【0015】
〈実施の形態1〉上述した本発明の原理を利用した第1の実施の形態に係る走査型電磁波顕微鏡について、図1を参照して説明する。
使用する電磁波の波動性を利用する走査型電磁波顕微鏡は、出力可変の電磁波発生手段6と、上記電磁波発生手段6からの電磁波をプローブ1やサンプル3付近まで伝播させる電磁波誘導手段4と、電磁波誘導手段4からの電磁波をプローブ1やサンプル3の一方、または双方に入射あるいは伝播させる電磁波入射手段5と、電磁波入射手段5から一定の空間的配置を保ち、サンプル3表面に近接して先端部2が位置したプローブ1と、プローブ1の振動数変化を検出する振動数検出手段9の信号を、電磁波発生手段6やXYZ移動手段8にフィードバック制御をかける制御手段7とを備える。
【0016】
出力可変の電磁波発生手段6は、プローブ1(吸着原子や分子を含む)とサンプル3(吸着原子や分子を含む)に必要な相互作用が得られるよう、発生させる電磁波出力(例えば波長や振幅)を制御手段7によりフィードバック制御できる。例えば、矩形交流を銅線に印加し、電磁誘導により発生する電磁波の波長や振幅の調整を、電圧とパルス出力周波数のコントロールで行うことができる。
【0017】
電磁波誘導手段4は、電磁波発生手段6からの電磁波を効率よく電磁波入射手段5へ伝播させるために、電磁波伝導性を有する金属、半導体、誘電体あるいはその複合体からなり、その形状や個数や大きさは種々変更することが可能であるが、装置にノイズがのらないよう絶縁被覆した金属導線を用いる方が好ましい。例えば、電磁波の減衰を極力抑え、装置にノイズが発生しないように絶縁被覆した銅線を使用できる。
【0018】
電磁波入射手段5は、電磁波誘導手段4からの電磁波をプローブ1やサンプル3へ効率よく入射または伝播するために電磁波伝導性を有する金属、半導体、誘電体あるいはその複合体からなり、その形状や個数や大きさは種々変更することが可能である。電磁波入射手段5の設置場所はサンプル3の下面、サンプル3の側面、サンプル3の上面、あるいはその組み合わせが可能であるが、プローブ1との空間的相対位置が測定中一定に保たれるようにする。例えば、電磁波入射手段5として銅線をサンプル3上面に設置し、プローブ1との空間的相対位置を保った状態でXYZ移動手段8によりサンプル1側を移動する。また、サンプル1下面へ電磁波入射手段5を配置する場合など、プローブ1とサンプル3間の相互作用を大きくする必要がある場合には、コイル巻きした銅線を使用することもできる。
【0019】
プローブ1やプローブ1の先端部2は、電磁波入射手段5からの電磁波を効率よく受信できるよう、電磁波伝導性を有する金属、半導体、誘電体あるいはその複合体からなり、その形状や大きさや表面処理やばね定数は種々変更することが可能である。プローブ1とサンプル3との相互作用は、電磁波発生手段6やXYZ移動手段8で任意の大きさに制御できるが、通常の原子間力に比べて大きく遠距離から作用するので、プローブ1のばね定数は大きい方が好ましい。また、サンプル3表面を分解能よく観察するためにプローブ1の先端部2は先鋭化されている方が好ましいが、サンプル3との相互作用を大きくするためには先端部2が大きい方が好ましい。例えば、プローブ1やプローブ先端部2はシリコンやシリコンナイトライドや、それらに金コートした先端部の曲率半径が約20nmのものや、カーボンナノチューブを使用できる。
【0020】
制御手段7は、プローブ先端部2のサンプル3表面からの位置決めや、プローブ先端部2とサンプル3間の距離制御や、プローブ1とサンプル3間の相互作用をプローブ先端2の変化に基づいて制御するため、プローブ1とサンプル3間の相互作用により生じるプローブ1の振動数、振幅および変位を4分割フォトディテクタ等の検出手段10から受け取り、電磁波発生手段6の出力やXYZ移動手段8の出力を制御できる構成となっている。
【0021】
本実施の形態では、プローブ1を振動手段9に取り付けて、この振動手段9によってプローブ1を所定の共振周波数で励振させながらサンプル3の表面情報及び相互作用情報を測定することも可能である。
【0022】
本実施の形態では、プローブ先端部2とサンプル3との相対的な三次元方向(XYZ方向)のXYZ移動手段8として、減速器付きのステッピングモータ等で駆動する粗動手段と、その粗動手段に固定され、プローブ先端部2とサンプル3との相対的な三次元方向(XYZ方向)の微動手段として、ピエゾスキャナ等の圧電体スキャナ等により構成されている。
【0023】
次に、本実施の形態の動作について説明する。
本実施の形態の走査型電磁波顕微鏡は、サンプル3表面から任意の距離でのプローブ1とサンプル3間の任意の相互作用設定や、プローブ1とサンプル3間の相互作用を一定に保ちながらの高速走査や、プローブ1とサンプル3間距離を任意一定に保ちながらの分解能選択走査により、サンプル3の表面情報(例えば、凹凸情報)、情報処理、物性情報、表面加工およびプローブ1とサンプル3表面との相互作用測定が行えるようになっている。
【0024】
まず、サンプル3表面から任意の距離に位置決めしたプローブ1とサンプル3間に任意の相互作用を設定する方法について説明する。
【0025】
この走査型電磁波顕微鏡には、出力可変な電磁波発生手段6と、プローブ1やサンプル3の一方、または双方に電磁波を入射あるいは伝播させる電磁波誘導手段4や電磁波入射手段5と、電磁波によりサンプル3と相互作用するプローブ1と、プローブ1とサンプル3との相互作用の変化を振動数変化として光学的に検出する振動数検出手段10と、振動数検出手段10からの信号を受け取り、電磁波発生手段6の出力やXYZ移動手段8の出力をフィードバック制御する制御手段7を備えている。
【0026】
このような構成において、電磁波を入射しない状態で原子間力やトンネル電流を用いてプローブ先端2とサンプル3表面間距離を確認し、XYZ移動手段8によりプローブ先端2とサンプル3表面間距離を任意の距離に設定した状態で、XYZ移動手段8を固定し、電磁波発生手段6の出力を制御すると、プローブ先端部2とサンプル3表面との間に働く相互作用が変化する境界上や、相互作用距離内においてプローブ1とサンプル3との相互作用変化が生じるとプローブ先端部2の振動数が変化する。そして、このとき生じる変化量を振動数検出手段10によって光学的に検出し、その検出信号に基づいて、プローブ先端部2の振動数を一定に維持するように、制御手段7によって電磁波発生手段6の出力をフィードバック制御し、プローブ先端2とサンプル3表面が任意距離において任意の相互作用を付加することができる。
【0027】
続いて、サンプル3の表面情報(例えば、凹凸情報)、情報処理、物性情報、表面加工およびプローブ1とサンプル3表面との相互作用を測定する際、プローブ1とサンプル3間の相互作用を任意一定に保ちながらの高速走査する方法を説明する。
【0028】
前記[0026]の方法により、プローブ先端2とサンプル3表面間の任意距離において、任意の相互作用を付加した状態で、XYZ移動手段8によりZ移動手段を固定し、プローブ先端部2の振動数を一定に維持するよう、サンプル3表面とプローブ先端部2とを相対的にXY方向にラスタ走査する。この場合、プローブ1とサンプル3間の相互作用が一定になるように電磁波発生手段6の出力をフィードバック制御するために、制御手段7から電磁波発生手段6に出力される制御信号は、サンプル3の表面情報を含んだ信号となる。従って、この制御信号をコンピュータによって画像化処理することによって、サンプルの表面情報(例えば、凹凸情報)をモニタ上に三次元的に表示させることができる。
【0029】
続いて、プローブ1とサンプル3間距離を任意一定に保ちながらの分解能選択走査により、サンプル3の表面情報(例えば、凹凸情報)や、情報処理や、物性情報や、表面加工や入射電磁波によるプローブ1とサンプル3との相互作用を測定する際、プローブ1とサンプル3間距離を任意一定に保ちながらの分解能選択走査方法を説明する。
【0030】
前記[0026]の方法により、プローブ先端2とサンプル3表面間の任意距離において、任意の相互作用を付加した状態において、電磁波発生手段6の出力を一定に固定し、プローブ先端部2の振動数が一定に維持するよう、サンプル3表面とプローブ先端部2を相対的にXY方向にラスタ走査する。この場合、XYZ移動手段8をZ方向にフィードバック制御するために、制御手段7からXYZ移動手段8に出力される制御信号は、サンプル3の表面情報を含んだ信号となる。従って、この制御信号をコンピュータによって画像化処理することによって、サンプル3の表面情報(例えば、凹凸情報)をモニタ上に三次元的に表示させることができる。
【0031】
なお、本発明は、上述した実施の形態の構成に限定されることは無く、以下のように種々変更することが可能である。
【0032】
上述した実施の形態では、出力可変の電磁波発生手段6は、発生させる電磁波出力(例えば波長や振幅)を制御しているが、これに限定されることは無く、必要に応じてパルス出力や連続出力の出力周波数制御、単一波形または複数波形の混在比の制御、偏光成分の強度比の制御、位相の制御も可能な電磁波発生手段6とする。
【0033】
また、上述した実施の形態では、プローブ1を励振する方式によってプローブ1の振動数変化を検出することにより、プローブ先端2のサンプル3表面からの位置決めや、プローブ先端部2とサンプル3表面との距離や相互作用を制御しているが、これに限定されることは無く、プローブ先端部2の変化量をプローブ1の振幅変化を検出制御することによっても上述した実施の形態と同様の作用効果を得ることができる。
【0034】
また、上述した実施の形態では、プローブ1を励振する方式によってプローブ1の振動数変化を検出することにより、プローブ先端2のサンプル3表面からの位置決めや、プローブ先端部2とサンプル3表面との距離や相互作用を制御しているが、これに限定されることは無く、プローブ1を加振させずにプローブ先端部2の変位を検出制御することによっても上述した実施の形態と同様の作用効果を得ることができる。
【0035】
また、上述した実施の形態では、プローブ1の変位や振動数や振幅変化を検出する手段として、例えば4分割フォトディテクタ等光学的手段を用いているが、これに限定されることは無く、プローブ1を取り付ける振動手段に圧電素子としてピエゾ薄膜等を取り付け、プローブ1の振動数や振幅や変位量を電気信号として検出し、制御手段7へ伝達する事によって、上述した実施の形態と同様の作用効果を得ることができる。
【0036】
上述した実施の形態では、XYZ移動手段8をサンプル3側へ設けているが、これに限定されることは無く、プローブ1側へ設ける事によって、上述した実施の形態と同様の作用効果を得ることができる。
【0037】
上述した実施の形態では、電磁波誘導手段4と電磁波入射手段5は、別の構成要素となっているが、これに限定されることは無く、電磁波発生手段6からの電磁波をプローブ1やサンプル3に入射できる限り、電磁波誘導手段4と電磁波入射手段5は一体の構成要素としても、上述した実施の形態と同様の作用効果を得ることができる。
【0038】
上述した実施の形態では、電磁波誘導手段4は絶縁被覆した金属導線が好ましいとしているが、これに限定されることは無く内壁が金属等電磁波伝導性のよい材質であるならば、中空パイプ状の形状としても、上述した実施の形態と同様の作用効果を得ることができる。
【0039】
上述した実施の形態では、電磁波入射手段5は電磁波誘導手段4に使用している絶縁被覆した金属導線をそのまま利用するのが最も簡単な形状だが、これに限定されることは無く、コイル状やパラボラアンテナ状の形状にしてプローブ1やサンプル3間の相互作用を増幅させ、上述した実施の形態と同様の作用効果を得ることができる。
【0040】
〈実施の形態2〉次に、本発明の第2の実施の形態に係る走査型電磁波顕微鏡について、図2を参照して説明する。なお、本実施の形態の説明に際し、上述した第1の実施の形態と同一の構成には同一符号を付して、その説明を省略する。また、本実施の形態の動作や作用効果は、上述した第1の実施の形態と同一の場合、その説明は省略する。
【0041】
図2に示すように、本実施の形態の使用する電磁波の波動性を利用する走査型電磁波顕微鏡は、上述した実施の形態の改良に係り、電磁波誘導手段4をプローブ1あるいは、振動手段9、あるいはサンプル3やサンプルステージ11等、プローブ1やサンプル3の一方または双方に電磁波が伝播できる部分に設置、あるいは近接して設置し、プローブ1やサンプル3やサンプルステージ11等が、上述した第1の実施の電磁波入射手段5を兼ねる構造になっている。この電磁波誘導手段4や電磁波入射手段5は単一または複数で設置あるいは近接させる事も、上述した第1の実施の電磁波入射手段5と併用して設置する事も可能である。その他の構成は、上述した第1の実施形態の構成と同一であるため、その説明は省略する。また、その他の作用効果は、上述した第1の実施の形態と同一であるため、その説明は省略する。
【0042】
〈実施の形態3〉次に、上述した本発明の原理を利用した第3の実施の形態に係る走査型電磁波顕微鏡について、図3を参照して説明する。なお、本実施の形態の説明に際し、上述した第1、第2の実施の形態と同一の構成には同一符号を付して、その説明を省略する。また、本実施の形態の動作や作用効果は、上述した第1、第2の実施の形態と同一の場合、その説明は省略する。
【0043】
図3に示すように、使用する電磁波の粒子性を利用する走査型電磁波顕微鏡の場合、走査型電磁波顕微鏡は、出力可変の電磁波発生手段6と、出力可変の電磁波発生手段6からの電磁波をプローブ1やサンプル3の一方、または双方に入射させる電磁波誘導手段4と、サンプル3表面に先端部2が近接し、振動手段9に保持されたプローブ1と、プローブ1の振動数変化を検出する振動数検出手段10の信号をフィードバックし、電磁波発生手段6やXYZ移動手段8にフィードバック制御をかける制御手段7とを備える。
【0044】
出力可変の電磁波発生手段6は、プローブ(吸着原子や分子を含む)1とサンプル(吸着原子や分子を含む)3に必要な相互作用が得られるよう、発生させる電磁波出力、(例えばフォトンエネルギやフォトン数)を制御手段7によりフィードバック制御できる。例えば、YAGレーザーを制御手段7により、その出力をフィードバック制御することができる。
【0045】
電磁波誘導手段4は、電磁波発生手段6からの電磁波を効率よくプローブ1やサンプル3の一方、または双方に入射させるために、反射率の高い反射ミラーやハーフミラーや、透過率の高い光学顕微鏡の対物レンズ系、あるいは光ファイバー等からなり、それらの配置や個数や組み合わせは種々変更することが可能である。なお、電磁波発生手段6からの電磁波をプローブ1やサンプル3に直接入射できる空間的余裕がある場合や、集光等せずに十分なエネルギ密度をもって入射できる場合などは、電磁波誘導手段4としてのミラーや集光レンズ系は必ずしも必要ではない。
【0046】
電磁波のサンプル3への入射方向は、電磁波をプローブ1やサンプル3の一方、または双方に入射できる限り、サンプル3の上面、側面、斜め方向、あるいはその組み合わせが可能である。また、サンプル3が電磁波に対して透明であるならば、サンプル3下面からの入射も可能である。
【0047】
プローブ1やプローブ先端部2は、金属、半導体、誘電体あるいはその複合体からなり、その形状(先鋭、開口、斜め開口、導光路)、大きさ、表面処理およびばね定数は種々変更することが可能である。プローブ1とサンプル3との相互作用は、電磁波発生手段6やXYZ移動手段8で任意の大きさに制御できるが、通常の原子間力に比べて遠距離から大きく作用するので、プローブ1のばね定数は大きい方が好ましい。また、サンプル3表面を分解能よく観察するためにプローブ先端部2は先鋭化されている方が好ましいが、サンプル3との相互作用を大きくするためにはプローブ先端部2は大きい方が好ましい。例えば、プローブ1やプローブ先端部2はシリコンやシリコンナイトライドや、それらに金コートした先端部2の曲率半径が約20nmのものを使用できる。
【0048】
なお、本発明は、上述した実施の形態の構成に限定されることは無く、以下のように種々変更することが可能である。
【0049】
上述した実施の形態では、出力可変の電磁波発生手段6は、発生させる電磁波出力(例えばフォトンエネルギやフォトン数)を制御しているが、これに限定されることは無く、必要に応じてパルス出力や連続出力の出力周波数制御、単一エネルギをもつフォトン群または複数エネルギをもつフォトン群の混在比の制御、偏光成分の強度比の制御、位相の制御も可能な電磁波発生手段6とする。
【0050】
〈実施の形態4〉次に、上述した本発明の原理を利用した第4の実施の形態に係る走査型電磁波顕微鏡について、図4を参照して説明する。なお、本実施の形態の説明に際し、上述した第1、第2、第3の実施の形態と同一の構成には同一符号を付して、その説明を省略する。また、本実施の形態の動作や作用効果は、上述した第1、第2、第3の実施の形態と同一の場合、その説明は省略する。
【0051】
図4に示すように、本実施の形態の使用する電磁波の粒子性を利用する走査型電磁波顕微鏡は、上述した実施の形態の改良に係り、出力可変の電磁波発生手段6と、出力可変の磁波発生手段6からの電磁波をプローブ1の上方から開口型プローブ先端12やサンプル3の一方、または双方に入射させる電磁波誘導手段4と、サンプル3表面に先端部12が近接し、振動手段9に保持された開口型プローブ先端部12に開口を持つプローブ1と、プローブ1の振動数変化を検出する振動数検出手段10の信号を電磁波発生手段6やXYZ移動手段8にフィードバック制御をかける制御手段7とを備える。
【0052】
電磁波誘導手段4は、電磁波発生手段6からの電磁波をプローブ1の上方から効率よく開口型プローブ先端部12やサンプル3の一方、または双方に入射させるために、反射率の高い反射ミラーやハーフミラーや、透過率の高い光学顕微鏡の対物レンズ系、あるいは光ファイバー等からなり、それらの配置や個数や組み合わせは種々変更することが可能である。なお、電磁波発生手段6からの電磁波を開口型プローブ先端部12やサンプル3の一方、または双方に直接入射できる空間的余裕がある場合や、集光等せずに十分なエネルギ密度をもって入射できる場合などは、電磁波誘導手段4としてのミラーや集光レンズ系や光ファイバー等は必ずしも必要ではない。
【0053】
電磁波発生手段6や電磁波誘導手段4は、最終的に電磁波がプローブ1を上方から通過し開口型プローブ先端部12やサンプル3の一方、または双方に入射する限り、任意の空間的配置や個数の組み合わせが可能である。
【0054】
プローブ1や開口型プローブ先端部12は、金属、半導体、誘電体あるいはその複合体からなり、その形状、大きさおよび表面処理方法は種々変更することが可能である。図5はプローブ先端部12の形状を示したもので、(a)は平面開口を、(b)は傾斜開口を、(c)は導光路を示している。開口型プローブ先端部12とサンプル3との相互作用は、電磁波発生手段6やXYZ移動手段8で任意の大きさに制御できるが、通常の原子間力に比べて遠距離から大きく作用するので、プローブ1のばね定数は大きい方が好ましい。また、サンプル3表面を分解能よく観察するために開口型プローブ先端部12は、先鋭化されている方が好ましいが、サンプル3との相互作用を大きくするためには開口型プローブ先端部12は大きい方が好ましい。例えば、開口型プローブ先端部12はシリコンやシリコンナイトライドや、それらに金コートしたものを使用できる。
【0063】
【発明の効果】
以上説明したように、本発明の走査型電磁波顕微鏡では、電磁波をプローブやサンプルの一方、または双方に照射もしくは伝播させる事により生ずる、プローブとサンプル間の相互作用を、プローブの振動数や振幅や変位変化として検出手段により検出し、制御手段により電磁波発生手段やXYZ移動手段へフィードバック制御し、プローブ先端とサンプルの任意表面間距離へ任意の相互作用を印加する方法や、XYZ移動手段制御によりプローブとサンプル間距離を任意一定に保ちながら走査する方法や、電磁波発生手段制御によりプローブとサンプル間相互作用を一定に保ちながら走査する方法をとることによる走査型電磁波顕微鏡であるため、以下に記載されるような効果を奏する。
(1)プローブとサンプルの相互作用は、従来の原子間力やトンネル電流を利用した近距離走査領域だけでなく、電磁波入射または伝導により生じる遠距離相互作用領域まで、電磁波発生手段やXYZ移動手段により任意に調整できるため、プローブとサンプル間の任意距離へ任意の相互作用を印加することが可能となる。
【0064】
(2)プローブをサンプル表面から任意距離に位置決めし、プローブとサンプル表面とを相対的に2次元的に移動させるとともに、プローブとサンプルの相互作用が一定になるよう電磁波発生手段の出力を調整し、その出力を表面情報化するため、従来のピエゾ素子を使った走査に比べて測定時間の大幅な短縮や、測定範囲の大幅な増加が可能となり作業の効率が上がる。
(3)プローブをサンプル表面から任意距離に位置決めし、プローブとサンプル表面とを相対的に2次元的に移動させるとともに、プローブとサンプル間距離が一定になるようXYZ移動手段の出力を調整し、その出力を表面情報化するため、Z方向に分布する物理量の観測や必要な分解能や測定時間に応じた測定ができる。
(4)プローブ先端とサンプル表面の相互作用や位置決めは、XYZ移動手段よる距離制御だけでなく、電磁波出力と併用して調整する事も可能なので、電磁波の出力、例えば、異なる波長、振幅、偏光成分強度比、連続波、パルス波、位相などを調整した状態でのプローブとサンプル間の相互作用測定も可能である。
(5)電磁波の長波長を利用することにより、サンプルの電磁波透過性や表面伝搬性がよくなり、電磁波を入射または伝播する手段のサンプルに対する空間的配置の自由度が高まり、特にサンプル下面からの電磁波入射も可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る走査型電磁波顕微鏡の構成を示した図である。
【図2】本発明の第2の実施の形態に係る走査型電磁波顕微鏡の構成を示した図である。
【図3】本発明の第3の実施の形態に係る走査型電磁波顕微鏡の構成を示した図である。
【図4】本発明の第4の実施の形態に係る走査型電磁波顕微鏡の構成を示した図である。
【図5】本発明の第4の実施の形態に係る開口型プローブ先端部を示した図である。
【図6】電波出力変化によるプローブとサンプル間の相互作用変化を示した図である。
【図7】 YAGレーザ出力変化によるプローブとサンプル間の相互作用変化を示した図である。
【図8】プローブとサンプル間相互作用の繰り返し特性を示した図である。
【符号の説明】
1 プローブ
2 先端部
3 サンプル
4 電磁波誘導手段
5 電磁波入射手段
6 電磁波発生手段
7 制御手段
8 XYZ移動手段
9 振動手段
10 検出手段
11 サンプルステージ
12 開口型プローブ先端部

Claims (8)

  1. 電磁波発生手段と、電磁波発生手段で発生させた電磁波をプローブやサンプルの一方、または双方に入射または伝播させる電磁波入射手段または電磁波誘導手段と、サンプル表面に近接して設けられたプローブとからなる走査型電磁波顕微鏡において、電磁波をプローブとサンプル間に入射または伝播させることにより生じるプローブとサンプル間の相互作用力をプローブの位置、振動数および振幅の変化を検出する検出手段と、プローブとサンプルの位置を制御する移動手段と、
    該検出手段の検出信号に基づいて、プローブとサンプル間の相互作用力が一定になるように電磁波発生手段をフィードバック制御する制御手段とを設けたことを特徴とする走査型電磁波顕微鏡。
  2. 制御手段は、プローブとサンプル間に働く原子間力、その他の相互作用、電磁波入射により生じる相互作用力を制御するため、プローブとサンプル間に働く相互作用力の変化をプローブの変化として検出し、電磁波発生手段の出力をフィードバック制御することを特徴とする請求項1記載の走査型電磁波顕微鏡。
  3. プローブ自身が電磁波誘導手段または電磁波入射手段を兼ねるようにしたことを特徴とする請求項1又は請求項2記載の走査型電磁波顕微鏡。
  4. プローブを、金属、半導体、誘電体から形成するとともに無開口先鋭先端、開口先端または導光路先端を設けたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の走査型電磁波顕微鏡。
  5. プローブを、複数具備する事により同時走査も可能とすることを特徴とする請求項1ないし請求項4のいずれか1項に記載の走査型電磁波顕微鏡。
  6. サンプルを真空中に保持することを特徴とする請求項1ないし請求項5のいずれか1項に記載の走査型電磁波顕微鏡。
  7. サンプルを液体中に保持することを特徴とする請求項1ないし請求項5のいずれか1項に記載の走査型電磁波顕微鏡。
  8. プローブ先端をサンプル表面から任意の距離に位置決めし、任意の相互作用を付加した状態で、制御手段により移動手段のZ方向出力を固定し、プローブとサンプル表面とを2次元的に相対移動する際、プローブの振動数、振幅、変位などの変化が一定に維持されるように電磁波発生手段の出力をフィードバック制御することによりプローブとサンプル間相互作用を任意一定に保ちながら高速走査することを特徴とする走査型電磁波顕微鏡の制御方法。
JP2001305962A 2001-10-02 2001-10-02 走査型電磁波顕微鏡および制御方法 Expired - Lifetime JP4009714B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305962A JP4009714B2 (ja) 2001-10-02 2001-10-02 走査型電磁波顕微鏡および制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305962A JP4009714B2 (ja) 2001-10-02 2001-10-02 走査型電磁波顕微鏡および制御方法

Publications (2)

Publication Number Publication Date
JP2003106976A JP2003106976A (ja) 2003-04-09
JP4009714B2 true JP4009714B2 (ja) 2007-11-21

Family

ID=19125671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305962A Expired - Lifetime JP4009714B2 (ja) 2001-10-02 2001-10-02 走査型電磁波顕微鏡および制御方法

Country Status (1)

Country Link
JP (1) JP4009714B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009036365A2 (en) * 2007-09-12 2009-03-19 Veeco Instruments, Inc. Method and apparatus of automatic scanning probe imaging
US8748515B2 (en) 2010-04-15 2014-06-10 Henry Company Llc Mixtures and emulsions for use in providing strength to gypsum compositions
WO2012115688A1 (en) 2011-02-24 2012-08-30 Henry Company Llc Aqueous wax emulsions having reduced solids content for use in gypsum compositions and building products

Also Published As

Publication number Publication date
JP2003106976A (ja) 2003-04-09

Similar Documents

Publication Publication Date Title
US10520426B2 (en) Peakforce photothermal-based detection of IR nanoabsorption
JP5695902B2 (ja) 近接場afm検出を用いたウェハスケールの非破壊的な表面下超音波顕微鏡法
Pylkki et al. Scanning near-field optical microscopy and scanning thermal microscopy
JP2936311B2 (ja) 液中観察機能付き走査型近視野原子間力顕微鏡
JP2004533604A (ja) 反射散乱型ジオメトリを用いた無開口近接場走査型ラマン顕微鏡法
Lieberman et al. A fully integrated near‐field optical, far‐field optical, and normal‐force scanned probe microscope
JPH0650750A (ja) 力検知手段を含む走査型顕微鏡
WO2014138660A1 (en) Method and apparatus of physical property measurement using a probe-based nano-localized light source
KR20050043885A (ko) 주사 탐침 현미경
JP2008051556A (ja) 光学式変位検出機構及びそれを用いた表面情報計測装置
US8051493B2 (en) Probe microscopy and probe position monitoring apparatus
Sun et al. Near‐field scanning Raman microscopy using apertureless probes
Ahn et al. Ultrasonic near-field optical microscopy using a plasmonic nanofocusing probe
JP3522261B2 (ja) ナノチューブ、近接場光検出装置および近接場光検出方法
KR100829659B1 (ko) 근접장 주사 광학 현미경
Antognozzi et al. A new detection system for extremely small vertically mounted cantilevers
JP4009714B2 (ja) 走査型電磁波顕微鏡および制御方法
Heinzelmann et al. Scanning near-field optical microscopy in Basel, Ruschlikon, and Zurich
JP2000298132A (ja) 近接場光顕微鏡および近接場光顕微鏡による試料観察方法
JPH09138239A (ja) ワークピースの存在を検出する方法
JP3450460B2 (ja) 走査型プローブ顕微鏡
Fujinami et al. Development of photothermal near-field scanning optical microscope photothermal near-field scanning optical microscope
Rosner et al. Near-Field Microscopy
Wang Characterization of nanoscale features and materials using near field scanning optical microscopy
Silveira Combination of infrared synchrotron radiation with optical near-eld microscopy techniques

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350