JP4009118B2 - Method for estimating the compressive strength of concrete in structures - Google Patents

Method for estimating the compressive strength of concrete in structures Download PDF

Info

Publication number
JP4009118B2
JP4009118B2 JP2002064329A JP2002064329A JP4009118B2 JP 4009118 B2 JP4009118 B2 JP 4009118B2 JP 2002064329 A JP2002064329 A JP 2002064329A JP 2002064329 A JP2002064329 A JP 2002064329A JP 4009118 B2 JP4009118 B2 JP 4009118B2
Authority
JP
Japan
Prior art keywords
concrete
contact
compressive strength
penetration
inner chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002064329A
Other languages
Japanese (ja)
Other versions
JP2003262578A (en
JP2003262578A5 (en
Inventor
俊泰 豊福
Original Assignee
富士テック株式会社
俊泰 豊福
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士テック株式会社, 俊泰 豊福 filed Critical 富士テック株式会社
Priority to JP2002064329A priority Critical patent/JP4009118B2/en
Publication of JP2003262578A publication Critical patent/JP2003262578A/en
Publication of JP2003262578A5 publication Critical patent/JP2003262578A5/ja
Application granted granted Critical
Publication of JP4009118B2 publication Critical patent/JP4009118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非破壊試験によって構造物のコンクリートの圧縮強度を推定する方法に関する。
【0002】
【従来の技術】
構造物のコンクリート耐久性の一つの指標は、コンクリートの圧縮強度である。そこで、従来から、コンクリートの圧縮強度を非破壊試験の結果によって推定する種々の方法が提案されている。なかでも反発度法(ハンマー法)、すなわち、コンクリート表面をテストハンマーで打撃し、このテストハンマーのはね返り量(反発度)を測定し、この測定値を基準として圧縮強度を推定する非破壊試験法が、有用なものとして広く利用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、テストハンマーのはね返り量は、コンクリート表面の状態などのわずかな条件の違いによっても大きな影響を受ける。したがって、ハンマー法による圧縮強度の推定結果は、ばらつきが大きく、これを唯一の指標とするには難がある。
【0004】
そこで、本発明の主たる課題は、コンクリート表面の状態に左右されることなく、比較的簡易に構造物のコンクリートの圧縮強度を推定することができる方法を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決した本発明は、次記のとおりである。
<請求項1記載の発明>
当接本体の中央部にコンクリート表面側に開口し、強制減圧手段にホースを介して連なる内側チャンバーを有し、この内側チャンバー外側にコンクリート表面側に開口する環状の外側チャンバーが形成され、この外側チャンバーに連なって密着減圧手段が接続され、この密着減圧手段の作動による前記外側チャンバー内の減圧に伴って、前記当接本体がコンクリート表面に密着するように構成した密着手段を有し、この密着手段により当接本体をコンクリート表面に密着させたとき、前記内側チャンバー内が閉鎖空間となる構造の当接体を、
構造物のコンクリート表面にあてがい、前記密着手段により前記当接本体を前記構造物のコンクリート表面に密着させた状態とするとともに、前記内側チャンバー内を前記減圧手段により減圧することによって前記構造物のコンクリートの浸透係数及び浸透深さの両方を次式(1)又は次式(2)に基づいて計測し、この計測値から前記構造物のコンクリートの圧縮強度を推定することを特徴とする構造物のコンクリートの圧縮強度推定方法。
【数1】

Figure 0004009118
【数2】
Figure 0004009118
なお、同式中の「kT」は浸透係数〔10 -16 ・m 2 〕、「L」は浸透深さ〔mm〕、「Vc」は前記内側チャンバー及び前記ホース内の空気総量〔m 3 〕、「A」は前記内側チャンバー(コンクリート表面との当接部分)の断面積〔m 2 〕(理論値)、「μ」は空気の動粘度〔Ns/m 2 〕、εはコンクリートの空隙率〔m 3 /m -3 〕、Paは大気圧〔N/m 2 〕、tは試験時間〔s〕、t 0 は60〔s〕、ΔPtは圧力上昇値〔N/m 2 〕、lnは自然対数である。
【0006】
【0007】
<請求項項記載の発明>
浸透係数、浸透深さが小さいほど構造物のコンクリートの圧縮強度が大きいと推定する請求項1記載の構造物のコンクリートの圧縮強度推定方法。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(供試体の作成・養生)
構造物のコンクリート(以下、単に対象コンクリートともいう。)の圧縮強度を推定するにあたっては、まず、それぞれの圧縮強度が異なる少なくとも3種類のコンクリート供試体を作成する。本実施の形態では、その例として、圧縮強度が15、20、30、45及び60N/mm2となるように5種類の供試体を作成する。
【0009】
この際、これらの供試体は、対象コンクリートと同一の材料で、しかも実質的に同一の形状となるように作成するのが好ましい。圧縮強度の推定精度を向上させるためである。供試体の形状は、例えば、コンクリート構造物を対象とする場合であれば、角形柱等の場合は、柱部材(例えば、高さ60×20×40cm、高さ120×20×50cmなど)とし、床スラブ等の場合は、床部材(例えば、高さ20×60×50cm、高さ20×60×45cm、高さ20×20×60cm、高さ20×60×40cmなど)とすることができる。
【0010】
このようにして作成した各供試体は、少なくとも対象コンクリートと養生環境を同一にして養生するのが好ましい。例えば、大気中で養生したコンクリートを対象とするのであれば空気中で、水中で養生したコンクリートを対象とするのであれば水中で、養生剤を塗布して養生したコンクリートを対象とするのであれば養生剤を塗布して養生する。養生環境を同一にするのは、養生環境によって、供試体の性状が大きく異なるためである。
【0011】
各供試体の養生は、その期間を、例えば、1日、2日、3日とすることもできるが、7日以上とするのが好ましく、28日以上とするのがより好ましい。供試体の性質・状態を安定化させるためである。
【0012】
(供試体の浸透係数・浸透深さの計測)
次に、以上のようにして作成・養生した各供試体について、その浸透係数及び浸透深さの少なくとも一方を、本実施の形態では双方を計測する。この計測は、以下に示す当接体1を用いて行う。
当接体1は、図1及び図2に示すように、当接本体2の中央部にコンクリートC表面側に開口し、減圧ポンプなどからなる図示しない強制減圧手段にホース4を介して連なる内側チャンバー2Aを有し、この内側チャンバー2Aの外側に当接本体2をコンクリートC表面に密着させる密着手段を有し、この密着手段により当接本体2をコンクリートC表面に密着させたとき、内側チャンバー2A内が閉鎖空間Iとなる構造とされている。特に、本実施の形態では、かかる密着手段は、内側チャンバー2Aの外側に形成されたコンクリートC表面側に開口する環状の外側チャンバー3を有し、この外側チャンバー3に連なって減圧ポンプなどからなる図示しない密着減圧手段がホース5を介して接続され、密着減圧手段の作動による外側チャンバー3内Oの減圧に伴って、当接本体2がコンクリートC表面に密着する構造とされている。
【0013】
浸透係数及び浸透深さを計測するにあたっては、まず、以上のようにしてなる当接体1を、コンクリートC表面にあてがい、外側チャンバー3内Oを、図示しない密着減圧手段により減圧ホース5を介して減圧する。これにより、コンクリートC等をなんら損壊することなく、当接本体2が対象コンクリートCに対して密着した状態で取り付けられる。
【0014】
当接本体2をコンクリートCに取り付けたら、又はこの取り付けと同時に、前記あてがいにより閉鎖空間Iとなった内側チャンバー2A内(例えば、1.015〜0.9MPa)を、図示しない強制減圧手段によってホース4を介して、例えば、0.1〜0.01MPaとなるまで減圧する。これにより、コンクリートCの浸透係数及び浸透深さの計測が可能となる。
【0015】
浸透係数及び浸透深さは、次式(1)又は次式(2)から求められる。なお、同式中の「kT」は浸透係数〔10-16・m2〕、「L」は浸透深さ〔mm〕、「Vc」は内側チャンバー2A及びホース4内の空気総量〔m3〕、「A」は内側チャンバー2A(コンクリートC表面との当接部分)の断面積〔m2〕(理論値)、「μ」は空気の動粘度〔Ns/m2〕(通常2.0×10-5)、εはコンクリートの空隙率〔m3/m-3〕(通常0.15)、Paは大気圧〔N/m2〕、tは試験時間〔s〕、t0は60〔s〕、ΔPtは圧力上昇値〔N/m2〕、lnは自然対数である。
【数1】
Figure 0004009118
【数2】
Figure 0004009118
【0016】
この閉鎖空間Iの減圧は、外側チャンバー3内Oの圧力と同一となるまで、又は同一となるように行うのが好ましい。これは、外側チャンバー3内Oの減圧によって生じるコンクリート部位C2(コンクリートCのうちの外側チャンバー3と対面する部位をいう。)における気流が、閉鎖空間Iの減圧によって生じるコンクリート部位C1(コンクリートCのうちの内側チャンバー2Aと対面する部位をいう。)における気流に影響を与え、結果、浸透係数及び浸透深さが不正確になるのを防止するためである。
【0017】
閉鎖空間Iの圧力と外側チャンバー3内Oの圧力とを同一とするためには、例えば、強制減圧手段と密着減圧手段とを1つの減圧ポンプで構成すればよい。
【0018】
本実施の形態では、内側チャンバー2A及び外側チャンバー3を、断面略円形状とし、かつ当接本体2を介して一体化したが、これに限る趣旨ではない。断面を略方形状、楕円形状などと適宜変更することができる。また、両者を一体化させずに別体とすることもできる。
【0019】
(圧縮強度の実測)
以上のようにして浸透係数及び浸透深さを計測した供試体について、次に、その圧縮強度を実測する。この実測は、例えば、円柱供試体の場合は、JIS A 1108「コンクリートの圧縮強度試験方法」によることができ、他の供試体の場合は、コアを切り取って試験を行うJIS A 1107「コンクリートからのコア及びはりの切り取り方法並びに強度試験方法」によることができる。
【0020】
(推定式の確立)
以上のようにして各供試体の圧縮強度を実測したら、先に計測した浸透係数及び浸透深さとで回帰分析し、浸透係数及び浸透深さから圧縮強度を推定するための推定式を求める。
【0021】
(対象コンクリートの浸透係数・浸透深さの計測)
以上と並行して、又は前後して、対象コンクリートについても、その浸透係数及び浸透深さの少なくとも一方を、本実施の形態では双方を計測する。この計測は、前述した当接体1を用い、前述したのと同様の方法によって行うことができる。
【0022】
(圧縮強度の推定)
以上のようにして、推定式を確立し、対象コンクリートの浸透係数及び浸透深さを計測したら、この浸透係数及び浸透深さを推定式に代入する。これにより、コンクリートの圧縮強度が推定される。
【0023】
(その他)
(1) 以上では、供試体の作成・養生、推定式の確立から対象コンクリートの圧縮強度推定までを連続して行う形態を説明したが、これに限る趣旨ではない。あらかじめ推定式を確立しておき、この推定式をもとに対象コンクリートの圧縮強度推定を行うこともできる。この場合は、形状や養生環境などを特定した推定式を複数容易しておくのが好ましい。
【0024】
(2) また、本発明で適用対象となるコンクリートは、その種類が特に限定されるものではない。一般に用いられている、例えば、普通コンクリート、軽量コンクリート、舗装コンクリートなどの他、粗骨材を欠くコンクリート、すなわちモルタルをも対象とすることができる。
【0025】
(3) さらに、本発明の適用対象となるコンクリートは、その形状・存在状態が特に限定されるものではない。土木構造物、建築構造物、その他のあらゆる構造物の一部として存在するコンクリートや、コンクリート製品の圧縮強度を推定することも可能である。
【0026】
(4) 本形態による場合、浸透係数から圧縮強度を推定することも、浸透深さから圧縮強度を推定することも可能であるが、両測定値を総合評価して圧縮強度を推定すると、なお好適である。
【0027】
【実施例】
以下、実施例に基づいて、浸透係数及び浸透深さと圧縮強度との相関関係を明らかにする。
(供試体の作成・養生)
本実施例では、目標強度、材齢、形状及び養生環境を変化させて供試体を作成した。具体的には、供試体の目標強度を、15(普通)、20(普通)、30(普通)、45(普通)、60(普通)、30(モルタル)N/mm2、の6通りとした。また、供試体の材齢は、3、7、8、14、28、40、48、49、56、365日の10通りとした。供試体の形状及び大きさは、円柱供試体(高さ20×φ10cm)、曲げ供試体(高さ15×15×53cm、高さ15×15×60cm)、柱部材(高さ60×20×40cm、高さ120×20×50cm)、床部材(高さ20×60×50cm、高さ20×60×45cm、高さ20×20×60cm、高さ20×60×40cm)の4種類、計9通りとした。養生環境は、水中養生、空気中養生、養生剤塗布養生(塗布量65g/cm2又は130g/cm2)、湿潤養生、屋外養生の5通りとした。
【0028】
(浸透係数・浸透深さの計測)
各供試体について、実施の形態で示した当接体1を用いて、それぞれ浸透係数及び浸透深さを測定した。
なお、「Vc」は222×10-6〔m3〕、「A」は19.6×10-4〔m2〕、「μ」は2.0×10-5〔Ns/m2〕、「ε」は0.15〔m3/m-3〕であった。
【0029】
(圧縮強度の実測)
各供試体の圧縮強度の実測は、円柱供試体についてはそのままの状態で、その他の供試体については供試体から切り取ったコア(高さ20×φ10cm)について、それぞれJIS A 1108に基づいて行った。コア抜きには、コア抜きドリルを用いた。
【0030】
(試験結果及び考察)
図3に浸透係数とコアの圧縮強度との関係を、図4に浸透深さとコアの圧縮強度との関係を、次式(3)に図3に関する単回帰式を、次式(4)に図4に関する単回帰式を、図5に次式(3)の精度を、図6に次式(4)の精度を示した。浸透係数、浸透深さが増加するに従って、圧縮強度は低下することがわかる。したがって、浸透係数、浸透深さが小さいほど対象コンクリートの圧縮強度が大きいと推定しうることがわかる。なお、Fcはコアの圧縮強度(N/mm2)、Kは浸透係数(10-162)、Lは浸透深さ(mm)である。
【数3】
Figure 0004009118
【数4】
Figure 0004009118
【0031】
(重回帰分析)
以上の試験で得られたデータを重回帰分析(変数増減法、Fin=Fout=2.0)した。浸透係数に基づくデータからは次式(5)が、浸透深さに基づくデータからは次式(6)が得られた。この式の精度を、図7及び図8に示した。なお、コアの圧縮強度Fc(N/mm2)を目的変数とし、浸透係数K(10-162)、浸透深さL(mm)、養生環境YO(1:空気中、2:養生剤塗布(65)、3:養生剤塗布(130)、4:湿潤、5:水中)、材齢ZA(日)、形状DAS(1:床部材、2:曲げ供試体、3:円柱供試体・柱部材)、測定場所SO(1:上面、2:側面上部、3:側面中部、4:側面下部、5:下面)を説明変数として採用した(式下段の( )内はT値、そのさらに下段のNはデータ数、Rは重相関係数、esは残差の標準偏差(N/mm2)である。)。
【数5】
Figure 0004009118
【数6】
Figure 0004009118
【0032】
これらの式から、浸透係数及び浸透深さとコアの圧縮強度との間には、高度の相関関係を認めうることがわかる。したがって、浸透係数又は浸透深さに基づくと、コンクリート表面の状態に左右されることなく、比較的簡易に圧縮強度を推定しうることがわかる。また、浸透係数、浸透深さが小さいほど、測定場所が下部ほど、材齢が経過するほど、圧縮強度が大きくなっていることもわかる。
【0033】
【発明の効果】
以上のとおり、本発明に係る方法によれば、コンクリート表面の状態に左右されることなく、比較的簡易に構造物のコンクリートの圧縮強度を推定することができる。
【図面の簡単な説明】
【図1】 当接体の断面模式図である。
【図2】 当接体の斜視図である。
【図3】 浸透係数とコアの圧縮強度との関係を示した図である。
【図4】 浸透深さとコアの圧縮強度との関係を示した図である。
【図5】 (3)式の実績値と計算値である。
【図6】 (4)式の実績値と計算値である。
【図7】 (5)式の実績値と計算値である。
【図8】 (6)式の実績値と計算値である。
【符号の説明】
1…当接体、2…当接本体、2A…内側チャンバー、3…外側チャンバー、4,5…ホース、C…コンクリート、I…閉鎖空間、O…外側チャンバー内空間。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for estimating the compressive strength of concrete in a structure by nondestructive testing.
[0002]
[Prior art]
One indicator of the concrete durability of a structure is the compressive strength of the concrete. Therefore, various methods for estimating the compressive strength of concrete based on the results of nondestructive tests have been proposed. Above all, the rebound degree method (hammer method), that is, the non-destructive test method in which the concrete surface is hit with a test hammer, the amount of rebound (rebound degree) of this test hammer is measured, and the compressive strength is estimated based on this measured value. However, it is widely used as a useful one.
[0003]
[Problems to be solved by the invention]
However, the amount of rebound of the test hammer is greatly affected by slight differences in conditions such as the condition of the concrete surface. Therefore, the estimation result of the compressive strength by the hammer method has a large variation, and it is difficult to use this as the only index.
[0004]
Then, the main subject of this invention is providing the method which can estimate the compressive strength of the concrete of a structure comparatively easily, without being influenced by the state of concrete surface.
[0005]
[Means for Solving the Problems]
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
There is an inner chamber that opens on the concrete surface side in the center of the abutment body, and is connected to the forced decompression means via a hose, and an annular outer chamber that opens on the concrete surface side is formed outside this inner chamber , A contact pressure reducing means is connected to the chamber, and has a contact means configured so that the abutting body comes into close contact with the concrete surface in accordance with the pressure reduction in the outer chamber by the operation of the contact pressure reducing means. When the contact body is brought into close contact with the concrete surface by means, the contact body having a structure in which the inside chamber becomes a closed space,
Applying to the concrete surface of the structure, the contact body is brought into close contact with the concrete surface of the structure by the contact means, and the inside of the inner chamber is decompressed by the decompression means, thereby reducing the concrete of the structure. Both of the penetration coefficient and the penetration depth are measured based on the following formula (1) or the following formula (2), and the compressive strength of the concrete of the structure is estimated from the measured value. A method for estimating the compressive strength of concrete.
[Expression 1]
Figure 0004009118
[Expression 2]
Figure 0004009118
In the equation, “kT” is a penetration coefficient [10 −16 · m 2 ], “L” is a penetration depth [mm], and “Vc” is a total air volume [m 3 ] in the inner chamber and the hose. , “A” is the cross-sectional area [m 2 ] (theoretical value) of the inner chamber (contact portion with the concrete surface ), “μ” is the kinematic viscosity of air [Ns / m 2 ], and ε is the porosity of the concrete. [ M 3 / m −3 ], Pa is the atmospheric pressure [N / m 2 ], t is the test time [s], t 0 is 60 [s], ΔPt is the pressure increase value [N / m 2 ], and ln is It is a natural logarithm.
[0006]
[0007]
<Invention of Claim 2 >
The method for estimating the compressive strength of concrete in a structure according to claim 1, wherein it is estimated that the compressive strength of the concrete in the structure is larger as the penetration coefficient and the penetration depth are smaller.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
(Creation and curing of specimens)
In estimating the compressive strength of the concrete of the structure (hereinafter also simply referred to as target concrete), first, at least three types of concrete specimens having different compressive strengths are prepared. In this embodiment, as an example, five types of specimens are prepared so that the compressive strength is 15, 20, 30, 45, and 60 N / mm 2 .
[0009]
At this time, it is preferable that these specimens are made of the same material as the target concrete and have substantially the same shape. This is to improve the estimation accuracy of the compression strength. The shape of the specimen is, for example, a concrete structure, and in the case of a rectangular column or the like, a column member (for example, a height of 60 × 20 × 40 cm, a height of 120 × 20 × 50 cm, etc.) is used. In the case of a floor slab or the like, a floor member (for example, height 20 × 60 × 50 cm, height 20 × 60 × 45 cm, height 20 × 20 × 60 cm, height 20 × 60 × 40 cm, etc.) is used. it can.
[0010]
Each specimen prepared in this manner is preferably cured with at least the same concrete and curing environment. For example, if you are targeting concrete cured in the air, in the air if you are targeting concrete cured in water, if you are targeting concrete cured by applying a curing agent in water Apply a curing agent and cure. The reason for making the curing environment the same is that the properties of the specimens vary greatly depending on the curing environment.
[0011]
The period of each specimen can be set to, for example, 1 day, 2 days, or 3 days, preferably 7 days or more, and more preferably 28 days or more. This is to stabilize the properties and state of the specimen.
[0012]
(Measurement of penetration coefficient and penetration depth of specimen)
Next, with respect to each specimen prepared and cured as described above, at least one of the penetration coefficient and the penetration depth is measured in the present embodiment. This measurement is performed using the contact body 1 shown below.
As shown in FIGS. 1 and 2, the abutment body 1 is opened on the concrete C surface side at the center of the abutment body 2 and is connected to a forced decompression means (not shown) such as a decompression pump via a hose 4. A chamber 2A, and a contact means for bringing the contact body 2 into close contact with the concrete C surface outside the inner chamber 2A. When the contact body 2 is brought into close contact with the concrete C surface by the contact means, the inner chamber The interior of 2A is a closed space I. In particular, in the present embodiment, the contact means has an annular outer chamber 3 that opens to the surface side of the concrete C formed outside the inner chamber 2A, and is composed of a decompression pump or the like connected to the outer chamber 3. A contact pressure reducing means (not shown) is connected via a hose 5, and the contact main body 2 is in close contact with the concrete C surface as the inside pressure O in the outer chamber 3 is reduced by the operation of the contact pressure reducing means.
[0013]
In measuring the penetration coefficient and penetration depth, first, the contact body 1 as described above is applied to the surface of the concrete C, and the inside O of the outer chamber 3 is passed through the decompression hose 5 by the contact decompression means (not shown). And depressurize. Thereby, the contact main body 2 is attached in close contact with the target concrete C without damaging the concrete C or the like.
[0014]
When the contact main body 2 is attached to the concrete C or simultaneously with the attachment, the hose is formed in the inner chamber 2A (for example, 1.015 to 0.9 MPa) that has become the closed space I by the above-mentioned application by forced decompression means (not shown). 4, for example, the pressure is reduced to 0.1 to 0.01 MPa. Thereby, the penetration coefficient and penetration depth of concrete C can be measured.
[0015]
The penetration coefficient and the penetration depth are obtained from the following formula (1) or the following formula (2). In this equation, “kT” is the penetration coefficient [10 −16 · m 2 ], “L” is the penetration depth [mm], and “Vc” is the total air volume [m 3 ] in the inner chamber 2A and the hose 4. , “A” is the cross-sectional area [m 2 ] (theoretical value) of the inner chamber 2A (contact portion with the concrete C surface), “μ” is the kinematic viscosity of air [Ns / m 2 ] (usually 2.0 × 10 −5 ), ε is the porosity of concrete [m 3 / m −3 ] (usually 0.15), Pa is atmospheric pressure [N / m 2 ], t is the test time [s], and t 0 is 60 [ s] and ΔPt are pressure increase values [N / m 2 ], and ln is a natural logarithm.
[Expression 1]
Figure 0004009118
[Expression 2]
Figure 0004009118
[0016]
The depressurization of the closed space I is preferably performed until it becomes the same as or equal to the pressure in the outer chamber 3. This is because the air flow in the concrete part C2 (referred to as a part facing the outer chamber 3 of the concrete C) generated by the decompression of the O in the outer chamber 3 is caused by the concrete part C1 (the concrete C of the concrete C) generated by the decompression of the closed space I. This is to prevent the infiltration coefficient and infiltration depth from becoming inaccurate.
[0017]
In order to make the pressure in the closed space I and the pressure in the outer chamber 3 O the same, for example, the forced pressure reducing means and the contact pressure reducing means may be configured by one pressure reducing pump.
[0018]
In the present embodiment, the inner chamber 2A and the outer chamber 3 have a substantially circular cross section and are integrated via the contact main body 2. However, the present invention is not limited to this. The cross section can be appropriately changed to a substantially rectangular shape, an elliptical shape, or the like. Moreover, it can also be set as a different body, without integrating both.
[0019]
(Measurement of compressive strength)
Next, the compressive strength is measured about the test body which measured the penetration coefficient and the penetration depth as mentioned above. For example, in the case of a cylindrical specimen, this measurement can be performed according to JIS A 1108 “Concrete compressive strength test method”. Core and beam cutting method and strength test method ".
[0020]
(Establishment of estimation formula)
When the compressive strength of each specimen is actually measured as described above, regression analysis is performed using the previously measured penetration coefficient and penetration depth, and an estimation formula for estimating the compression strength from the penetration coefficient and penetration depth is obtained.
[0021]
(Measurement of penetration coefficient and penetration depth of target concrete)
In parallel with the above or before and after, at least one of the penetration coefficient and the penetration depth of the target concrete is measured in the present embodiment. This measurement can be performed by the same method as described above using the contact body 1 described above.
[0022]
(Estimation of compressive strength)
When the estimation formula is established as described above and the penetration coefficient and penetration depth of the target concrete are measured, the penetration coefficient and penetration depth are substituted into the estimation formula. Thereby, the compressive strength of concrete is estimated.
[0023]
(Other)
(1) In the above description, the form in which the preparation and curing of the test specimen, the establishment of the estimation formula, and the compression strength estimation of the target concrete are continuously performed has been described. However, the present invention is not limited to this. An estimation formula is established in advance, and the compressive strength of the target concrete can be estimated based on this estimation formula. In this case, it is preferable to facilitate a plurality of estimation formulas specifying the shape, curing environment, and the like.
[0024]
(2) Further, the type of the concrete to be applied in the present invention is not particularly limited. In addition to commonly used concrete such as ordinary concrete, lightweight concrete, and paving concrete, concrete lacking coarse aggregate, that is, mortar can also be used.
[0025]
(3) Furthermore, the shape and presence state of the concrete to which the present invention is applied are not particularly limited. It is also possible to estimate the compressive strength of concrete or concrete products that exist as part of civil engineering structures, building structures, or any other structure.
[0026]
(4) According to this embodiment , it is possible to estimate the compressive strength from the penetration coefficient or the compressive strength from the penetration depth. However, if the compression strength is estimated by comprehensively evaluating both measured values, Is preferred.
[0027]
【Example】
Hereinafter, based on an Example, the correlation with a penetration coefficient and penetration depth, and compressive strength is clarified.
(Creation and curing of specimens)
In this example, specimens were created by changing the target strength, age, shape, and curing environment. Specifically, the target strength of the specimen is 15 (normal), 20 (normal), 30 (normal), 45 (normal), 60 (normal), and 30 (mortar) N / mm 2 . did. Moreover, the age of the specimens was set to 10 on the 3rd, 7th, 8th, 14th, 28th, 40th, 48th, 49th, 56th and 365th days. The shape and size of the specimens are: cylindrical specimen (height 20 × φ10 cm), bending specimen (height 15 × 15 × 53 cm, height 15 × 15 × 60 cm), column member (height 60 × 20 × 4 types: 40 cm, height 120 × 20 × 50 cm), floor member (height 20 × 60 × 50 cm, height 20 × 60 × 45 cm, height 20 × 20 × 60 cm, height 20 × 60 × 40 cm), There were 9 types in total. There were five curing environments: underwater curing, in-air curing, curing agent coating curing (application amount 65 g / cm 2 or 130 g / cm 2 ), wet curing, and outdoor curing.
[0028]
(Measurement of penetration coefficient and penetration depth)
About each specimen, the penetration coefficient and the penetration depth were measured using the contact body 1 shown in the embodiment.
“Vc” is 222 × 10 −6 [m 3 ], “A” is 19.6 × 10 −4 [m 2 ], “μ” is 2.0 × 10 −5 [Ns / m 2 ], “Ε” was 0.15 [m 3 / m −3 ].
[0029]
(Measurement of compressive strength)
The actual measurement of the compressive strength of each specimen was carried out based on JIS A 1108 for the core specimen (height 20 × φ10 cm) cut out from the specimen, with the cylindrical specimen being left as it was. . A core drill was used for core removal.
[0030]
(Test results and discussion)
FIG. 3 shows the relationship between the penetration coefficient and the core compressive strength, FIG. 4 shows the relationship between the penetration depth and the core compressive strength, the following equation (3) shows the single regression equation for FIG. 3, and the following equation (4). The single regression equation for FIG. 4 is shown, the accuracy of the following equation (3) is shown in FIG. 5, and the accuracy of the following equation (4) is shown in FIG. It can be seen that the compressive strength decreases as the penetration coefficient and penetration depth increase. Therefore, it can be estimated that the smaller the penetration coefficient and penetration depth, the higher the compressive strength of the target concrete. Fc is the core compressive strength (N / mm 2 ), K is the penetration coefficient (10 −16 m 2 ), and L is the penetration depth (mm).
[Equation 3]
Figure 0004009118
[Expression 4]
Figure 0004009118
[0031]
(Multiple regression analysis)
The data obtained in the above test was subjected to multiple regression analysis (variable increase / decrease method, F in = F out = 2.0). The following equation (5) was obtained from the data based on the penetration coefficient, and the following equation (6) was obtained from the data based on the penetration depth. The accuracy of this equation is shown in FIGS. The core compressive strength Fc (N / mm 2 ) is an objective variable, and the penetration coefficient K (10 −16 m 2 ), penetration depth L (mm), curing environment YO (1: in air, 2: curing agent Application (65), 3: Curing agent application (130), 4: Wet, 5: Underwater), Age ZA (day), Shape DAS (1: Floor member, 2: Bending specimen, 3: Cylindrical specimen Column member), measurement location SO (1: upper surface, 2: upper side surface, 3: middle side surface, 4: lower side surface, 5: lower surface) are adopted as explanatory variables (the value in parentheses in the lower part of the formula is the T value, and further N in the lower row is the number of data, R is a multiple correlation coefficient, and es is the standard deviation of the residual (N / mm 2 ).
[Equation 5]
Figure 0004009118
[Formula 6]
Figure 0004009118
[0032]
From these equations, it can be seen that a high degree of correlation can be observed between the penetration coefficient and penetration depth and the compressive strength of the core. Therefore, it can be seen that based on the penetration coefficient or penetration depth, the compressive strength can be estimated relatively easily without being influenced by the state of the concrete surface. It can also be seen that the smaller the penetration coefficient and penetration depth, the lower the measurement location, and the higher the age, the greater the compressive strength.
[0033]
【The invention's effect】
As described above, according to the method of the present invention, the compressive strength of concrete in a structure can be estimated relatively easily without being influenced by the state of the concrete surface.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a contact body.
FIG. 2 is a perspective view of a contact body.
FIG. 3 is a graph showing the relationship between the penetration coefficient and the compressive strength of the core.
FIG. 4 is a graph showing the relationship between penetration depth and core compressive strength.
FIG. 5 is a result value and a calculated value of equation (3).
FIG. 6 is a result value and a calculated value of equation (4).
FIG. 7 is a result value and a calculated value of equation (5).
FIG. 8 is a result value and a calculated value of equation (6).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Contact body, 2 ... Contact body, 2A ... Inner chamber, 3 ... Outer chamber, 4,5 ... Hose, C ... Concrete, I ... Closed space, O ... Outer chamber inner space.

Claims (2)

当接本体の中央部にコンクリート表面側に開口し、強制減圧手段にホースを介して連なる内側チャンバーを有し、この内側チャンバー外側にコンクリート表面側に開口する環状の外側チャンバーが形成され、この外側チャンバーに連なって密着減圧手段が接続され、この密着減圧手段の作動による前記外側チャンバー内の減圧に伴って、前記当接本体がコンクリート表面に密着するように構成した密着手段を有し、この密着手段により当接本体をコンクリート表面に密着させたとき、前記内側チャンバー内が閉鎖空間となる構造の当接体を、
構造物のコンクリート表面にあてがい、前記密着手段により前記当接本体を前記構造物のコンクリート表面に密着させた状態とするとともに、前記内側チャンバー内を前記減圧手段により減圧することによって前記構造物のコンクリートの浸透係数及び浸透深さの両方を次式(1)又は次式(2)に基づいて計測し、この計測値から前記構造物のコンクリートの圧縮強度を推定することを特徴とする構造物のコンクリートの圧縮強度推定方法。
Figure 0004009118
Figure 0004009118
なお、同式中の「kT」は浸透係数〔10 -16 ・m 2 〕、「L」は浸透深さ〔mm〕、「Vc」は前記内側チャンバー及び前記ホース内の空気総量〔m 3 〕、「A」は前記内側チャンバー(コンクリート表面との当接部分)の断面積〔m 2 〕(理論値)、「μ」は空気の動粘度〔Ns/m 2 〕、εはコンクリートの空隙率〔m 3 /m -3 〕、Paは大気圧〔N/m 2 〕、tは試験時間〔s〕、t 0 は60〔s〕、ΔPtは圧力上昇値〔N/m 2 〕、lnは自然対数である。
There is an inner chamber that opens on the concrete surface side in the center of the abutment body, and is connected to the forced decompression means via a hose, and an annular outer chamber that opens on the concrete surface side is formed outside this inner chamber , A contact pressure reducing means is connected to the chamber, and has a contact means configured so that the abutting body comes into close contact with the concrete surface in accordance with the pressure reduction in the outer chamber by the operation of the contact pressure reducing means. When the contact body is brought into close contact with the concrete surface by means, the contact body having a structure in which the inside chamber becomes a closed space,
Applying to the concrete surface of the structure, the contact body is brought into close contact with the concrete surface of the structure by the contact means, and the inside of the inner chamber is decompressed by the decompression means, thereby reducing the concrete of the structure. Both of the penetration coefficient and the penetration depth are measured based on the following formula (1) or the following formula (2), and the compressive strength of the concrete of the structure is estimated from the measured value. A method for estimating the compressive strength of concrete.
Figure 0004009118
Figure 0004009118
In the equation, “kT” is a penetration coefficient [10 −16 · m 2 ], “L” is a penetration depth [mm], and “Vc” is a total air volume [m 3 ] in the inner chamber and the hose. , “A” is the cross-sectional area [m 2 ] (theoretical value) of the inner chamber (contact portion with the concrete surface ), “μ” is the kinematic viscosity of air [Ns / m 2 ], and ε is the porosity of the concrete. [ M 3 / m −3 ], Pa is the atmospheric pressure [N / m 2 ], t is the test time [s], t 0 is 60 [s], ΔPt is the pressure increase value [N / m 2 ], and ln is It is a natural logarithm.
浸透係数、浸透深さが小さいほど構造物のコンクリートの圧縮強度が大きいと推定する請求項1記載の構造物のコンクリートの圧縮強度推定方法。The method for estimating the compressive strength of concrete in a structure according to claim 1, wherein it is estimated that the compressive strength of the concrete in the structure is larger as the penetration coefficient and the penetration depth are smaller.
JP2002064329A 2002-03-08 2002-03-08 Method for estimating the compressive strength of concrete in structures Expired - Lifetime JP4009118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064329A JP4009118B2 (en) 2002-03-08 2002-03-08 Method for estimating the compressive strength of concrete in structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064329A JP4009118B2 (en) 2002-03-08 2002-03-08 Method for estimating the compressive strength of concrete in structures

Publications (3)

Publication Number Publication Date
JP2003262578A JP2003262578A (en) 2003-09-19
JP2003262578A5 JP2003262578A5 (en) 2005-09-02
JP4009118B2 true JP4009118B2 (en) 2007-11-14

Family

ID=29197172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064329A Expired - Lifetime JP4009118B2 (en) 2002-03-08 2002-03-08 Method for estimating the compressive strength of concrete in structures

Country Status (1)

Country Link
JP (1) JP4009118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880394A (en) * 2015-05-04 2015-09-02 同济大学 Concrete gas permeability testing apparatus and testing method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696838B2 (en) * 2005-10-19 2011-06-08 宇部興産株式会社 Method for evaluating acid resistance of hardened cement
JP5893530B2 (en) * 2012-08-03 2016-03-23 一般財団法人電力中央研究所 Concrete air permeability test apparatus, method for estimating air permeability coefficient distribution of concrete, estimation apparatus, and estimation program
JP5882161B2 (en) * 2012-08-03 2016-03-09 一般財団法人電力中央研究所 Concrete water absorption test apparatus, concrete permeability coefficient distribution estimation method, estimation apparatus, and estimation program
JP5611417B1 (en) * 2013-05-27 2014-10-22 学校法人 中村産業学園 Quality evaluation method based on permeability test of concrete structures
JP6853121B2 (en) * 2017-06-06 2021-03-31 太平洋セメント株式会社 How to build a database
JP7378162B2 (en) * 2021-07-28 2023-11-13 エフティーエス株式会社 Verification system and method for concrete testing machines, and verification equipment for testing machines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880394A (en) * 2015-05-04 2015-09-02 同济大学 Concrete gas permeability testing apparatus and testing method thereof
CN104880394B (en) * 2015-05-04 2017-12-26 同济大学 A kind of concrete air infiltration test equipment and its method of testing

Also Published As

Publication number Publication date
JP2003262578A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
Sabbağ et al. Prediction of reinforced concrete strength by ultrasonic velocities
Garven et al. Evaluation of empirical procedures for predicting the shear strength of unsaturated soils
Swartz et al. Validity of compliance calibration to cracked concrete beams in bending: The suitability of the compliance calibration technique to monitoring cracking in plain concrete beams was evaluated by using dye penetrant to determine average crack length. This was found to be less than that estimated by the compliance-calibration method
JP5611417B1 (en) Quality evaluation method based on permeability test of concrete structures
JP4009118B2 (en) Method for estimating the compressive strength of concrete in structures
Karahan et al. The relationship between concrete strengths obtained by destructive and non-destructive methods
Prassianakis et al. Mechanical properties of old concrete using destructive and ultrasonic non-destructive testing methods
Felicetti Assessment of fire damage in concrete structures: new inspection tools and combined interpretation of results
JP2011043339A (en) Method for estimating external force acting on water passage tunnel
CN111122834B (en) Calculation method for obtaining stress intensity factor in road dynamic water damage process
Šlivinskas et al. Mortar compressive strength estimation by applying various experimental test methods
Romer Comparative test—Part I—Comparative test of ‘penetrability’methods
Ohtsu et al. Quantitative damage estimation of concrete core based on AE rate process analysis
Namikawa et al. Experimental determination of softening relations for cement-treated sand
Łątka et al. Assessment of the compressive strength of lime mortar in the joints of brick walls-case study
Sadezadeh et al. Indirect and non-destructive methods for assessing abrasion resistance of concrete
Walach et al. The impact of moisture content of wood on the results of non-destructive tests
RU2277239C1 (en) Ultrasonic method of testing of concrete&#39;s strength in concrete and ferroconcrete constructions during exploitation
Zhu et al. Piezoelectric actuator/sensor wave propagation based nondestructive active monitoring method of concrete structures
RU2262687C1 (en) Ultrasonic method of inspection of strength of concrete in concrete and ferroconcrete structures during exploitation
RU2262692C1 (en) Method of ultrasonic testing of concrete strength
White A laboratory investigation into the behaviour of sand at low confining stresses
Gholamhoseini et al. Long-term deformation of composite concrete slabs under sustained loading
ODACIOĞLU et al. An Experimental Study to Determine Sliding Shear Strength and Internal Frictional Coefficient of Clay Brick Wall in a Masonry Building
Poullain et al. Mechanical properties of cob-earth composites: variability and focus on the different calculation methods of Young's modulus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4009118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term