JP4007928B2 - X-ray CT system - Google Patents

X-ray CT system Download PDF

Info

Publication number
JP4007928B2
JP4007928B2 JP2003036308A JP2003036308A JP4007928B2 JP 4007928 B2 JP4007928 B2 JP 4007928B2 JP 2003036308 A JP2003036308 A JP 2003036308A JP 2003036308 A JP2003036308 A JP 2003036308A JP 4007928 B2 JP4007928 B2 JP 4007928B2
Authority
JP
Japan
Prior art keywords
ray
subject
data
time phase
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003036308A
Other languages
Japanese (ja)
Other versions
JP2004261224A5 (en
JP2004261224A (en
Inventor
宮崎  靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2003036308A priority Critical patent/JP4007928B2/en
Priority to US10/544,907 priority patent/US7426255B2/en
Priority to CN2008102128659A priority patent/CN101352352B/en
Priority to CNB2004800041025A priority patent/CN100453045C/en
Priority to PCT/JP2004/001531 priority patent/WO2004071301A1/en
Publication of JP2004261224A publication Critical patent/JP2004261224A/en
Publication of JP2004261224A5 publication Critical patent/JP2004261224A5/ja
Application granted granted Critical
Publication of JP4007928B2 publication Critical patent/JP4007928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、X線CT装置の診断価値を下げることなく、心臓などの運動部位の撮影時の被曝低減を可能とする技術に関するものである。
【0002】
【従来の技術】
従来のX線CT装置の被検体の心臓計測について、(1)CTと心臓撮影、(2)ECG同期再構成、(3)Prospective計測、(4)管電流制御の各観点から説明する。
(1)CTと心臓撮影:現在主流のX線CT装置は機械走査方式で、スキャナ回転スピードの高速化の結果、0.5秒程度のスキャン時間が達成されている。しかし、心臓撮影には0.1秒程度のスキャン時間が必要とされており、十分な性能とは言えない。また、機械走査式を上回るものとしては電子ビーム走査型CT装置(EBCT)があり、そのスキャン時間は最短で50ミリ秒が可能となっている。
【0003】
(2)ECG同期再構成:検出器を体軸方向に複数用意して、一度に複数スライス位置の投影データを計測できるマルチスライスCT装置では、テーブルスピードを遅くして冗長な計測をすることで実効的な時間分解能を向上させる試みもなされている。これはセグメント再構成と呼ばれる再構成手段を用いるもので、らせんスキャン時に同一スライス位置の同一心時相(例えば、拡張期)を各検出器列で複数回(セグメント数)計測することで理想的には実効的な時間分解能をセグメント数分の一にすることができるものである。4列マルチスライスの場合、再構成に必要なビュー範囲(ハーフスキャンの場合で180度+ファン角)を4セグメントに分割し、それぞれのセグメントを異なる列で計測できるようにテーブル送りやスキャン時間などの撮影条件を設定する。セグメント再構成の場合、最適スキャン時間は患者の心拍数にも依存するが、0.6秒スキャンとすれば、ハーフスキャンの4分の1である約0.1秒の実効時間分解能の画像が取得可能である。
【0004】
列数を増加すればセグメント数を増加させることができるため、さらに分解能は高められる。例えば、8列ではセグメント数は最大2倍となり、最高でハーフキャンの8分の1まで達成できる。これを実現するためには4列システムと患者テーブルを同じスピードで送る必要があり、時間分解能を重視したためスループットは向上しない。典型的な例としては螺旋ピッチが1程度となる。
【0005】
(3)Prospective計測:セグメント再構成モードの問題点として、冗長な計測をすることによる患者被曝の増大という問題がある。一方で、被曝低減を目的としたもので、心電図の特定の心時相に同期してX線を曝射して撮影する方法がある。これはEBCTで、冠動脈石灰化指数(Coronary Calcium Score)算出を目的する場合等で用いられている撮影方法であり、拡張末期などの時相のみを狙ってX線を曝謝する。EBCTの場合においては、例えば0.1秒間のみX線を曝射してハーフスキャン画像を得る。一般的な機械走査方式では、0.5秒/回転の場合は画像再構成に必要な約2/3周分のデータが必要となるため、時間分解能は0.33秒となる。この撮影方法では、特定の時相しか撮影しないため、石灰化や冠動脈の評価をすることは可能であるが、心壁の動きなど複数時相に股がった心機能評価はできないなどの問題があった。
【0006】
(4)管電流制御:被曝の低減手段として、被検体を均一減弱体としたときの透過長(減弱)が線源の角度位置によって異なることを加味し、スキャナ回転中に回転角度に応じ管電流を変調する管電流制御方式がある。透過長の違いは事前に撮影したスキャノグラムを用いるものと、計測中に検出器からの出力をフィードバッグさせるものとがある。いずれにしても、各計測ビューによって管電流が異なるため、例えば、円柱上の物体を撮影した場合には計測した投影データのノイズ量が変化する。実際には、被検体の透過長が長い時には管電流を高くし、短い時には低くすることで、常に検出器出力が一定のレベルになるようにすることで投影データのノイズ量が均一になるように制御する。
【0007】
この方式が最も効果を発揮するのは、肩や骨盤など縦横(患者の前後、左右)での減弱の差が大きい部位でのアーチファクト低減や、肺野から腹部までを一回の螺旋スキャンで撮影する場合などのトータル被曝低減に有効であるが、心臓などの特定臓器での被曝を考慮したものではなかった。
【0008】
そこで、従来の被曝低減は、例えば、[特許文献1]に記載されるように、X線検出器に対して被検体を挟んで対向した状態でX線管を回転駆動する回転機構と、X線管にX線曝射のための電力を供給するX線制御部と、X線検出器が検出した投影データを入力して、1枚の断層像の再構成に必要な多方向の投影データを収集するのに要する時間より短時間で断層像を再構成する再構成装置と、ONとOFFを選択的に入力するためのスイッチと、回転機構を制御してX線管を回転させながらスイッチがON状態のときのみX線制御部から電力を供給させるようにX線制御部を制御スキャン制御部とを具備することで、診断に影響しないで被曝量を軽減できるものである。
【0009】
【特許文献1】
特開2001-190547号公報
【0010】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、被検体透過長が考慮されていないので、被検体透過長が短かければ管電流を小さくすることに配慮がされていないから、無用な被曝の増大となるおそれがある。
一方、被検体透過長が長くなれば、管電流の大きさを適正としなければならないが、被検体透過長が考慮されていないが故に、画像ノイズを増加しすぎるおそれがある。
【0011】
本発明の目的は、被検体へのX線被曝をできるだけ増大させずに、一回の撮影で形能的な診断と運動部位の機能の評価を可能とするX線CT装置を提供することである。
【0012】
【課題を解決するための手段】
上記目的は、X線源からのX線を被検体に多方向から照射して投影データを得、それらの投影データから前記被検体の断層像データを再構成し、その再構成された断層像データを表示するX線CT装置において、前記被検体の周期的運動を伴う撮像範囲を撮影するに当たりその周期的運動のうちの標的時相を設定する手段と、該設定された標的時相でX線強度が相対的に大きくなる変調制御パターンを運動周期依存型制御パターンと前記被検体の透過厚に依存した検出器出力レベルを一定に保つ透過厚依存型制御パターンとを用いて前記X線源を変調制御する手段と、該制御されたX線源から照射されるX線によって撮影された投影データより前記設定された標的時相におけるセグメントデータを取得し、前記取得されたセグメントデータを用いて前記被検体の撮像範囲の断層像を再構成する手段とを備えたことによって達成される。
また、前記再構成手段は、前記セグメントデータ間あるいは前記断層像間のノイズレベル差を減少するフィルタ手段をさらに備えている。
【0013】
【発明の実施の形態】
本発明のX線CT装置の実施の一形態について図面を用いて説明する。
図1は本発明のX線CT装置の構成例を示すブロック図、図2は本発明に採用する管電流制御パターンの例を説明する図、図3はフィルタ処理を挿入する態様を説明するフローチャートである。
【0014】
X線CT装置は、図1に示すように、システム全体を統括制御するホストコンピュータ107、X線管101を含むX線発生系、検出器102を含む検出器系を搭載した(回転)走査機構103、患者位置決め時、らせん走査時の搬送用患者テーブル104、各種画像処理を実施する画像処理装置106、外部記憶装置110、表示装置109、オペレータの指示情報を入力する入力デバイス108を有してなる。また、このX線CT装置には外部の心電計111から心電波形情報を入力可能となっている。
【0015】
スキャナ100の回転盤には、X線制御装置101Cが搭載されておりX線強度を制御する。撮影開始に先立ち、各装置の撮影準備(撮影条件、再構成条件の設定など)がなされる。回転走査機構103はスキャナ100の回転盤を回転させ、所望の回転スピードになった段階で走査制御装置103Cはホストコンピュータ107に準備完了情報を通知する。螺旋スキャンの場合は、あらかじめ患者テーブル104の加速時間を考慮した位置に移動しておき、X線曝射開始位置で定常速度になるように制御する。X線を曝射して撮影を開始すると、ホストコンピュータ107から指示された(あるいは事前に管電流制御パターンを登録しておいた)強度のX線を対向配置された検出器102に向かって照射する。検出器102では被検体(図示省略)を透過したX線を検出し、電気信号に変換した後、計測回路105でデジタルデータとして投影データを取得する。投影データは画像処理装置106で前処理、フィルタ処理、逆投影処理をはじめとした画像処理を施し、断層像を再構成する。再構成された画像は表示装置109に表示され、診断用画像として観察者に供される。
【0016】
次に、心臓撮影の流れについて説明する。
このX線CT装置には、心拍依存型制御モードと、心拍依存型制御モードおよび被検体等価厚依存型制御モードの併存制御モードの2つの制御モードとを有している。オペレータは心臓撮影に先立ち、前述の制御モードのうちのどちらかを選択し、その選択された制御モード、被検体(患者)の平均心拍、標的時相、最大/最小管電流を入力する。ホストコンピュータ107では、入力された平均心拍から管電流の制御周期を算出して、最大/最小管電流間を変動する管電流制御パターン1を作成し、X線制御装置にその制御パターンを転送する。心拍依存型制御モードでは、管電流制御パターン1を用いて撮影を開始する。心拍+被検体等価厚依存型制御モードでは、例えば特開2002-263097号公報のようにスキャノグラムから回転角度θ、体軸方向位置zにおける制御パターン2を作成し、制御パターン1を制御パターン2で変調した制御パターン3を用いる。
【0017】
図2には(a)ECG波形データ、(b)本発明の管電流制御パターンを示した。また、同図(c)には被検体透過長依存方式で最低管電圧を1/2とした場合の制御パターンを比較のために示した。ただし、ここでは説明を簡単にするために体軸方向の変化はないものとしている。また、パターンは図のように正弦波状に制御したが、標的時相の時間幅を相対的に大きめにとっても良く、心拍の変動等を考慮したパターンとすることが望ましい。
【0018】
本発明の心拍周期依存方式で管電流を制御するとその制御パターンは図3(b)の破線となる。ここでは、従来型制御同様に最低管電圧を1/2とした。この場合、標的時相は時相1とした例であり、ECG波形のうちの最も高画質で見たい時相1に一致して最大管電流が適用された撮影となる。再構成手段では、標的時相におけるセグメントデータのみを用いて再構成するため、最もノイズの少ない良好な画像を取得できることが分かる。他の時相の画像を得る場合を考えると、例えば、同図に示した時相2では管電流が最小値に近いデータのみを用いることになるため、ノイズが多い画像となる。典型的な標的時相の決め方は、例えば、60〜70%の時相(いわゆる拡張期)を標的時相とする。拡張期の画像は石灰化指数算出に用いるか、冠動脈の狭窄の評価に用い、それ以外の時相は心壁の運動状態を見るのに用いる。心壁の運動は、例えば動画で観察するが、静止画に比べ一般的にノイズは目立たなくなるため十分な観察ができる。また、静止画を用いて解析する場合においても、血管の評価等に比べ高い分解能は要求されない。従って、被曝を最小限にし、且つ、X線CT装置で可能な検査を一回の撮影で可能とする。
【0019】
図2(b)の時間t1に着目してみると、被検体透過長の観点からは透過長が短く管電流を低くしたい前後(AP)方向で管電流が高くなっているのが分かる。また、時間t2では逆に管電流を高くしたい左右(LAT)方向で管電流が低くなっているのが分かる。t1では無用な被曝の増大となり、t2では必要以上に管電流を下げてしまい画像ノイズを増大し過ぎることが考えられる。
【0020】
心拍+被検体等価厚依存型制御モードは、心拍周期依存型制御パターンをさらに被写体透過長依存型パターンで変調する方式である。各々を図2(b)破線、図2(c)実線とすると、変調後のパターンは図2(b)実線となる。これにより、標的時相で最良の画質、それ以外の時相では画像ノイズは増加するが、被検体透過長に依存した回転角度方向のノイズ変動も抑制され、許容される範囲で画質が維持された画像となる。
【0021】
また、本実施形態では時相毎でノイズレベルが変化するため、図3のように、投影データの標準偏差値を算出して、各セグメントデータのノイズ量を算出し、ノイズ量に応じて投影データに施すフィルタを調整するステップ304,305を設けた。このフィルタ処理は画像処理装置によって行われる。フィルタ処理は逆投影のぼけ補正用の再構成フィルタ処理を変更しても良いが、チャンネル方向に別途加重平均フィルタ等、公知の手法を用いれば良く、周波数特性を調整できるものであれば特に限定されるものではない。
【0022】
上記実施形態によれば、拡張期などの標的時相を設定し、標的時相での管電流を高くすることで、良好な標的時相の画質が得られ、冠動脈の評価が可能となる。また、収縮期では管電流は低いが心壁の境界は十分トレースできるため拡張期と収縮期の容積比率から心機能が評価できるため、1回の断層像を再構成し得る投影データの計測で評価がすべて可能となる。
【0023】
また、投影データのノイズレベルをほぼ一定にする手段も設けたため、画質が安定するとともに、被写体透過長依存型パターンでさらに変調した場合にはさらに被曝を低減することができる。
【0024】
また、拡張期のみ曝射した場合、不整脈などでデータに不足がでる場合があるが、本発明による撮影方法ではノイズは増加するがデータを補うことができる。
【0025】
よって、当然X線CT装置の世代や撮影モードによらず同様に期待できることは明らかで、シングルスライスCT、コーンビームCT、あるいは螺旋スキャン、ダイナミックスキャンでも同様の被曝低減効果が得られる。
【0026】
また、心臓撮影を実施する場合の患者被曝を低減できるとともに、心電図の特定心時相に同期してX線を曝射する撮影方式のように特定の心時相の画像しか得られない訳ではなく、全ての心時相の画像取得が1回の断層像を再構成し得る投影データの計測で可能となる。
心臓を中心に説明したが、その他の周期的運動部位や、意図的な周期動作中の撮影においても本発明が適用できるのは明らかである。
【0027】
【発明の効果】
本発明は、被検体へのX線被曝をできるだけ増大させずに、心機能の評価を可能とするX線CT装置を提供するという効果がある。
【図面の簡単な説明】
【図1】本発明のX線CT装置の構成例を示すブロック図。
【図2】本発明に採用する管電流制御パターンの例を説明する図。
【図3】フィルタ処理を挿入する態様を説明するフローチャート。
【符号の説明】
101…X線管、101C…X線制御装置、105…計測回路、106…画像処理装置、108…入力デバイス
[0001]
[Technical field to which the invention belongs]
The present invention relates to a technique that can reduce exposure during imaging of a motion site such as a heart without lowering the diagnostic value of an X-ray CT apparatus.
[0002]
[Prior art]
The heart measurement of the subject of the conventional X-ray CT apparatus will be described from the viewpoints of (1) CT and cardiac imaging, (2) ECG synchronous reconstruction, (3) Prospective measurement, and (4) tube current control.
(1) CT and cardiac imaging: The mainstream X-ray CT system is a mechanical scanning system, and as a result of the increased scanner rotation speed, a scan time of about 0.5 seconds has been achieved. However, cardiac scans require a scan time of about 0.1 seconds, which is not sufficient. An electron beam scanning CT (EBCT) that exceeds the mechanical scanning type is a scanning time of 50 milliseconds at the shortest.
[0003]
(2) ECG synchronous reconstruction: With a multi-slice CT system that can measure multiple projection positions at the same time by preparing multiple detectors in the body axis direction, the table speed can be slowed down to make redundant measurements. Attempts have also been made to improve effective time resolution. This uses a reconstruction method called segment reconstruction, and is ideal by measuring the same cardiac time phase (for example, diastolic phase) at the same slice position multiple times (number of segments) in each detector row during a helical scan. The effective time resolution can be reduced to a fraction of the number of segments. In the case of 4-row multi-slice, the view range required for reconstruction (180 degrees + fan angle in the case of half scan) is divided into 4 segments, and table feed, scan time, etc. so that each segment can be measured in a different row Set the shooting conditions. In the case of segment reconstruction, the optimal scan time depends on the heart rate of the patient, but if the 0.6 second scan is used, an image with an effective time resolution of about 0.1 second, which is a quarter of the half scan, can be acquired. .
[0004]
Since the number of segments can be increased by increasing the number of columns, the resolution can be further increased. For example, with 8 rows, the number of segments can be doubled up to 1/8 of a half can. In order to realize this, it is necessary to send the 4-row system and the patient table at the same speed, and since the time resolution is emphasized, the throughput is not improved. As a typical example, the spiral pitch is about 1.
[0005]
(3) Prospective measurement: As a problem of the segment reconstruction mode, there is a problem of increased patient exposure due to redundant measurement. On the other hand, with the aim of reducing exposure, there is a method in which X-rays are exposed and imaged in synchronization with a specific cardiac phase of the electrocardiogram. This is an imaging method used in EBCT for the purpose of calculating the Coronary Calcium Score, and X-rays are applied only for the time phase such as end diastole. In the case of EBCT, for example, X-rays are exposed only for 0.1 seconds to obtain a half-scan image. In a general mechanical scanning method, in the case of 0.5 second / rotation, data of about 2/3 rounds necessary for image reconstruction is required, so the time resolution is 0.33 second. Since this method only captures specific time phases, it is possible to evaluate calcifications and coronary arteries, but it is not possible to evaluate cardiac function with multiple time phases such as heart wall movement. was there.
[0006]
(4) Tube current control: As a means to reduce exposure, taking into account that the transmission length (attenuation) when the subject is a uniform attenuation body varies depending on the angular position of the radiation source, and the tube according to the rotation angle during scanner rotation. There is a tube current control system that modulates the current. There are two types of transmission length, one using a scanogram taken in advance and the other that feeds back the output from the detector during measurement. In any case, since the tube current differs depending on each measurement view, for example, when an object on a cylinder is photographed, the noise amount of the measured projection data changes. Actually, the tube current is increased when the transmission length of the object is long, and is decreased when the transmission length is short, so that the detector output is always at a constant level so that the amount of noise in the projection data is uniform. To control.
[0007]
This method is most effective in reducing artifacts in areas where there is a large difference in attenuation in the vertical and horizontal directions (front and back, left and right of the patient), such as the shoulder and pelvis, and imaging from the lung field to the abdomen with a single spiral scan. This is effective in reducing total exposure in cases such as when performing exposure, but it did not consider exposure in specific organs such as the heart.
[0008]
Therefore, the conventional exposure reduction is, for example, as described in [Patent Document 1], a rotation mechanism that rotates and drives the X-ray tube in a state of facing the X-ray detector with the subject interposed therebetween, Multi-directional projection data required to reconstruct a single tomographic image by inputting projection data detected by an X-ray detector and an X-ray controller that supplies X-ray exposure power to the tube A reconstruction device that reconstructs tomograms in a shorter time than the time required to collect the images, a switch for selectively inputting ON and OFF, and a switch while rotating the X-ray tube by controlling the rotation mechanism By providing the X-ray control unit and the control scan control unit so that power is supplied from the X-ray control unit only when is in the ON state, the exposure dose can be reduced without affecting the diagnosis.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-190547
[Problems to be solved by the invention]
However, in the above prior art, since the subject penetration length is not taken into account, if the subject penetration length is short, no consideration is given to reducing the tube current, which may increase unnecessary exposure. .
On the other hand, if the subject transmission length becomes longer, the magnitude of the tube current must be made appropriate. However, since the subject transmission length is not taken into account, there is a possibility that the image noise will increase excessively.
[0011]
An object of the present invention is to provide an X-ray CT apparatus capable of performing a functional diagnosis and evaluating a function of a moving part by one imaging without increasing X-ray exposure to a subject as much as possible. is there.
[0012]
[Means for Solving the Problems]
The purpose is to irradiate the subject with X-rays from an X-ray source from multiple directions to obtain projection data, reconstruct the tomographic image data of the subject from the projection data, and reconstruct the tomographic image. In the X-ray CT apparatus for displaying data, a means for setting a target time phase of the periodic motion when imaging an imaging range involving the periodic motion of the subject, and the set target time phase X The X-ray source using a modulation control pattern in which the line intensity is relatively large as a motion cycle dependent control pattern and a transmission thickness dependent control pattern that keeps the detector output level constant depending on the transmission thickness of the subject. And the segment data in the set target time phase are obtained from the projection data photographed by the X-rays irradiated from the controlled X-ray source, and the obtained segment data is used. Said covered It is accomplished by comprising a means for reconstructing a tomographic image of the imaging range of the body.
The reconstruction means further includes a filter means for reducing a noise level difference between the segment data or between the tomographic images.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the X-ray CT apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing an example of the configuration of the X-ray CT apparatus of the present invention, FIG. 2 is a diagram for explaining an example of a tube current control pattern adopted in the present invention, and FIG. 3 is a flowchart for explaining a mode for inserting a filter process It is.
[0014]
As shown in FIG. 1, the X-ray CT apparatus is equipped with a host computer 107 that controls the entire system, an X-ray generation system that includes an X-ray tube 101, and a detector system that includes a detector 102 (rotational) scanning mechanism 103, a patient table 104 for conveyance at the time of patient positioning and spiral scanning, an image processing device 106 for performing various image processing, an external storage device 110, a display device 109, and an input device 108 for inputting operator instruction information Become. In addition, electrocardiographic waveform information can be input from an external electrocardiograph 111 to this X-ray CT apparatus.
[0015]
An X-ray control device 101C is mounted on the rotating disk of the scanner 100 to control the X-ray intensity. Prior to the start of shooting, shooting preparations (setting of shooting conditions, reconstruction conditions, etc.) of each device are made. The rotary scanning mechanism 103 rotates the rotary disk of the scanner 100, and the scanning control device 103C notifies the host computer 107 of the preparation completion information when the rotation speed reaches a desired rotational speed. In the case of the helical scan, control is performed in advance so that the patient table 104 is moved to a position that takes into account the acceleration time and the X-ray exposure start position is at a steady speed. When X-rays are emitted and imaging is started, the X-rays with the intensity instructed by the host computer 107 (or the tube current control pattern registered in advance) are emitted toward the opposing detector 102 To do. The detector 102 detects X-rays that have passed through the subject (not shown), converts them into electrical signals, and then obtains projection data as digital data in the measurement circuit 105. The projection data is subjected to image processing such as preprocessing, filter processing, and back projection processing by the image processing device 106 to reconstruct a tomographic image. The reconstructed image is displayed on the display device 109 and provided to the observer as a diagnostic image.
[0016]
Next, the flow of cardiac imaging will be described.
This X-ray CT apparatus has two control modes: a heartbeat-dependent control mode and a coexistence control mode of a heartbeat-dependent control mode and a subject equivalent thickness-dependent control mode. Prior to cardiac imaging, the operator selects one of the aforementioned control modes, and inputs the selected control mode, the average heartbeat of the subject (patient), the target time phase, and the maximum / minimum tube current. The host computer 107 calculates the tube current control cycle from the input average heart rate, creates a tube current control pattern 1 that fluctuates between the maximum and minimum tube currents, and transfers the control pattern to the X-ray controller. . In the heartbeat-dependent control mode, imaging is started using the tube current control pattern 1. In the heart rate + subject equivalent thickness dependent control mode, for example, as shown in JP-A-2002-263097, a control pattern 2 at a rotation angle θ and a body axis direction position z is created from a scanogram. A modulated control pattern 3 is used.
[0017]
FIG. 2 shows (a) ECG waveform data and (b) the tube current control pattern of the present invention. FIG. 2C shows a control pattern for comparison when the minimum tube voltage is ½ in the subject transmission length dependent method. However, here, in order to simplify the explanation, it is assumed that there is no change in the body axis direction. Further, the pattern is controlled in a sine wave shape as shown in the figure, but the time width of the target time phase may be relatively large, and it is desirable that the pattern take into account fluctuations in the heartbeat.
[0018]
When the tube current is controlled by the heartbeat cycle-dependent method of the present invention, the control pattern becomes a broken line in FIG. Here, the minimum tube voltage was set to 1/2 as in the conventional control. In this case, the target time phase is an example in which the time phase 1 is set, and imaging is performed in which the maximum tube current is applied in accordance with the time phase 1 to be viewed with the highest image quality in the ECG waveform. Since the reconstruction unit reconstructs using only segment data in the target time phase, it can be seen that a good image with the least noise can be acquired. Considering the case of obtaining an image of another time phase, for example, in time phase 2 shown in the figure, only data with a tube current close to the minimum value is used, so that an image with much noise is obtained. A typical method for determining the target time phase is, for example, a time phase of 60 to 70% (so-called diastole) is set as the target time phase. Diastolic images are used to calculate the calcification index or to evaluate coronary stenosis, and other time phases are used to see the motion of the heart wall. Although the motion of the heart wall is observed with, for example, a moving image, since noise is generally not conspicuous compared with a still image, sufficient observation can be performed. Further, even when analyzing using a still image, a higher resolution is not required compared to evaluation of blood vessels. Therefore, the exposure can be minimized and an examination that can be performed by the X-ray CT apparatus can be performed by one imaging.
[0019]
Focusing on the time t1 in FIG. 2 (b), it can be seen that the tube current is high in the front and back (AP) direction where the transmission length is short and the tube current is desired to be lowered from the viewpoint of the subject transmission length. It can also be seen that at time t2, the tube current decreases in the left-right (LAT) direction where the tube current is to be increased. At t1, unnecessary exposure increases, and at t2, the tube current is lowered more than necessary, and image noise may increase excessively.
[0020]
The heartbeat + subject equivalent thickness-dependent control mode is a method in which a heartbeat cycle-dependent control pattern is further modulated with a subject transmission length-dependent pattern. Assuming that each is a broken line in FIG. 2 (b) and a solid line in FIG. 2 (c), the modulated pattern is a solid line in FIG. 2 (b). As a result, the best image quality in the target time phase and the image noise increase in other time phases, but noise fluctuations in the rotation angle direction depending on the subject transmission length are also suppressed, and the image quality is maintained within an allowable range. Image.
[0021]
Further, in this embodiment, since the noise level changes for each phase, as shown in FIG. 3, the standard deviation value of the projection data is calculated, the noise amount of each segment data is calculated, and the projection is performed according to the noise amount. Steps 304 and 305 for adjusting the filter applied to the data are provided. This filtering process is performed by the image processing apparatus. The filtering process may change the reconstruction filter process for correcting the blur of backprojection, but a known method such as a weighted average filter may be used separately in the channel direction, and is limited as long as the frequency characteristics can be adjusted. Is not to be done.
[0022]
According to the above embodiment, by setting a target time phase such as diastole and increasing the tube current in the target time phase, a good image quality of the target time phase can be obtained, and the coronary artery can be evaluated. In addition, since the tube current is low in the systole but the heart wall boundary can be traced sufficiently, the cardiac function can be evaluated from the volume ratio of the diastole and the systole. Therefore, the projection data can be reconstructed in one tomogram. All evaluations are possible.
[0023]
In addition, since the means for making the noise level of the projection data substantially constant is provided, the image quality is stabilized, and the exposure can be further reduced when further modulation is performed with the subject transmission length dependent pattern.
[0024]
Further, when the exposure is performed only in the diastole, the data may be insufficient due to arrhythmia or the like, but the imaging method according to the present invention can compensate for the data although the noise increases.
[0025]
Therefore, it is obvious that the same expectation can be expected regardless of the generation of the X-ray CT apparatus and the imaging mode, and the same exposure reduction effect can be obtained by single slice CT, cone beam CT, spiral scan, and dynamic scan.
[0026]
In addition, patient exposure when performing cardiac imaging can be reduced, and only an image with a specific cardiac phase can be obtained like an imaging method that exposes X-rays in synchronization with a specific cardiac phase of the electrocardiogram. In addition, it is possible to acquire images of all cardiac phases by measuring projection data that can reconstruct one tomogram.
Although the description has focused on the heart, it is apparent that the present invention can be applied to other periodic motion sites and imaging during intentional periodic motion.
[0027]
【The invention's effect】
The present invention has an effect of providing an X-ray CT apparatus capable of evaluating cardiac function without increasing X-ray exposure to a subject as much as possible.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of an X-ray CT apparatus according to the present invention.
FIG. 2 is a diagram for explaining an example of a tube current control pattern employed in the present invention.
FIG. 3 is a flowchart for explaining an aspect of inserting filter processing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... X-ray tube, 101C ... X-ray control apparatus, 105 ... Measurement circuit, 106 ... Image processing apparatus, 108 ... Input device

Claims (2)

X線源からのX線を被検体に多方向から照射して投影データを得、それらの投影データから前記被検体の断層像データを再構成し、その再構成された断層像データを表示するX線CT装置において、前記被検体の周期的運動を伴う撮像範囲を撮影するに当たりその周期的運動のうちの標的時相を設定する手段と、該設定された標的時相でX線強度が相対的に大きくなる変調制御パターンを運動周期依存型制御パターンと前記被検体の透過厚に依存した検出器出力レベルを一定に保つ透過厚依存型制御パターンとを用いて前記X線源を変調制御する手段と、該制御されたX線源から照射されるX線によって撮影された投影データより前記設定された標的時相におけるセグメントデータを取得し、前記取得されたセグメントデータを用いて前記被検体の撮像範囲の断層像を再構成する手段とを備えたことを特徴とするX線CT装置。Projection data is obtained by irradiating a subject with X-rays from an X-ray source from multiple directions, tomographic image data of the subject is reconstructed from the projection data, and the reconstructed tomographic image data is displayed. In the X-ray CT apparatus, a means for setting a target time phase of the periodic motion in imaging the imaging range accompanied by the periodic motion of the subject, and an X-ray intensity relative to the set target time phase. The X-ray source is modulated and controlled using a motion cycle dependent control pattern and a transmission thickness dependent control pattern that keeps the detector output level depending on the transmission thickness of the subject constant. Gets means, the segment data in the set target time phase than the projection data captured by the X-rays emitted from the X-ray source that is the control, the object with the segment data the acquired X-ray CT apparatus characterized by comprising a means for reconstructing a tomographic image of the imaging range of the body. 前記再構成手段は、前記セグメントデータ間あるいは前記断層像間のノイズレベル差を減少するフィルタ手段をさらに備えたことを特徴とする請求項1に記載のX線CT装置。The X-ray CT apparatus according to claim 1, wherein the reconstruction unit further includes a filter unit that reduces a noise level difference between the segment data or between the tomograms.
JP2003036308A 2003-02-14 2003-02-14 X-ray CT system Expired - Fee Related JP4007928B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003036308A JP4007928B2 (en) 2003-02-14 2003-02-14 X-ray CT system
US10/544,907 US7426255B2 (en) 2003-02-14 2004-02-13 X-ray CT device
CN2008102128659A CN101352352B (en) 2003-02-14 2004-02-13 X-ray ct device
CNB2004800041025A CN100453045C (en) 2003-02-14 2004-02-13 X-ray ct device
PCT/JP2004/001531 WO2004071301A1 (en) 2003-02-14 2004-02-13 X-ray ct device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036308A JP4007928B2 (en) 2003-02-14 2003-02-14 X-ray CT system

Publications (3)

Publication Number Publication Date
JP2004261224A JP2004261224A (en) 2004-09-24
JP2004261224A5 JP2004261224A5 (en) 2006-03-16
JP4007928B2 true JP4007928B2 (en) 2007-11-14

Family

ID=33112045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036308A Expired - Fee Related JP4007928B2 (en) 2003-02-14 2003-02-14 X-ray CT system

Country Status (2)

Country Link
JP (1) JP4007928B2 (en)
CN (2) CN101352352B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2238906B1 (en) * 2005-09-07 2015-04-08 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
JP4745029B2 (en) * 2005-11-15 2011-08-10 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT system
JP5208442B2 (en) * 2007-04-12 2013-06-12 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT system
JP5390132B2 (en) * 2007-09-03 2014-01-15 株式会社東芝 X-ray CT system
JP5535598B2 (en) * 2009-11-27 2014-07-02 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT system
JP5697970B2 (en) * 2010-12-22 2015-04-08 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT system
CN107303184B (en) * 2016-04-22 2020-09-15 上海联影医疗科技有限公司 CT scanning X-ray source tube current modulation method and computed tomography device
US10950016B2 (en) 2018-06-11 2021-03-16 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for reconstructing cardiac images
CN109377481B (en) * 2018-09-27 2022-05-24 上海联影医疗科技股份有限公司 Image quality evaluation method, image quality evaluation device, computer equipment and storage medium
CN111150419B (en) * 2020-02-14 2022-12-09 赛诺威盛科技(北京)股份有限公司 Method and device for reconstructing image by spiral CT scanning

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204189A (en) * 1994-01-26 1995-08-08 Hitachi Medical Corp X-ray ct system
JP4316017B2 (en) * 1995-09-11 2009-08-19 ジーイー横河メディカルシステム株式会社 X-ray CT system
DE19622075C2 (en) * 1996-05-31 1999-10-14 Siemens Ag Method and device for radiological examination of a patient's heart phases
US6275560B1 (en) * 1998-12-22 2001-08-14 General Electric Company Cardiac gated computed tomography system
JP2002325758A (en) * 2001-04-18 2002-11-12 Ge Medical Systems Global Technology Co Llc X-ray ct unit

Also Published As

Publication number Publication date
CN1747687A (en) 2006-03-15
CN101352352A (en) 2009-01-28
JP2004261224A (en) 2004-09-24
CN100453045C (en) 2009-01-21
CN101352352B (en) 2011-01-05

Similar Documents

Publication Publication Date Title
EP1088517B1 (en) Method and apparatus for motion-free cardiac CT imaging
US6370217B1 (en) Volumetric computed tomography system for cardiac imaging
JP5101045B2 (en) Progressive-imaging cardiac CT imaging scanner
US7313215B2 (en) Step-and-shoot cardiac CT imaging
JP4487095B2 (en) Detection of coronary artery calcification using retrospective cardiac gating in an imaging system
JP2007144172A (en) Method and system for carrying out ct image reconstruction with motion artifact correction
US8351565B2 (en) X-ray CT apparatus
Flohr et al. Image reconstruction and performance evaluation for ECG‐gated spiral scanning with a 16‐slice CT system
US7187745B2 (en) Method and apparatus for producing a computed tomography image of a periodically moving organ
JP4157302B2 (en) X-ray CT system
JP2013198747A (en) X-ray ct apparatus
JP3950849B2 (en) High-pitch cardiac helical scan using extended reconstruction window
JP2008154718A (en) Radiation tomography apparatus
JP4712956B2 (en) A hybrid reconstruction method for high pitch multi-slice helical heart imaging
JP4007928B2 (en) X-ray CT system
US7558363B2 (en) Step-and-shoot cardiac CT imaging
US7426255B2 (en) X-ray CT device
WO2013047439A1 (en) X-ray ct device and image correction method
JP2001061835A (en) Metatropic cardiac synchronization method by cinescan of multislice type scanner
JP2005040602A (en) Inspection method for region performing periodic movement of subject and computed tomography device for performing this method
JP5203750B2 (en) ECG synchronous scanning method and X-ray computed tomography apparatus
US7023958B2 (en) Radiation image-acquiring apparatus, and radiation image-acquiring method
JP4233079B2 (en) CT equipment
JP4649150B2 (en) Radiation imaging apparatus and imaging method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees