JP4007068B2 - Micro thermal expansion temperature sensor using thermal expansion material - Google Patents

Micro thermal expansion temperature sensor using thermal expansion material Download PDF

Info

Publication number
JP4007068B2
JP4007068B2 JP2002154917A JP2002154917A JP4007068B2 JP 4007068 B2 JP4007068 B2 JP 4007068B2 JP 2002154917 A JP2002154917 A JP 2002154917A JP 2002154917 A JP2002154917 A JP 2002154917A JP 4007068 B2 JP4007068 B2 JP 4007068B2
Authority
JP
Japan
Prior art keywords
thermal expansion
temperature sensor
micro
layer
expansion temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002154917A
Other languages
Japanese (ja)
Other versions
JP2003344171A (en
Inventor
雄司 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002154917A priority Critical patent/JP4007068B2/en
Publication of JP2003344171A publication Critical patent/JP2003344171A/en
Application granted granted Critical
Publication of JP4007068B2 publication Critical patent/JP4007068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱膨張材料を用いたマイクロ熱膨張温度センサに関し、特に、光熱変換分光法によって、光の回析限界以下の極微小部位の温度計測のために用いるのに適切な熱膨張材料を用いたマイクロ熱膨張温度センサに関する。
【0002】
【従来の技術】
従来の顕微(紫外・可視・近赤外・赤外)分光法では、光の回折限界よりも小さな領域、または物質を測定観測することは原理的に非常に困難である。しかしながら回折限界の影響を回避する方法を適用することにより、この限界よりも小さな領域を測定することは可能である。
【0003】
近年、このように光の回折限界よりも小さな領域を測定することを可能とする新しい分光測定法が注目されるようになっている。1つは近接場光を利用した方法であり、もう1つは光熱変換分光法である。これらの方法ではいずれも光の回折限界の影響を受けず(あるいは無視できる条件下で)測定を行うものである。後者の光熱変換分光法を利用した方法では、光の照射に伴う熱膨張変化を捕らえて、分光測定を行う試みがすでに検討されている(M.S.Anderson、Applied Spectroscopy,54,349,2000)。
【0004】
この方法では、光の照射に伴う発熱による熱膨張をAFM(Atomic Force Microscopy)におけるカンチレバーの変位量の変化をとらえて計測する方法である。しかしながら、通常観測する有機・高分子材料の熱膨張係数(線膨張率又は体膨張率。本明細書において同じ。)は大きいとはいえず、当然ながら測定感度が極めて不足している。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、高感度な熱膨張温度センサとなりうる抵抗温度係数の大きな素材である熱膨張材料を用いたマイクロ熱膨張温度センサを提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明は、下記構成を有する。
1.[特許請求の範囲]
[請求項1]支持基体の先端部に、熱膨張係数の大きな材料から成る熱膨張温度センサ層を設けたマイクロ熱膨張温度センサを用い、微小部位の温度計測を行うマイクロ熱膨張温度センサであって、前記支持基体と前記熱膨張温度センサ層との間には、熱伝導制御層が設けてあり、かつ該熱膨張温度センサ層の試料接触側は、高熱伝導絶縁層によって被覆されているマイクロ熱膨張温度センサにおいて、前記熱伝導制御層が、支持基体側に位置する高熱伝導絶縁層と、熱膨張温度センサ側に位置する低熱伝導絶縁層とを有しており、且つ前記高熱伝導絶縁層が、熱伝導率100W/mK以上で熱膨張係数10×10 −6 /K以下の絶縁材料から成り、前記低熱伝導絶縁層が熱伝導率10W/mK未満で熱膨張係数10×10 −6 /K以下の絶縁材料から成ることを特徴とする熱膨張材料を用いたマイクロ熱膨張温度センサ。
【0009】
2.熱膨張温度センサ層が、熱膨張係数25×10−6/K以上であることを特徴とする前記1に記載の熱膨張材料を用いたマイクロ熱膨張温度センサ。
【0011】
3.支持基体がAFMカンチレバーなどのマイクロ変位センサ基体であり、光の照射に伴う熱膨張変化を捕らえて分光測定を行う光熱変換分光法によって、光の回析限界以下の極微小部位の温度計測が可能であることを特徴とする前記1又は2に記載の熱膨張材料を用いたマイクロ熱膨張温度センサ。
【0012】
4.分光測定以外の目的で微小部位の温度計測が可能であることを特徴とする前記1〜のいずれかに記載の熱膨張材料を用いたマイクロ熱膨張温度センサ。
【0013】
【発明の実施の形態】
以下、本発明について詳述する。
本発明の支持基体は、AFMカンチレバー等のマイクロ変位センサ基体であり、これを形成する材料としては、セラミック、圧電材料、シリコンなどの半導体材料または絶縁材料が挙げられ、支持基体の先端部の形状は台形型、針状、半球状などのいずれであってもよい。
【0014】
本発明の熱膨張温度センサ層を形成する熱膨張係数の大きな感熱抵抗材料としては、Ga,P,Tl,Zn,Rb,銀塩化合物(AgCl,AgBr,AgNOなど)、ハロゲン系化合物(BeCl,CdCl,CuCl,HgCl,KCl,MgCl,NaCl,RbCl,SnCl,ZnCl)、KNO,KClO,KMnO、Al合金、Mg合金など熱膨張係数が25×10−6/K以上の化合物群であるが、25×10−6/K以上の熱膨張係数を有するその他の熱膨張材料でもよい。カーボンナノチューブ材料等に上記熱膨張材料を封じ込めたものでもよい。
【0015】
熱膨張温度センサとしての時定数を向上させるには、上記材料をnmオーダーに薄膜化して熱膨張温度センサ層とすることに加え、該支持基体と該熱膨張温度センサ層との間に、適度な熱伝導度を有すると共に熱膨張の小さい熱伝導制御層を設けることで達成できる。
【0016】
微小領域の温度を計測する場合、光の照射により発生した熱を効率よく熱膨張温度センサに伝達できることが肝要である。しかしながら熱膨張する物質によるセンサでは、熱伝導率を単純に高くとれば良いわけではなく、たとえば熱伝導率の高い銅などの金属を基体などに利用すると、熱の伝導度は高くなるが、逆に熱膨張温度センサ層が十分熱膨張しないうちに素早く熱が拡散してしまい温度変化の検出感度が逆に低下してしまう。したがって試料に接する部分、および/または熱膨張温度センサを設ける支持基体には目的(温度、時定数、試料の種類)に応じた最適な熱伝導度を有する材料を複数層配することが好ましい。
【0017】
本発明において、熱伝導制御層は、支持基体側に位置する高熱伝導絶縁層と、熱膨張温度センサ側に位置する低熱伝導絶縁層とから成る。また、上記試料に接する部分には高熱伝導絶縁層を設ける。
【0018】
本発明の高熱伝導絶縁層に用いる熱伝導度の高い(且つ熱膨張の小さい絶縁または導電性)材料としては、絶縁材料−ベリリヤ磁器(BeO〉、A1N、SiC、アルミナ単結晶、多結晶(サファイア、ルビー)、MgO、TiO(ルチル)、ThO(熱伝導率:10W/mK以上)等が挙げられ、これらの材料のなかでは熱伝導率が100W/mK以上で、熱膨張係数が5×10−6/K以下であるAlN(商品名デンカANプレート),SiCなどがさらに好ましい。これらを用いて、熱伝導制御層を構成する高熱伝導絶縁層と、熱膨張温度センサ層を被覆する高熱伝導絶縁層とを形成する。この2つの高熱伝導絶縁層には、同一の材料を用いてもよいし、異なる材料を用いてもよい。
【0019】
本発明の低熱伝導絶縁層に用いる熱伝導度の低い且つ熱膨張の小さい絶縁材料としては、石英ガラス、ガラ[商品名:パイレックス(登録商標)]、ホウ素ガラス、雲母など(熱伝導率0.5〜5W/mK)等が挙げられる。
【0020】
発明は、高熱伝導絶縁層が、熱伝導率100W/mK以上で熱膨張係数10×10−6/K以下、さらに好ましくは5×10−6/K以下の絶縁材料から成り、低熱伝導絶縁層が熱伝導率10W/mK未満で熱膨張係数10×10−6/K以下、さらに好ましくは5×10−6/K以下の絶縁材料から成る。そして、この範囲を逸脱すると本発明の効果が得られなくなる。
【0021】
請求項に示す本発明は、熱膨張温度センサ層が、熱膨張係数25×10−6/K以上である。そして、熱膨張係数が上記範囲未満であると、温度変化に伴う体積膨張率が低下し、温度変化を高感度に検出することが困難となる不都合がある。
【0023】
本発明に係る熱膨張温度センサによれば、高感度に光の照射に伴う温度変化を高感度に検出可能である。
【0024】
本発明に係るマイクロ熱膨張温度センサは、分光測定以外の目的で微小部位の温度計測に利用することもできる。
【0025】
【実施例】
本発明の一実施態様では、図1に示すように、光の回折限界以下に先細りさせた(<1.0μmφ)半導体材料または絶縁体材料から成る支持基体1の先端部に、熱膨張が小さく熱伝導度を制御する熱伝導制御層2を設ける。この熱伝導制御層は、高熱伝導絶縁層2Aと低熱伝導絶縁層2Bとの2層以上から成る。この上に、熱膨張温度センサ層3を設け、この上の試料が直接接触する部分には、熱膨張が小さく熱伝導度の高い高熱伝導絶縁層4を設ける。
【0026】
具体的には、熱膨張温度センサ層3を挟んで支持基体1側には適度な熱伝導度を有し、熱を適切に保持する高熱伝導絶縁層2Aを1層以上を設ける。本発明の一実施態様では、熱膨張が小さく熱伝導度の高い絶縁材料であるベリリヤ磁器(酸化ベリリウム)、アルミナ単結晶などによって高熱伝導絶縁層2Aを設ける。そして、この層2Aの上に、熱膨張が小さく熱伝導度の低いガラス材料等から成る低熱伝導絶縁層2Bを設ける。
【0027】
一方、熱膨張温度センサ層3の上部(試料と直接接する部分)には熱膨張温度センサ層3を保護することと、効率よく試料からの熱を伝えることを目的とする熱膨張が小さく熱伝導度の高い絶縁材料(本発明の一実施態様では、ベリリヤ磁器(酸化ベリリウム)、アルミナ単結晶などによる。)から成る高熱伝導絶縁層4を設ける。
【0028】
本発明において、高熱伝導絶縁層2A、低熱伝導絶縁層2B、熱膨張温度センサ層3、高熱伝導絶縁層4の各薄膜層の作製は、抵抗加熱蒸着法、電子ビーム蒸着法、化学的気相堆積法、大気圧プラズマ法など公知の技術および装置を利用することができる。
【0029】
上記各薄膜層(被膜)2A,2B、3、4の製造には材料をそのまま蒸発源とする製膜法と、蒸着用材料を蒸発源として真空中に酸素ガスを導入しながら製膜する反応蒸着法があり、いずれの方法でも製膜可能である。
【0030】
製膜装置としては、一般的に知られている抵抗加熱蒸着法、電子ビーム蒸着法、化学的気相堆積法、スパッタリング法などに用いられるものであれば、公知のものを特別の制限なく用いることができる。
【0031】
尚、上記化学的気相堆積法(CVD=Chemical Vaper Depisition)とは、真空槽内に気体(酸素、窒素、弗素、塩素、反応性特殊ガスなど)を導入し、この気体に高圧電場をかけプラズマ化して、加熱ボートから蒸発した材料蒸気と反応させて製膜する方法である。一般的には、製膜した化合物が高融点のため、抵抗加熱ではそのまま蒸着できないものを、金属状態で蒸発させてから導入ガスと反応させて製膜する方法として用いる。
【0032】
本発明の熱膨張温度センサ層は、上記のような熱膨張係数が0.3×10−4−1以上の熱膨張材料であるハロゲン化銀、ハロゲン系化合物、ガリウム含有カーボンナノ材料などで形成する。
【0033】
高熱伝導絶縁層2A、低熱伝導絶縁層2B、熱膨張温度センサ層3、高熱伝導絶縁層4の各薄膜層の膜厚は、1nmから1000nmであり、好ましくは5nmから500nmである。ただし、熱膨張温度センサ層3を被覆する高熱伝導絶縁層4については、1〜5nmであることがより好ましい。
【0034】
図1の具体的実施例をあげれば、シリコン単結晶などを異方性エッチングやフォトリソグラフィーの手法を利用して先端部を0.5μmになるように台形状に形成させた支持基体上に、CVD,電子ビーム蒸着法などを利用して高熱伝導絶縁層、例えばAlNを500nm積層させる。さらに同様な方法で低熱伝導絶縁層例えばガラス材を200nm積層させる。この上に熱膨張温度センサ層3、例えばGaを同様な方法で300nm積層させる。さらに熱膨張温度センサ層3の保護を目的とした高熱伝導絶縁層、例えばAlNを同様な方法で10nm形成させることにより得る。
【0035】
図2(A)、(B)及び(C)には、図1に示す本発明に係る熱膨張材料を用いたマイクロ熱膨張温度センサをAFM用カンチレバーに設置した3つの実施例が示されている。
【0036】
高熱伝導絶縁層2A、低熱伝導絶縁層2B、熱膨張温度センサ層3、高熱伝導絶縁層4の各薄膜層の温度変化による熱膨張変化の時定数が0.5msから50msが好ましい。
【0037】
熱膨張による変位量の検出には、レーザーを用いた変位センサ[図2(A)]、ピエゾ抵抗体を利用したもの[図2(B)]、ひずみゲージを利用する方法[図2(C)]など公知の方法が利用できる。
【0038】
図3は、本発明における光熱変換分光法に用いるための、FT−IR(Fourier Transform Infrared Spectrocopy)又はチョッパーを利用する光学系を示している。かかる光学系の構成は公知のものを特別の制限なく利用できる。
【0039】
【発明の効果】
本発明によれば、高感度な熱膨張温度センサとなりうる抵抗温度係数の大きな素材である熱膨張材料を用いたマイクロ熱膨張温度センサを提供できる。
【図面の簡単な説明】
【図1】本発明に係るマイクロ熱膨張温度センサの一実施例を示す概略構成図
【図2】本発明に係るマイクロ熱膨張温度センサをカンチレバーに設置した3例を示す概略構成図
【図3】本発明の光熱変換分光法に用いる光学系の例を示す概略構成図
【符号の説明】
1 支持基体
2A 高熱伝導絶縁層
2B 低熱伝導絶縁層
3 熱膨張温度センサ層
4 高熱伝導絶縁層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a micro thermal expansion temperature sensor using a thermal expansion material, and in particular, a thermal expansion material suitable for use in temperature measurement of a very small portion below the diffraction limit of light by photothermal conversion spectroscopy. The present invention relates to a micro thermal expansion temperature sensor.
[0002]
[Prior art]
In conventional microscopic (ultraviolet / visible / near infrared / infrared) spectroscopy, it is very difficult in principle to measure and observe a region or material smaller than the diffraction limit of light. However, by applying a method that avoids the influence of the diffraction limit, it is possible to measure regions smaller than this limit.
[0003]
In recent years, a new spectroscopic method capable of measuring a region smaller than the diffraction limit of light has been attracting attention in recent years. One is a method using near-field light, and the other is photothermal conversion spectroscopy. In any of these methods, measurement is performed without being influenced by the diffraction limit of light (or under negligible conditions). In the latter method using photothermal conversion spectroscopy, an attempt to perform spectroscopic measurement by capturing a change in thermal expansion accompanying light irradiation has already been studied (MS Anderson, Applied Spectroscopy, 54, 349, 2000). ).
[0004]
In this method, thermal expansion due to heat generated by light irradiation is measured by measuring changes in the amount of cantilever displacement in an AFM (Atomic Force Microscopy). However, it cannot be said that the thermal expansion coefficient (linear expansion coefficient or body expansion coefficient; the same applies in this specification) of organic / polymeric materials that are usually observed is high, and of course, measurement sensitivity is extremely insufficient.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a micro thermal expansion temperature sensor using a thermal expansion material that is a material having a large resistance temperature coefficient that can be a highly sensitive thermal expansion temperature sensor.
[0006]
[Means for Solving the Problems]
The present invention for solving the above problems has the following configuration.
1. [Claims]
The tip of the claims 1 supporting substrate, using a micro heat expansion temperature sensor having a thermal expansion temperature sensor layer made of a material having a high thermal expansion coefficient, met micro thermal expansion temperature sensor for temperature measurement of the small region In addition , a heat conduction control layer is provided between the support base and the thermal expansion temperature sensor layer, and a sample contact side of the thermal expansion temperature sensor layer is a micro- coat covered with a high thermal conductivity insulating layer. In the thermal expansion temperature sensor, the thermal conduction control layer includes a high thermal conductive insulating layer located on the support base side and a low thermal conductive insulating layer located on the thermal expansion temperature sensor side, and the high thermal conductive insulating layer Is made of an insulating material having a thermal conductivity of 100 W / mK or more and a thermal expansion coefficient of 10 × 10 −6 / K or less, and the low thermal conductivity insulating layer has a thermal conductivity of less than 10 W / mK and a thermal expansion coefficient of 10 × 10 −6 / Below K Micro thermal expansion temperature sensor using a thermal expansion material, characterized in that it consists of an edge material.
[0009]
2. 2. The micro thermal expansion temperature sensor using the thermal expansion material as described in 1 above, wherein the thermal expansion temperature sensor layer has a thermal expansion coefficient of 25 × 10 −6 / K or more.
[0011]
3. The support substrate is a micro displacement sensor substrate such as an AFM cantilever, and it is possible to measure the temperature of extremely minute parts below the diffraction limit of light by photothermal conversion spectroscopy that performs spectroscopic measurement by capturing changes in thermal expansion caused by light irradiation. 3. A micro thermal expansion temperature sensor using the thermal expansion material as described in 1 or 2 above.
[0012]
4). 4. The micro thermal expansion temperature sensor using the thermal expansion material as described in any one of 1 to 3 above, wherein the temperature of a minute part can be measured for purposes other than spectroscopic measurement.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The support substrate of the present invention is a micro displacement sensor substrate such as an AFM cantilever, and examples of the material forming the support substrate include semiconductor materials such as ceramics, piezoelectric materials, and silicon, or insulating materials, and the shape of the tip of the support substrate. May be trapezoidal, acicular, hemispherical or the like.
[0014]
Examples of the heat-sensitive resistance material having a large thermal expansion coefficient for forming the thermal expansion temperature sensor layer of the present invention include Ga, P, Tl, Zn, Rb, silver salt compounds (AgCl, AgBr, AgNO 3 etc.), halogen compounds (BeCl). 2 , CdCl 2 , CuCl 2 , Hg 2 Cl 2 , KCl, MgCl 2 , NaCl, RbCl, SnCl 2 , ZnCl 2 ), KNO 3 , KClO 3 , KMnO 4 , Al alloy, Mg alloy, etc. it is a 10 -6 / K or more compounds, or any other thermal expansion material having a thermal expansion coefficient of more than 25 × 10 -6 / K. A carbon nanotube material or the like encapsulating the thermal expansion material may be used.
[0015]
In order to improve the time constant as a thermal expansion temperature sensor, in addition to forming the thermal expansion temperature sensor layer by thinning the above material to the order of nm, an appropriate amount is provided between the support substrate and the thermal expansion temperature sensor layer. This can be achieved by providing a heat conduction control layer having a low thermal expansion and a low thermal conductivity.
[0016]
When measuring the temperature of a minute region, it is important that heat generated by light irradiation can be efficiently transmitted to the thermal expansion temperature sensor. However, in a sensor using a material that expands thermally, it is not necessary to simply increase the thermal conductivity. For example, if a metal such as copper having a high thermal conductivity is used for the substrate, the thermal conductivity increases, but conversely However, the thermal expansion temperature sensor layer does not sufficiently expand, so that heat is quickly diffused and the temperature change detection sensitivity is decreased. Therefore, it is preferable to arrange a plurality of layers of materials having the optimum thermal conductivity in accordance with the purpose (temperature, time constant, type of sample) on the supporting substrate provided with the portion in contact with the sample and / or the thermal expansion temperature sensor.
[0017]
In the present invention, the thermally conductive control layer, and the high thermal conductive insulating layer positioned on the support base side, Ru consists a low thermal conductive insulating layer located on the thermal expansion temperature sensor side. Also, the portion in contact with the sample Ru provided high heat conductive insulating layer.
[0018]
As a material having a high thermal conductivity (and an insulating or conductive material having a small thermal expansion) used for the high thermal conductive insulating layer of the present invention, an insulating material-beryllia porcelain (BeO), A1N, SiC, alumina single crystal, polycrystalline (sapphire) Ruby), MgO, TiO 2 (rutile), ThO 2 (thermal conductivity: 10 W / mK or more), etc. Among these materials, the thermal conductivity is 100 W / mK or more, and the thermal expansion coefficient is 5 More preferably, AlN (trade name Denka AN plate), SiC, etc. of 10 −6 / K or less is used to coat the high thermal conductive insulating layer constituting the thermal conduction control layer and the thermal expansion temperature sensor layer. The two high thermal conductive insulating layers may be made of the same material or different materials.
[0019]
Examples of the insulating material having low thermal conductivity and low thermal expansion used for the low thermal conductive insulating layer of the present invention include quartz glass, glass [trade name: Pyrex (registered trademark)], boron glass, mica, and the like (thermal conductivity of 0. 0). 5-5 W / mK).
[0020]
In the present invention, the high thermal conductivity insulating layer is made of an insulating material having a thermal conductivity of 100 W / mK or more and a thermal expansion coefficient of 10 × 10 −6 / K or less, more preferably 5 × 10 −6 / K or less. The layer is made of an insulating material having a thermal conductivity of less than 10 W / mK and a thermal expansion coefficient of 10 × 10 −6 / K or less, more preferably 5 × 10 −6 / K or less. And if it deviates from this range, the effect of the present invention cannot be obtained.
[0021]
According to the second aspect of the present invention, the thermal expansion temperature sensor layer has a thermal expansion coefficient of 25 × 10 −6 / K or more. When the thermal expansion coefficient is less than the above range, the volume expansion coefficient associated with the temperature change is lowered, and it is difficult to detect the temperature change with high sensitivity.
[0023]
The thermal expansion temperature sensor according to the present invention can detect a temperature change accompanying light irradiation with high sensitivity.
[0024]
The micro thermal expansion temperature sensor according to the present invention can also be used for temperature measurement of a minute part for purposes other than spectroscopic measurement.
[0025]
【Example】
In one embodiment of the present invention, as shown in FIG. 1, the thermal expansion is small at the tip of the support base 1 made of a semiconductor material or an insulator material that is tapered below the light diffraction limit (<1.0 μmφ). A heat conduction control layer 2 for controlling the heat conductivity is provided. This heat conduction control layer is composed of two or more layers of a high heat conduction insulating layer 2A and a low heat conduction insulating layer 2B. A thermal expansion temperature sensor layer 3 is provided thereon, and a high thermal conductive insulating layer 4 having a low thermal expansion and a high thermal conductivity is provided in a portion in direct contact with the sample.
[0026]
Specifically, one or more high thermal conductive insulating layers 2A having appropriate thermal conductivity and appropriately holding heat are provided on the support base 1 side with the thermal expansion temperature sensor layer 3 interposed therebetween. In one embodiment of the present invention, the high thermal conductive insulating layer 2A is provided by beryllia porcelain (beryllium oxide), alumina single crystal, or the like, which is an insulating material having a small thermal expansion and high thermal conductivity. Then, on this layer 2A, a low thermal conductive insulating layer 2B made of a glass material having a low thermal expansion and a low thermal conductivity is provided.
[0027]
On the other hand, the thermal expansion temperature sensor layer 3 is protected on the upper part of the thermal expansion temperature sensor layer 3 (the part that is in direct contact with the sample), and the thermal expansion for the purpose of efficiently transferring the heat from the sample is small and heat conduction. A highly thermally conductive insulating layer 4 made of a highly insulating material (in one embodiment of the present invention, made of beryllia porcelain (beryllium oxide), alumina single crystal, etc.) is provided.
[0028]
In the present invention, the thin film layers of the high thermal conductive insulating layer 2A, the low thermal conductive insulating layer 2B, the thermal expansion temperature sensor layer 3 and the high thermal conductive insulating layer 4 are produced by resistance heating vapor deposition, electron beam vapor deposition, chemical vapor phase. Known techniques and apparatuses such as a deposition method and an atmospheric pressure plasma method can be used.
[0029]
The thin film layers (films) 2A, 2B, 3 and 4 are produced by using a film forming method using the material as it is as an evaporation source, and a reaction for forming a film while introducing oxygen gas into the vacuum using the evaporation material as an evaporation source. There is a vapor deposition method, and any method can form a film.
[0030]
As a film forming apparatus, any known apparatus can be used without particular limitation as long as it is used for a generally known resistance heating vapor deposition method, electron beam vapor deposition method, chemical vapor deposition method, sputtering method or the like. be able to.
[0031]
The chemical vapor deposition method (CVD = Chemical Vapor Deposition) introduces a gas (oxygen, nitrogen, fluorine, chlorine, reactive special gas, etc.) into a vacuum chamber and applies a high piezoelectric field to this gas. This is a method of forming a film by reacting with material vapor evaporated from a heated boat after being turned into plasma. In general, since a compound formed into a film has a high melting point, a compound that cannot be deposited as it is by resistance heating is used as a method for forming a film by evaporating in a metal state and reacting with an introduced gas.
[0032]
The thermal expansion temperature sensor layer of the present invention is composed of silver halide, a halogen-based compound, a gallium-containing carbon nanomaterial which is a thermal expansion material having a thermal expansion coefficient of 0.3 × 10 −4 K −1 or more as described above. Form.
[0033]
The film thickness of each thin film layer of the high thermal conductive insulating layer 2A, the low thermal conductive insulating layer 2B, the thermal expansion temperature sensor layer 3, and the high thermal conductive insulating layer 4 is 1 nm to 1000 nm, preferably 5 nm to 500 nm. However, the high thermal conductive insulating layer 4 covering the thermal expansion temperature sensor layer 3 is more preferably 1 to 5 nm.
[0034]
To give a specific example of FIG. 1, on a support substrate in which a silicon single crystal or the like is formed in a trapezoidal shape with a tip portion of 0.5 μm by using an anisotropic etching or photolithography technique, A high thermal conductive insulating layer, for example, AlN is deposited to a thickness of 500 nm by using CVD, electron beam evaporation or the like. Further, a low thermal conductive insulating layer such as a glass material is laminated by 200 nm by the same method. On this, a thermal expansion temperature sensor layer 3, for example, Ga, is laminated by 300 nm in the same manner. Further, it is obtained by forming a 10 nm high thermal conductive insulating layer, for example, AlN, for the purpose of protecting the thermal expansion temperature sensor layer 3 by the same method.
[0035]
FIGS. 2A, 2B, and 2C show three examples in which the micro thermal expansion temperature sensor using the thermal expansion material according to the present invention shown in FIG. 1 is installed in an AFM cantilever. Yes.
[0036]
The time constant of the thermal expansion change due to the temperature change of each thin film layer of the high thermal conductive insulating layer 2A, the low thermal conductive insulating layer 2B, the thermal expansion temperature sensor layer 3, and the high thermal conductive insulating layer 4 is preferably 0.5 ms to 50 ms.
[0037]
For detection of displacement due to thermal expansion, a displacement sensor using a laser [FIG. 2A], a sensor using a piezoresistor [FIG. 2B], and a method using a strain gauge [FIG. 2C )] Etc. can be used.
[0038]
FIG. 3 shows an optical system using FT-IR (Fourier Transform Infrared Spectroscopy) or a chopper for use in photothermal conversion spectroscopy in the present invention. A known optical system can be used without any particular limitation.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the micro thermal expansion temperature sensor using the thermal expansion material which is a raw material with a large resistance temperature coefficient which can become a highly sensitive thermal expansion temperature sensor can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing one embodiment of a micro thermal expansion temperature sensor according to the present invention. FIG. 2 is a schematic configuration diagram showing three examples in which the micro thermal expansion temperature sensor according to the present invention is installed on a cantilever. Schematic configuration diagram showing an example of an optical system used in the photothermal conversion spectroscopy of the present invention.
DESCRIPTION OF SYMBOLS 1 Support base body 2A High heat conductive insulating layer 2B Low heat conductive insulating layer 3 Thermal expansion temperature sensor layer 4 High heat conductive insulating layer

Claims (4)

支持基体の先端部に、熱膨張係数の大きな材料から成る熱膨張温度センサ層を設けたマイクロ熱膨張温度センサを用い、微小部位の温度計測を行うマイクロ熱膨張温度センサであって、前記支持基体と前記熱膨張温度センサ層との間には、熱伝導制御層が設けてあり、かつ該熱膨張温度センサ層の試料接触側は、高熱伝導絶縁層によって被覆されているマイクロ熱膨張温度センサにおいて、前記熱伝導制御層が、支持基体側に位置する高熱伝導絶縁層と、熱膨張温度センサ側に位置する低熱伝導絶縁層とを有しており、且つ前記高熱伝導絶縁層が、熱伝導率100W/mK以上で熱膨張係数10×10 −6 /K以下の絶縁材料から成り、前記低熱伝導絶縁層が熱伝導率10W/mK未満で熱膨張係数10×10 −6 /K以下の絶縁材料から成ることを特徴とする熱膨張材料を用いたマイクロ熱膨張温度センサ。The distal end portion of the support base, using a micro heat expansion temperature sensor having a thermal expansion temperature sensor layer made of a material having a high thermal expansion coefficient, a micro heat expansion temperature sensor for temperature measurement of the small region, the support base In the micro thermal expansion temperature sensor, a thermal conduction control layer is provided between the thermal expansion temperature sensor layer and the sample contact side of the thermal expansion temperature sensor layer is covered with a high thermal conduction insulating layer . The heat conduction control layer has a high heat conduction insulating layer located on the support substrate side and a low heat conduction insulation layer located on the thermal expansion temperature sensor side, and the high heat conduction insulation layer has a heat conductivity. An insulating material composed of an insulating material having a thermal expansion coefficient of 10 × 10 −6 / K or less at 100 W / mK or higher, and having a low thermal conductivity of less than 10 W / mK and a thermal expansion coefficient of 10 × 10 −6 / K or lower. From Micro thermal expansion temperature sensor using a thermal expansion material, characterized in that that. 熱膨張温度センサ層が、熱膨張係数25×10−6/K以上であることを特徴とする請求項1に記載の熱膨張材料を用いたマイクロ熱膨張温度センサ。The micro thermal expansion temperature sensor using the thermal expansion material according to claim 1, wherein the thermal expansion temperature sensor layer has a thermal expansion coefficient of 25 × 10 −6 / K or more. 支持基体がAFMカンチレバーなどのマイクロ変位センサ基体であり、光の照射に伴う熱膨張変化を捕らえて分光測定を行う光熱変換分光法によって、光の回析限界以下の極微小部位の温度計測が可能であることを特徴とする請求項1又は2に記載の熱膨張材料を用いたマイクロ熱膨張温度センサ。The support substrate is a micro displacement sensor substrate such as an AFM cantilever, and it is possible to measure the temperature of extremely minute parts below the diffraction limit of light by photothermal conversion spectroscopy, which performs spectroscopic measurement by capturing thermal expansion changes due to light irradiation. A micro thermal expansion temperature sensor using the thermal expansion material according to claim 1 or 2 . 分光測定以外の目的で微小部位の温度計測が可能であることを特徴とする請求項1〜のいずれかに記載の熱膨張材料を用いたマイクロ熱膨張温度センサ。The micro thermal expansion temperature sensor using the thermal expansion material according to any one of claims 1 to 3 , wherein the temperature of a minute part can be measured for purposes other than spectroscopic measurement.
JP2002154917A 2002-05-29 2002-05-29 Micro thermal expansion temperature sensor using thermal expansion material Expired - Fee Related JP4007068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154917A JP4007068B2 (en) 2002-05-29 2002-05-29 Micro thermal expansion temperature sensor using thermal expansion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154917A JP4007068B2 (en) 2002-05-29 2002-05-29 Micro thermal expansion temperature sensor using thermal expansion material

Publications (2)

Publication Number Publication Date
JP2003344171A JP2003344171A (en) 2003-12-03
JP4007068B2 true JP4007068B2 (en) 2007-11-14

Family

ID=29771554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154917A Expired - Fee Related JP4007068B2 (en) 2002-05-29 2002-05-29 Micro thermal expansion temperature sensor using thermal expansion material

Country Status (1)

Country Link
JP (1) JP4007068B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228172B2 (en) * 2018-09-10 2022-01-18 TE Connectivity Services Gmbh Electrical contact thermal sensing system and method
US10921194B2 (en) * 2018-09-10 2021-02-16 Te Connectivity Corporation Electrical contact thermal sensing system

Also Published As

Publication number Publication date
JP2003344171A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US9580305B2 (en) Single silicon wafer micromachined thermal conduction sensor
Mele et al. A molybdenum MEMS microhotplate for high-temperature operation
Olson et al. The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films
US7790226B2 (en) Pyrolyzed thin film carbon
Mitzi et al. Hybrid field‐effect transistor based on a low‐temperature melt‐processed channel layer
EP1560792B1 (en) Carbon nanotube device fabrication
US7238941B2 (en) Pyrolyzed-parylene based sensors and method of manufacture
JP2005331514A (en) Nanocalorimeter device, related manufacture, and use
JP2519750B2 (en) Thermistor and its manufacturing method
McCluskey et al. Combinatorial nanocalorimetry
WO2002080620A1 (en) High temperature micro-hotplate
TW200926203A (en) Microcantilever heater-thermometer with integrated temperature-compensated strain sensor
TW201227845A (en) Etch-resistant coating on sensor wafers for in-situ measurement
Kim et al. A study on thin film gas sensor based on SnO2 prepared by pulsed laser deposition method
Zhao et al. Design and fabrication of micromachined pyroelectric infrared detector array using lead titanate zirconate (PZT) thin film
TWI224668B (en) Temperature sensor
JP4007068B2 (en) Micro thermal expansion temperature sensor using thermal expansion material
Rickerby et al. Structural and dimensional control in micromachined integrated solid state gas sensors
KR100911090B1 (en) Microcalorimeter device with enhanced accuracy
JP4007064B2 (en) Micro temperature sensor using thermal resistor material
JP3248606B2 (en) Mechanical quantity sensor, strain resistance element, and method of manufacturing the same
Guenther et al. High-temperature chip calorimeter with atmosphere control
Wang et al. Grain size-induced thermo-mechanical coupling in zirconium thin films
TWI315105B (en) A method for the synthesis of qunatum dots
Ryu et al. Selective and directed growth of silicon nanowires by tip-enhanced local electric field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

LAPS Cancellation because of no payment of annual fees