JP4006884B2 - Groundwater status logging method and device - Google Patents

Groundwater status logging method and device Download PDF

Info

Publication number
JP4006884B2
JP4006884B2 JP14512799A JP14512799A JP4006884B2 JP 4006884 B2 JP4006884 B2 JP 4006884B2 JP 14512799 A JP14512799 A JP 14512799A JP 14512799 A JP14512799 A JP 14512799A JP 4006884 B2 JP4006884 B2 JP 4006884B2
Authority
JP
Japan
Prior art keywords
hole
water
groundwater
logging
sonde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14512799A
Other languages
Japanese (ja)
Other versions
JP2001083261A (en
Inventor
公雄 宮川
洋一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP14512799A priority Critical patent/JP4006884B2/en
Publication of JP2001083261A publication Critical patent/JP2001083261A/en
Application granted granted Critical
Publication of JP4006884B2 publication Critical patent/JP4006884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、地層内における地下水の流水経路を探査するための検層方法および装置に関し、検層時間の著しい短縮と高精度の検層を可能にすることを目的とする。
【0002】
【従来の技術】
地層内の地下水は地盤の中を一様に流れているとは限らず、特定のゾーンを集中して流れていることが多い。 そしてこのようなゾーンを一般的に「水みち」と称し、特に割れ目系の岩盤や砂礫地盤などでは汚染物質が予測より早く到達するなど地下水問題を複雑にしており、またかかる汚染問題に限らず建設工事に伴うコンクリート成分の流出状況の把握や、地滑りの予測調査など、多岐にわたる地下水の流動経路の把握、すなわち水みちの存在を調査して明らかにする検層作業が重要な課題となっている。
【0003】
これまでに知られている検層手段としては、例えばボーリング孔内に塩水を満たし、孔内各部位における電気的比抵抗値の低下した箇所をもって水みちを特定する塩水検層方法や、あるいはボーリング孔内に温水を満たし、孔内各部位における水温低下箇所をもって水みちを特定する温水検層方法等が知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、一般的にはボーリング孔や観測孔を掘削して調査するにしても、掘削されたボーリング孔や観測孔内の特定箇所だけでなく、深さ方向のどの深度に水の流動層があるのかを正確に特定することはきわめて難しい。 すなわち例えば1m当たり複数個以上もの亀裂を有する岩盤層を地下500〜1000m程度の長い掘削孔に沿って、その全長にわたる地層(岩盤層)における流水層(水みち)の存在を検層するには、前記した孔内50cm〜1m単位内において両端にパッカーを介在させて2つのパッカーにより仕切られたエリア内においておこなう水流速・流向を検出する在来の手段によっては、あまりにも非効率的であり、また正確な測定検層が不可能である。
【0005】
【課題を解決するための手段】
そこで本発明は、上記した従来技術における問題点を解決し、掘削孔内の深さ方向にわたる正確でしかも効率的な検層方法および装置を開発するに至ったものであり、具体的には水流量センサを内蔵した内部通水型のゾンデを地下孔内に装入し、孔内深さ方向にわたる水流変化を測定する場合において、ゾンデの通水中間部外周面には全周にわたり孔壁面との間に摺動可能な弾性パッカーを取り付けるとともに、孔内から常時定量の地下水を揚水し、又は孔内に常時定量の水を供給するようにしたことを特徴とする地下流水状況検層方法に関する。
【0006】
また本発明は、上記したゾンデの先端部にはボアホールテレビ(BTV)カメラが取り付けられ、孔内の壁面状況を、地上に設置したモニタにて観測できるようにした地下流水状況検層方法にも関する。 さらに本発明は水流量センサを内臓した内部通水型のゾンデと、該ゾンデに接続された検層ケーブルと、該検層ケーブルを介してデータ処理をおこなうデータ処理装置と、孔内から常時定量の地下水を揚水し、又は孔内に常時定量の水を供給するための地下水又は水供給手段とからなり、前記したゾンデの通水中間部外周面には全周にわたり孔壁面との間に摺動可能な弾性パッカーが取り付けられていることを特徴とした地下流水状況検層装置にも関する。 さらに本発明は上記したゾンデの先端部にはテレビカメラが取り付けられ、孔内の壁面状況を、地上に設置したモニタにて観測できるようにした地下流水状況検層装置にも関する。
【0007】
上記した構成において、掘削した孔内にゾンデを挿入し、外周面に有する弾性パッカーを孔壁全周面に接触させる。 次いで孔内に溜まった地下水を単位時間当たり一定量ずつ継続的に地上に汲み上げる。 孔内水の汲み上げにより新たな地下水がゾンデ内に流入し、ゾンデ内に内蔵する水流センサにより、単位時間当たりのゾンデ内流量が継続的に測定される。 その後外周面に有する弾性パッカーを孔壁面に摺接させながらゾンデ外周側での地下水の通過を規制しつつ順次孔内に沿って深さ方向に向けてゾンデを降下させ、地下水のゾンデ内流量を継続して測定することにより、流量変化による水みちの存在を検層する。
【0008】
なおこの場合において孔内測定位置が浅く地下水がないか、あるいは少ない場合においては、逆に孔内に単位時間当たり一定量の水を供給してゾンデ内を通過して孔内壁面から地中に浸入する水の流量変化を測定することによって、同じく水みちの存在を検層することができる。 さらにこの場合においてゾンデの先端部にボアホールテレビ(BTV)カメラが取り付けられている場合においては、上記したゾンデ内における地下水流量変化箇所についての壁面状態を同時に地上モニタにより目視確認をおこなうことができる。
【0009】
【発明の実施の形態】
以下において本発明の具体的な内容を図1および図2にあらわした実施例に基づいて説明すると、1はゾンデ、7は検層ケーブル、10はデータ処理装置、17は揚水手段をあらわしている。 ゾンデ1は図2にその詳細をあらわしたように、直径が50mm程度で、長さ3m程度の縦長の円筒体に構成され、下側寄りの箇所には通孔2が、また上側寄りの箇所には通孔3が、それぞれ設けられ、しかも円筒体内部の通孔3付近には水流量センサとして超音波センサ4を用いたフローメーターが設けられている。
【0010】
この超音波センサは、具体的には発射波と水中の微粒子などで反射した反射波が粒子の移動速度によって異なる現象を利用したものであり、掘削孔H内において地下水中の微細物質に超音波を照射し、超音波によるドップラー効果を利用することにより鉛直方向の流速を求めるようにしたものであって、これによって1mm/sec〜3000mm/secの範囲内での湧水の流速測定を可能とすることができる。 さらにゾンデ1の外周面であって前記した通孔2と3との間(通水中間部)には全周にわたり弾性パッカー5が取り付けられている。 ここで使用される弾性パッカー5は、例えば発泡させたゴムやウレタンその他のスポンジ状材質のものを環状(ドーナツ状)に形成し、これをゾンデ1の外周面に接着させるとともに、掘削孔壁面の凹凸に対応して放射外方に自在に伸縮できるように構成する。 またゾンデ1の先端(下端)部にはボアホールテレビ(BTV)カメラ6が取り付けられている。
【0011】
検層ケーブル7は、前記したゾンデ1の上端部に繋ぎとめられるとともに、内部には前記した超音波センサ4およびテレビカメラ6による情報通信回線が内臓されており、掘削孔H直上の地上に設置された測深器8のプーリ8aを介してケーブルドラム9に巻き取られあるいは巻き戻されるようになっている。 さらにデータ処理装置10は、揚水ポンプコントローラや水位表示器等の検層コントローラ11および揚水量表示器やBTV用モニタ、BTV用ビデオデッキ16、パーソナルコンピュータ等のデーターロガー15などにより構成される。
【0012】
なお揚水手段17は、掘削孔H内の一定深さ位置にまで吊り下げられた揚水ポンプ17aと揚水パイプ18、および揚水量測定用流量計18a等から構成される。 この場合に使用される揚水ポンプ17aについては、小径の掘削孔H内に挿入可能とするために直径が50mm程度の小型のものを用いる。 また20は水位計をあらわし、ケーブル13を介して検層コントローラ11の水位表示器に接続され、測深器8からはケーブル12を介して前記した検層コントローラ11に接続される。 またケーブルドラム9からはケーブル14を介して同じく検層コントローラ11に接続され、さらに揚水パイプからはケーブル19を介して検層コントローラ11の水位表示器に接続される。
【0013】
上記した構成において、直径が60mm〜280mmの範囲内とした掘削孔H内にゾンデ1を挿入し、外周面に有する弾性パッカー5を孔壁全周面に接触させる。 次いで掘削孔H内に溜まった孔内水を揚水ポンプ17aにより単位時間当たり一定量ずつ継続的に揚水パイプ18を介して地上に汲み上げる。 孔内水の汲み上げにより新たな地下水が通孔2からゾンデ1内に流入し、通孔3から再び掘削孔H内に流出する際において、ゾンデ1内に内蔵する水流センサ(超音波センサ4)により、単位時間当たりのゾンデ1内流量が継続的に測定され、その測定結果が検層ケーブル7およびケーブル14を介して逐次検層コントローラ11に送信される。
【0014】
その後ケーブルドラム9を回転させて検層ケーブル7を順次繰り出すことによって、外周面に有する弾性パッカー5を掘削孔Hの孔壁面に摺接させながらゾンデ1外周側での地下水の通過を規制しつつ順次孔H内に沿って深さ方向に向けてゾンデ1を降下させつつ地下水のゾンデ内流量を継続して測定し、逐次これを検層コントローラ11に送信して流量変化による水みちの存在を検層する。 この場合前記した検層ケーブル7の繰り出し長さについては測深器8のプーリ8aがこれを測定し、ケーブル12を介して検層コントローラ11に送信し、逐次地上からのゾンデ1の深さ位置を確認することができる。
【0015】
なおこの場合において掘削孔H内における測定位置が浅く孔内水がないか、あるいは少ない場合においては、逆に孔内に単位時間当たり一定量の水を注水することにより人為的に孔内に垂直流を発生させ、ゾンデ1内を通過して孔内から地中に浸入する水の流量変化を測定することによって、同じく水みちの存在を検層することができる。 さらにこの場合においてゾンデの先端部にボアホールテレビ(BTV)カメラ6が取り付けられている場合においては、上記したゾンデ1内における湧水流量変化箇所についての孔内壁面状態を検層ケーブル7およびケーブル14を介して同時に地上のモニタなどのデータ処理装置10に送信して当該箇所の目視確認をおこない、また必要に応じてビデオ録画する。
【0016】
なお上記した実施例においては、水量センサとしてコンパクトな超音波センサを用いたが、電磁流量計を用いてもよい。 電磁流量計は超音波センサに比べると掘削孔内の孔内水温度や水質による影響が少ないために、より一層好ましいものといえる。
【0017】
【実施例】
〔測定条件〕
フローメータによる検層では、孔軸方向の地下水の流速を連続的に計測することによって、水みちの存在箇所を特定するものである。 実施例として使用された掘削孔は、45度に傾斜させて掘削された長さ500mのA孔と、鉛直に掘削された口径76mm、長さ60mのB孔である。 別途実施した透水試験では、10−8〜10−4cm/s程度の透水係数が得られている。 また測定は自然状態および揚水状態で実施した。
【0018】
〔測定結果〕
A孔およびB孔共に自然状態での明瞭な流速変化は認められなかった。 一方揚水状態においては両孔共に数カ所の流速変化がみられた。 すなわちA孔では図3にあらわされているように、深度239m、263m、282m、303mの箇所において、それぞれ顕著な流速変化が認められ、しかも別途実施した透水試験結果(注水法)との比較においては図4にあらわされているように5m区間での透水係数が概ね10−4cm/sec以上区間で流速変化箇所との対応が確認された。 また25m区間での比較では、透水係数と、その区間での流速差(区間上端の流速−下端の流速)とが一致していることが認められた。 これはすなわち、その区間のプロファイルの傾きが透水係数の大きさを示しているものと思われる。
【0019】
またB孔での流速の変化については図5に示されているように、32mおよび59mの箇所において流速変化が認められる。 この箇所では図6および図7のBTVモニタによる記録写真によっても明らかであるように、幅1〜2mmの開口割れ目の存在が確認されており、水みちを割れ目として特定することができた(図7参照)。 また5m区間での透水試験との比較では、透水係数が10−4cm/sec以上の箇所において流速変化箇所との対応が確認された。
【0020】
〔考察1〕水みちの検出について
ゾンデに搭載されたボアホールテレビ(BTV)カメラにより多数の割れ目が観測されたが、実際に流速変化が認められたのはそのうちのごく一部であった。例えばB孔では15mから61mの区間で191本の割れ目の存在が確認されたが、そのうち1mm以上の開口幅を有する割れ目は僅か9本であった。 しかしながら実際に水みち割れ目と判断できるのは図5におけるA部分をあらわした図6のものと、図5におけるB部分をあらわした図7のものの、僅か2本のみであった。
【0021】
これは別途実施された透水試験の高透水性箇所と、ゾンデによるフローメータ検層による流速変化箇所が一致していることからも明らかであり、水みちとなった割れ目を的確に特定できたことを示すものといえる。 また同時に掘削孔内の孔壁面映像での割れ目の存在や、その開口現象のみではこれを直ちに水みちと断定することができないこともわかった。 これは多数の割れ目に対して、主な水みちが、ごく限られたものであるために、水みち割れ目を的確に検出するには水理的な側面から篩い分けすることが重要であることをも示唆するものといえる。
【0022】
〔考察2〕水みちの透水係数の推定について
前記したA・B両孔共に顕著な流速変化が認められる箇所については、その箇所の地下水の湧水量、揚水による水頭変化量、割れ目の幅から透水係数を算出することが可能である。 B孔の2本の水みち割れ目の場合、開口幅をそれぞれBTVにて計測した1mmと1.5mmとすれば、その透水係数はそれぞれ1.0cm/sec、2.6cm/secとなる。 また透水試験と対応する5m区間には他に開口割れ目がなく、マトリックスも相対的にきわめて小さい透水係数と考えられるため、この2区間の透水係数がそれぞれの割れ目によってもたらされているものと考えることができる。
【0023】
この際5m区間の透水係数はそれぞれ、2.0x10−4cm/sec、および7.8x10−4cm/secとなる。 この値は透水試験から求めた値に近いものであり、水みちの透水係数がほぼ妥当な値にて評価されたものと考えられる。 また、明瞭な流速変化は認められないものの、流速プロファイルが傾きを有している場合には、個々の割れ目の透水性は小さいが、多数存在することによって、その区間の透水性を大きくしているものと考えられる。 このような場合には、個々の割れ目の透水係数を得ることはできないが、その区間前後の流速差から透水係数を推定することが可能である。
【0024】
例えばA孔の流速プロファイルから25mおよび5m区間の透水試験と同じ区間の透水係数を求めた場合、それぞれ10−4 〜10−6cm /sec、10−4 〜10−5cm /secオーダーの透水係数が得られた。 これを同じ区間で実施した透水試験結果と比較した場合、10−5cm/sec以上であれば両者の透水係数の差が1オーダー以内であることが解る。 一方透水試験で10−5cm/sec未満の透水係数が得られた区間に付いては、区間の流速差がないために透水係数が算出できなかったり、あるいは1オーダー以上の差が生ずる結果となった。
【0025】
これは自然状態と揚水状態での水頭差や、揚水量如何にもよるが、本実施例のゾンデを用いたフローメーター検層による透水係数の推定限界が概ね10−5cm/sec程度であることを示している。 一方これ以上の透水係数を有する区間については、流速プロファイルの傾きから、その区間での透水係数を評価することができると考えられる。
【0026】
【発明の効果】
本発明は以上詳述した通り、電磁流量計や超音波流量計等の水流量センサを内蔵した内部通水型のゾンデを地下孔内に挿入し、孔内深さ方向にわたる水流変化を測定する場合において、ゾンデの通水中間部外周面には全周にわたり孔壁面との間に摺動可能な弾性パッカーを取り付けるとともに、孔内から常時定量の地下水を揚水し、又は孔内に常時定量の水を供給するようにしたために、掘削孔内壁面の凹凸に伴って、長さ方向に向けて掘削孔内径の多少の変化がある場合においても、弾性パッカーの外方向への弾性により、その外周端縁部を孔内壁面に常時接触させることができ、これによって掘削孔内の深さ方向にわたる連続した検層が可能となり、しかも検層深さが500m以上の場合にも適用でき、従来方法による場合に比して著しい測定範囲の拡大をはかることができるのみならず、水みちの存在を正確でしかも迅速に確認することができ、効率的で低コストでの検層を実施することができる。
【0027】
また特に冬季など地下水位の低下する時期に、比較的地表面寄りの浅い地層内検層を実施する場合においては、孔内に常時定量の水を供給することにより、浅い層の亀裂箇所に水が入り込み、ゾンデ内において容易に供給水の流速を測定することができるので地下水の減少期や浅い地層内の検層をおこなう場合において、検層作業がより一層容易となる。 さらにゾンデの先端部にボアホールテレビ(BTV)カメラが取り付けられ、孔内の壁面状況を、地上に設置したモニタにて観測できるようにした場合においては、孔内地下水の流量変化による検層箇所について、地上BTVモニタにより目視確認することができるために、より一層確実な水みちの検出を可能とすることができる。
【図面の簡単な説明】
【図1】本発明の1実施例である地下流水状況検層システムの概略をあらわした原理的説明図。
【図2】図1におけるゾンデの概略構造をあらわした要部拡大断面図。
【図3】A孔の流速プロファイルをあらわしたチャート図。
【図4】A孔の流速プロファイル(深度190m〜320m)と透水試験結果をあらわしたチャート図。
【図5】B孔の流速プロファイルと5m区間透水試験結果をあらわしたチャート図。
【図6】図5におけるAの箇所の亀裂箇所を拡大してあらわしたモニタ図面。
【図7】図5におけるBの箇所の亀裂箇所を拡大してあらわしたモニタ図面。
【符号の説明】
1 ゾンデ
2 通孔
3 通孔
4 超音波センサ
5 弾性パッカー
6 テレビカメラ(ボアホールBTVカメラ)
7 検層ケーブル
8 測探器
8a プーリ
9 ケーブルドラム
10 データ処理装置
11 検層コントローラ
12 ケーブル
13 ケーブル
14 ケーブル
15 データーロガー
16 BTV用ビデオデッキ
17 揚水手段
17a 揚水ポンプ
18 揚水パイプ
18a 揚水量測定用流量計
19 ケーブル
20 水位計
[0001]
[Industrial application fields]
The present invention relates to a logging method and apparatus for exploring the flow path of groundwater in a formation, and an object thereof is to enable significant shortening of logging time and highly accurate logging.
[0002]
[Prior art]
The groundwater in the formation does not always flow uniformly in the ground, but often flows in a specific zone. Such zones are generally referred to as “water roads”, and the groundwater problem is complicated by the fact that pollutants arrive earlier than expected, especially in fractured rocks and gravel grounds. Grasping the groundwater flow paths, such as understanding the flow of concrete components due to construction work and predicting landslides, that is, logging work to investigate and clarify the existence of water paths is an important issue. Yes.
[0003]
Well-known logging means include, for example, a salt logging method in which a boring hole is filled with salt water, and the water resistivity is identified by the location where the electrical resistivity value at each site in the hole has decreased, or boring There is known a warm water logging method or the like that fills a hole with warm water and identifies a water channel at a point where the water temperature drops at each part in the hole.
[0004]
[Problems to be solved by the invention]
However, in general, even if a drilling hole or observation hole is drilled and investigated, there is a fluidized layer of water at any depth in the depth direction as well as a specific location in the drilled borehole or observation hole. It is extremely difficult to specify exactly. That is, for example, in order to log a bedrock layer having multiple cracks per meter along the long excavation hole of about 500 to 1000m underground, the presence of a flowing water layer (water path) in the entire formation (rock layer) The conventional means for detecting the water flow velocity / flow direction in the area partitioned by the two packers with the packers at both ends within the unit of 50 cm to 1 m in the hole is too inefficient. In addition, accurate measurement logging is impossible.
[0005]
[Means for Solving the Problems]
Accordingly, the present invention has solved the above-mentioned problems in the prior art and has developed an accurate and efficient logging method and apparatus over the depth direction in a borehole. When an internal water-flowing type sonde with a built-in flow sensor is inserted into the underground hole and the change in water flow along the depth direction of the hole is measured, the outer wall of the intermediate part of the water flow of the sonde A ground water condition logging method characterized in that a slidable elastic packer is attached between the two and a constant amount of groundwater is pumped from the hole or a constant amount of water is supplied into the hole. .
[0006]
The present invention also relates to a groundwater condition logging method in which a borehole television (BTV) camera is attached to the tip of the above-mentioned sonde, and the wall surface condition in the hole can be observed with a monitor installed on the ground. Related. Furthermore, the present invention provides an internal water flow type sonde with a built-in water flow sensor, a logging cable connected to the sonde, a data processing device for performing data processing via the logging cable, and a constant amount from the inside of the hole. Of groundwater or water supply means for constantly supplying a fixed amount of water into the hole. It also relates to a groundwater logging system characterized by a movable elastic packer. The present invention further relates to a groundwater status logging device in which a television camera is attached to the tip of the above-described sonde and the wall surface condition in the hole can be observed with a monitor installed on the ground.
[0007]
In the above configuration, a sonde is inserted into the excavated hole, and the elastic packer on the outer peripheral surface is brought into contact with the entire peripheral surface of the hole wall. Next, the groundwater accumulated in the hole is continuously pumped up to the ground by a certain amount per unit time. New groundwater flows into the sonde by pumping the borehole water, and the flow rate in the sonde per unit time is continuously measured by the water flow sensor built in the sonde. After that, the elastic packer on the outer peripheral surface is slidably contacted with the hole wall surface, while the passage of groundwater on the outer periphery of the sonde is restricted, the sonde is lowered along the hole in the depth direction, and the flow rate in the groundwater is increased. By continuously measuring, the presence of water path due to the flow rate change is logged.
[0008]
In this case, if the measurement position in the hole is shallow and there is no or little groundwater, conversely, a fixed amount of water per unit time is supplied into the hole and passed through the sonde to enter the ground from the wall surface of the hole. By measuring the change in the flow rate of invading water, it is also possible to log the presence of a water channel. Further, in this case, when a borehole television (BTV) camera is attached to the tip of the sonde, the wall surface state of the groundwater flow rate changing portion in the above-mentioned sonde can be visually confirmed simultaneously by the ground monitor.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the following, the specific contents of the present invention will be described based on the embodiment shown in FIGS. 1 and 2, wherein 1 is a sonde, 7 is a logging cable, 10 is a data processing device, and 17 is a pumping means. . As shown in detail in FIG. 2, the sonde 1 is formed in a vertically long cylindrical body having a diameter of about 50 mm and a length of about 3 m. A through hole 2 is provided at the lower side, and the upper side is provided. Are provided with through-holes 3, and a flow meter using an ultrasonic sensor 4 as a water flow rate sensor is provided near the through-hole 3 inside the cylindrical body.
[0010]
Specifically, this ultrasonic sensor uses a phenomenon in which a reflected wave reflected by a launch wave and a fine particle in water varies depending on the moving speed of the particle. The flow velocity in the vertical direction is obtained by utilizing the Doppler effect by ultrasonic waves, and this makes it possible to measure the flow velocity of spring water in the range of 1 mm / sec to 3000 mm / sec. can do. Further, an elastic packer 5 is attached to the outer peripheral surface of the sonde 1 between the above-described through holes 2 and 3 (water passing intermediate portion) over the entire circumference. The elastic packer 5 used here is formed of, for example, foamed rubber, urethane or other sponge-like material in an annular shape (doughnut shape), and this is adhered to the outer peripheral surface of the sonde 1 while It is configured so that it can expand and contract freely outwardly in accordance with the unevenness. A borehole television (BTV) camera 6 is attached to the tip (lower end) of the sonde 1.
[0011]
The logging cable 7 is fastened to the upper end of the above-described sonde 1, and has an information communication line built in the ultrasonic sensor 4 and the TV camera 6 inside, and is installed on the ground directly above the excavation hole H. The cable drum 9 is wound or unwound through the pulley 8a of the depth measuring instrument 8. Further, the data processing apparatus 10 includes a logging controller 11 such as a pumping pump controller and a water level indicator, a pumping amount indicator, a BTV monitor, a BTV video deck 16, a data logger 15 such as a personal computer, and the like.
[0012]
The pumping means 17 includes a pumping pump 17a and a pumping pipe 18 suspended to a certain depth in the excavation hole H, a pumping amount measuring flowmeter 18a, and the like. The pumping pump 17a used in this case is a small pump having a diameter of about 50 mm so that it can be inserted into the small-diameter excavation hole H. Reference numeral 20 denotes a water level gauge, which is connected to the water level indicator of the logging controller 11 via the cable 13, and connected to the logging controller 11 from the depth measuring instrument 8 via the cable 12. Similarly, the cable drum 9 is connected to the logging controller 11 via the cable 14, and the pumping pipe is connected to the water level indicator of the logging controller 11 via the cable 19.
[0013]
In the above configuration, the sonde 1 is inserted into the excavation hole H having a diameter in the range of 60 mm to 280 mm, and the elastic packer 5 on the outer peripheral surface is brought into contact with the entire peripheral surface of the hole wall. Next, the borehole water accumulated in the excavation hole H is continuously pumped up to the ground via the pumping pipe 18 by a fixed amount per unit time by the pumping pump 17a. When the groundwater is pumped up, new groundwater flows into the sonde 1 from the through-hole 2 and then flows out of the through-hole 3 into the excavation hole H again. Thus, the flow rate in the sonde 1 per unit time is continuously measured, and the measurement result is sequentially transmitted to the logging controller 11 via the logging cable 7 and the cable 14.
[0014]
Thereafter, the cable drum 9 is rotated to sequentially feed out the logging cable 7, thereby restricting the passage of groundwater on the outer peripheral side of the sonde 1 while sliding the elastic packer 5 on the outer peripheral surface against the hole wall surface of the excavation hole H. Sequentially measure the flow rate in the sonde of the groundwater while descending the sonde 1 along the hole H in the depth direction, and send this to the logging controller 11 to check the presence of the water channel due to the change in flow rate. Logging. In this case, the pulley 8a of the sounding instrument 8 measures the feeding length of the logging cable 7 described above, transmits it to the logging controller 11 via the cable 12, and sequentially determines the depth position of the sonde 1 from the ground. Can be confirmed.
[0015]
In this case, in the case where the measurement position in the excavation hole H is shallow and there is no or little water in the hole, conversely, a fixed amount of water per unit time is injected into the hole artificially to be perpendicular to the hole. The presence of a water channel can also be logged by generating a flow and measuring the change in the flow rate of water passing through the sonde 1 and entering the ground from the hole. Further, in this case, when a borehole television (BTV) camera 6 is attached to the tip of the sonde, the logging wall 7 and the cable 14 indicate the hole inner wall surface state at the location where the spring water flow rate changes in the sonde 1 described above. Are simultaneously transmitted to the data processing apparatus 10 such as a monitor on the ground, and the part is visually confirmed, and video recording is performed as necessary.
[0016]
In the embodiment described above, a compact ultrasonic sensor is used as the water amount sensor, but an electromagnetic flow meter may be used. The electromagnetic flow meter is more preferable than the ultrasonic sensor because it is less affected by the water temperature and water quality in the borehole.
[0017]
【Example】
〔Measurement condition〕
In logging with a flow meter, the location of a water channel is specified by continuously measuring the flow velocity of groundwater in the bore axis direction. The excavation hole used as an example is a 500 m long A hole excavated at 45 degrees, and a B hole with a diameter of 76 mm and a length of 60 m excavated vertically. In a separately conducted water permeability test, a water permeability coefficient of about 10 −8 to 10 −4 cm / s is obtained. The measurement was conducted in a natural state and in a pumped state.
[0018]
〔Measurement result〕
No clear flow rate change in the natural state was observed in both the A and B holes. On the other hand, in the pumped state, there were several changes in flow velocity in both holes. That is, as shown in FIG. 3, in the hole A, significant changes in the flow velocity were observed at the depths of 239 m, 263 m, 282 m, and 303 m, respectively, and in comparison with the separately conducted water permeability test results (water injection method). As shown in FIG. 4, it was confirmed that the hydraulic conductivity in the 5 m section was approximately 10 −4 cm / sec or more and the correspondence with the flow velocity change portion was confirmed. Further, in the comparison in the 25 m section, it was recognized that the permeability coefficient and the flow velocity difference in the section (flow velocity at the upper end of the section−flow velocity at the lower end) coincided. In other words, the slope of the profile of the section seems to indicate the magnitude of the hydraulic conductivity.
[0019]
As for the change of the flow velocity in the B hole, as shown in FIG. 5, the change of the flow velocity is recognized at the locations of 32 m and 59 m. As is apparent from the recorded photographs by the BTV monitor in FIGS. 6 and 7, the presence of an opening crack having a width of 1 to 2 mm was confirmed at this location, and the water channel could be identified as a crack (see FIG. 7). Moreover, in the comparison with the water permeability test in a 5 m section, the correspondence with the flow velocity change location was confirmed in the location where the water permeability coefficient was 10 −4 cm / sec or more.
[0020]
[Discussion 1] Detection of water path Many cracks were observed by the borehole television (BTV) camera mounted on the sonde, but only a small portion of the actual flow velocity changes were observed. For example, in the B hole, the presence of 191 cracks was confirmed in the section from 15 m to 61 m, but only 9 cracks having an opening width of 1 mm or more were found. However, it is actually possible to judge only water cracks in FIG. 6 showing the portion A in FIG. 5 and in FIG. 7 showing the portion B in FIG.
[0021]
This is clear from the fact that the highly permeable part of the separately conducted permeability test and the flow velocity change part by the flow meter logging by the sonde were consistent, and the crack that became the water channel could be accurately identified. It can be said that it shows. At the same time, it was found that the presence of a crack in the hole wall image inside the borehole and the opening phenomenon alone cannot be immediately determined as a water channel. This is because the main water channels are very limited for many cracks, so it is important to screen from the hydraulic side in order to accurately detect the water channels. It can be said that it also suggests.
[0022]
[Discussion 2] Estimating the hydraulic conductivity of the water path For locations where significant changes in flow velocity are observed in both the A and B holes described above, water permeability is determined from the amount of groundwater at that location, the amount of head change due to pumping, and the width of the crack. Coefficients can be calculated. In the case of two water crevices in the B hole, if the opening width is 1 mm and 1.5 mm respectively measured by BTV, the water permeability coefficient is 1.0 cm / sec and 2.6 cm / sec, respectively. In addition, there are no other open cracks in the 5m section corresponding to the permeability test, and the matrix is also considered to have a relatively small permeability coefficient, so it is considered that the permeability coefficient of these two sections is brought about by each crack. be able to.
[0023]
At this time, the hydraulic conductivity of the 5 m section is 2.0 × 10 −4 cm / sec and 7.8 × 10 −4 cm / sec, respectively. This value is close to the value obtained from the water permeability test, and it is considered that the water permeability coefficient of the water path was evaluated with a reasonable value. In addition, although no clear change in flow velocity is observed, if the flow velocity profile has a slope, the permeability of individual cracks is small, but the presence of a large number increases the permeability of the section. It is thought that there is. In such a case, it is not possible to obtain the permeability coefficient of each crack, but it is possible to estimate the permeability coefficient from the flow velocity difference before and after the section.
[0024]
For example, when the permeability coefficient of the same section as the permeability test of the 25 m and 5 m sections is obtained from the flow velocity profile of the A hole, 10 −4 respectively. -10 −6 cm / sec, 10 −4 A hydraulic conductivity of the order of -10 −5 cm 2 / sec was obtained. When this is compared with the results of the permeability test conducted in the same section, it can be seen that the difference in the permeability coefficient between the two is within one order if it is 10 −5 cm / sec or more. On the other hand, for the section where the permeability coefficient of less than 10 −5 cm / sec was obtained in the permeability test, the permeability coefficient could not be calculated because there was no flow velocity difference in the section, or a difference of one order or more occurred. became.
[0025]
This depends on the water head difference between the natural state and the pumped state, and the amount of pumped water, but the estimated limit of the permeability coefficient by the flow meter logging using the sonde of this embodiment is about 10 −5 cm / sec. It is shown that. On the other hand, it is considered that the permeability coefficient in the section can be evaluated from the slope of the flow velocity profile for the section having a permeability coefficient higher than this.
[0026]
【The invention's effect】
As described in detail above, the present invention inserts an internal water flow type sonde with a built-in water flow sensor such as an electromagnetic flow meter and an ultrasonic flow meter into the underground hole, and measures changes in water flow over the depth direction of the hole. In some cases, an elastic packer that is slidable with the hole wall surface is attached to the outer peripheral surface of the water passage intermediate part of the sonde, and a fixed amount of groundwater is pumped from the inside of the hole, or a fixed amount of water is constantly put into the hole. Even if there is a slight change in the inner diameter of the drilling hole in the length direction due to the unevenness of the inner wall surface of the drilling hole due to the supply of water, the outer circumference of the outer surface of the drilling hole will be affected by the elasticity of the elastic packer. The edge part can always be in contact with the wall surface of the hole, which enables continuous logging in the depth direction in the drilling hole, and can be applied even when the logging depth is 500 m or more. Compared to the case by Not only it is possible to increase the measurement range, the presence of water conducting can be confirmed accurate and quickly, the logging of an efficient and low cost can be implemented.
[0027]
In addition, when conducting ground shallow logging, which is relatively close to the ground surface, especially during winter when the groundwater level drops, water is supplied to the cracked portion of the shallow layer by always supplying a fixed amount of water into the hole. Since the flow rate of the feed water can be easily measured in the sonde, the logging operation is further facilitated when the groundwater is decreasing or when logging is performed in a shallow formation. In addition, when a borehole television (BTV) camera is attached to the tip of the sonde, and the wall surface condition in the hole can be observed with a monitor installed on the ground, the logging location due to changes in the flow rate of groundwater in the hole Since it can be visually confirmed by the terrestrial BTV monitor, it is possible to detect the water channel more reliably.
[Brief description of the drawings]
FIG. 1 is a principle explanatory diagram showing an outline of a groundwater status logging system according to an embodiment of the present invention.
2 is an enlarged cross-sectional view of a main part showing a schematic structure of a sonde in FIG. 1;
FIG. 3 is a chart showing a flow velocity profile of an A hole.
FIG. 4 is a chart showing a flow velocity profile (depth: 190 m to 320 m) of the A hole and a water permeability test result.
FIG. 5 is a chart showing a flow velocity profile of a B hole and a 5 m section permeability test result.
FIG. 6 is a monitor drawing showing an enlarged crack portion at a portion A in FIG. 5;
FIG. 7 is a monitor drawing showing an enlarged crack portion at a portion B in FIG. 5;
[Explanation of symbols]
1 Sonde 2 Through-hole 3 Through-hole 4 Ultrasonic sensor 5 Elastic packer 6 TV camera (borehole BTV camera)
7 Log logging cable 8 Measuring instrument 8a Pulley 9 Cable drum 10 Data processing device 11 Logging controller 12 Cable 13 Cable 14 Cable 15 Data logger 16 BTV video deck 17 Pumping means 17a Pumping pump 18 Pumping pipe 18a Flow rate for measuring pumped amount 19 cables 20 water level gauge

Claims (8)

水流量センサを内蔵した内部通水型のゾンデを地下掘削孔内に挿入し、孔内深さ方向にわたる水流変化を測定する場合において、ゾンデの通水中間部外周面には全周にわたり孔壁面との間に摺動可能な弾性パッカーを取り付けるとともに、孔内から常時定量の地下水を揚水し、又は孔内に常時定量の水を供給するようにしたことを特徴とする地下流水状況検層方法。When an internal water flow type sonde with a built-in water flow sensor is inserted into the underground excavation hole and the change in water flow is measured along the depth of the hole, the outer wall of the sound passage is located on the outer circumferential surface of the hole. A ground logging method for groundwater conditions, in which a slidable elastic packer is attached between the two and a constant amount of groundwater is pumped from the hole or a constant amount of water is supplied into the hole . 水流量センサは電磁流量計を用いたフローメータであるところの請求項1に記載の地下流水状況検層方法。The groundwater status logging method according to claim 1, wherein the water flow sensor is a flow meter using an electromagnetic flow meter. 水流量センサは超音波流量計を用いたフローメータであるところの請求項1に記載の地下流水状況検層方法。The groundwater level logging method according to claim 1, wherein the water flow rate sensor is a flow meter using an ultrasonic flowmeter. ゾンデの先端部にはボアホールテレビ(BTV)カメラが取り付けられ、孔内の壁面状況を、地上に設置したモニタにて観測できるようにした請求項1又は請求項2あるいは請求項3に記載の地下流水状況検層方法。A borehole television (BTV) camera is attached to the tip of the sonde, and the wall surface in the hole can be observed with a monitor installed on the ground. Running water logging method. 水流量センサを内臓した内部通水型のゾンデと、該ゾンデに接続された検層ケーブルと、該検層ケーブルを介してデータ処理をおこなうデータ処理装置と、孔内から常時定量の地下水を揚水し、又は孔内に常時定量の水を供給するための地下水又は水供給手段とからなり、前記したゾンデの通水中間部外周面には全周にわたり孔壁面との間に摺動可能な弾性パッカーが取り付けられていることを特徴とした地下流水状況検層装置。An internal water flow type sonde with a built-in water flow sensor, a logging cable connected to the sonde, a data processing device that performs data processing via the logging cable, and a fixed amount of groundwater pumped from the inside of the hole Or a groundwater or water supply means for supplying a constant amount of water into the hole at all times. A groundwater logging system that is equipped with a packer. 水流量センサは電磁流量計を用いたフローメータであるところの請求項5に記載の地下流水状況検層装置。6. The groundwater status logging apparatus according to claim 5, wherein the water flow sensor is a flow meter using an electromagnetic flow meter. 水流量センサは超音波流量計を用いたフローメータであるところの請求項5に記載の地下流水状況検層装置。6. The groundwater status logging apparatus according to claim 5, wherein the water flow sensor is a flow meter using an ultrasonic flowmeter. ゾンデの先端部にはボアホールテレビ(BTV)カメラが取り付けられ、孔内の壁面状況を、地上に設置したモニタにて観測できるようにした請求項5又は請求項6あるいは請求項7に記載の地下流水状況検層装置。The borehole television (BTV) camera is attached to the tip of the sonde, and the wall surface condition in the hole can be observed with a monitor installed on the ground. Running water logging equipment.
JP14512799A 1999-05-18 1999-05-25 Groundwater status logging method and device Expired - Lifetime JP4006884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14512799A JP4006884B2 (en) 1999-05-18 1999-05-25 Groundwater status logging method and device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13695599 1999-05-18
JP11-136955 1999-05-18
JP14512799A JP4006884B2 (en) 1999-05-18 1999-05-25 Groundwater status logging method and device

Publications (2)

Publication Number Publication Date
JP2001083261A JP2001083261A (en) 2001-03-30
JP4006884B2 true JP4006884B2 (en) 2007-11-14

Family

ID=26470397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14512799A Expired - Lifetime JP4006884B2 (en) 1999-05-18 1999-05-25 Groundwater status logging method and device

Country Status (1)

Country Link
JP (1) JP4006884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104179489A (en) * 2013-05-28 2014-12-03 韩国地质资源研究院 Method for compensating of drawdown in pumping test based on natural decreasing pumping rate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915124B2 (en) * 2006-04-06 2012-04-11 株式会社ダイヤコンサルタント Method and apparatus for evaluating formation migration behavior
JP5254724B2 (en) * 2008-09-29 2013-08-07 大成建設株式会社 Underground receiver
JP5565751B2 (en) * 2010-06-03 2014-08-06 株式会社大林組 Water channel detection system and method in bedrock
JP5542593B2 (en) * 2010-09-14 2014-07-09 三信建設工業株式会社 Ground cutting condition monitoring method and monitoring device in high-pressure jet agitation method
TWM420706U (en) * 2011-03-08 2012-01-11 Hao-Rong Xie Pendulum type stratum sliding surface measuring instrument
KR101237925B1 (en) * 2011-03-09 2013-02-27 한국지질자원연구원 Monitoring system for groundwater profile
KR101205445B1 (en) 2012-05-29 2012-11-27 주식회사 지오그린이십일 Groundwater pumping test apparatus and method
WO2015047256A1 (en) * 2013-09-25 2015-04-02 Halliburton Energy Services, Inc. Workflow adjustment methods and systems for logging operations
CN108106687B (en) * 2018-02-08 2023-05-26 济南大学 Method for exploring bedrock underground water flow net containing soft interlayer and double-capsule water stopper
CN108825225A (en) * 2018-06-14 2018-11-16 贵州省地质矿产勘查开发局111地质大队 Joint type water level and water temperature measuring device
CN114857506B (en) * 2022-04-19 2023-03-03 武汉新烽光电股份有限公司 A standard monitoring well for pipe network current surveying
CN116517539A (en) * 2023-05-31 2023-08-01 江苏省水文地质工程地质勘察院 Method for marine hydrogeology pumping test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104179489A (en) * 2013-05-28 2014-12-03 韩国地质资源研究院 Method for compensating of drawdown in pumping test based on natural decreasing pumping rate
CN104179489B (en) * 2013-05-28 2017-04-12 韩国地质资源研究院 Method for compensating of drawdown in pumping test based on natural decreasing pumping rate

Also Published As

Publication number Publication date
JP2001083261A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
US9909414B2 (en) Fracture characterization using directional electromagnetic resistivity measurements
US8302687B2 (en) Apparatus for measuring streaming potentials and determining earth formation characteristics
US9371710B2 (en) Fluid minotiring and flow characterization
US7891417B2 (en) Completion apparatus for measuring streaming potentials and determining earth formation characteristics
JP4006884B2 (en) Groundwater status logging method and device
US6978672B1 (en) Wireline apparatus for measuring steaming potentials and determining earth formation characteristics
US9063250B2 (en) Interference testing while drilling
EA014920B1 (en) Method and apparatus for determining formation resistivity ahead of the bit and azimuthal at the bit
CA2931182C (en) Wellbore tubular length determination using pulse-echo measurements
US20050279495A1 (en) Methods for locating formation fractures and monitoring well completion using streaming potential transients information
US7233150B2 (en) While-drilling apparatus for measuring streaming potentials and determining earth formation characteristics
US9726008B2 (en) Sub-surface formation boundary detection using an electric-field borehole telemetry apparatus
US9228393B2 (en) Method and system of drilling laterals in shale formations
CN106401571A (en) Measurement unit and overflow information recognition device and method
US8797035B2 (en) Apparatus and methods for monitoring a core during coring operations
US20160265340A1 (en) Cementing job evaluation systems and methods for use with novel cement compositions including resin cement
US8077545B2 (en) Method for detecting gas influx in wellbores and its application to identifying gas bearing formations
US20130082845A1 (en) Estimation and compensation of pressure and flow induced distortion in mud-pulse telemetry
Carrera et al. Comparison of Seepage Velocity Measurement Methods in Fractured Rock
AU2015200156B2 (en) Methods and systems for estimating formation resistivity and porosity
Pekkanen Difference flow measurements in ONKALO at Olkiluoto, drillholes ONK-PP122-ONK-PP124, ONK-PP126, ONK-PP128, ONK-PP131, ONK-PP134 and ONK-PP137
Pekkanen Flow measurements in ONKALO at Olkiluoto probe holes and investigation holes ONK-PP294,-PP328-PP339,-PP352-PP353,-PP354-PP365,-PP366-Pp377,-PP378 and-PP379-PP384
AU2011380959B2 (en) Apparatus and methods for monitoring a core during coring operations
Hupp et al. Evaluating high-angle wells with advanced production-logging technology
Pekkanen Flow measurements in ONKALO at Olkiluoto probe holes, ONK-PVA3,-PVA6,-PP187,-PP190,-PP194,-PP196,-PP223,-PP226 and-PP227

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term