JP4006019B2 - Chlorine dioxide production method - Google Patents

Chlorine dioxide production method Download PDF

Info

Publication number
JP4006019B2
JP4006019B2 JP2003506799A JP2003506799A JP4006019B2 JP 4006019 B2 JP4006019 B2 JP 4006019B2 JP 2003506799 A JP2003506799 A JP 2003506799A JP 2003506799 A JP2003506799 A JP 2003506799A JP 4006019 B2 JP4006019 B2 JP 4006019B2
Authority
JP
Japan
Prior art keywords
reactor
chlorine dioxide
eductor
acid
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003506799A
Other languages
Japanese (ja)
Other versions
JP2004530626A (en
Inventor
ゲイリー チャールズ
マイケル バーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel NV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/887,264 external-priority patent/US6790427B2/en
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Publication of JP2004530626A publication Critical patent/JP2004530626A/en
Application granted granted Critical
Publication of JP4006019B2 publication Critical patent/JP4006019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23763Chlorine or chlorine containing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/026Preparation from chlorites or chlorates from chlorate ions in the presence of a peroxidic compound, e.g. hydrogen peroxide, ozone, peroxysulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paper (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention concerns a process and an apparatus for continuously producing chlorine dioxide, the process comprising the steps of: feeding chlorate ions, acid and hydrogen peroxide as aqueous solutions to a reactor; reducing chlorate ions in the reactor to chlorine dioxide, thereby forming a product stream in the reactor containing chlorine dioxide; feeding motive water (5) to an eductor comprising a nozzle (26); bringing the motive water to flow through the nozzle and causing it to flow further through the eductor in an at least partially spiral or helical manner; transferring the product stream from the reactor to the eductor and mixing it with the motive water and thereby forming a diluted aqueous solution containing chlorine dioxide, and; withdrawing the diluted aqueous solution containing chlorine dioxide from the eductor.

Description

本発明は塩素酸イオン、酸及び過酸化水素からの二酸化塩素の製造方法に関する。   The present invention relates to a method for producing chlorine dioxide from chlorate ions, acid and hydrogen peroxide.

二酸化塩素は種々の用途、例えば、パルプ漂白、脂肪漂白、水精製及び工業廃棄物からの有機物質の除去に使用される。二酸化塩素は貯蔵安定ではないので、それは現場で生成される必要がある。   Chlorine dioxide is used in a variety of applications, such as pulp bleaching, fat bleaching, water purification and removal of organic materials from industrial waste. Since chlorine dioxide is not storage stable, it needs to be produced in situ.

二酸化塩素は通常アルカリ金属塩素酸塩又は塩素酸を水性反応媒体中で還元剤と反応させることにより生成される。二酸化塩素は、米国特許第5091166号、同第5091167号及びEP特許第612686号に記載された方法のように、ガスとして反応媒体から取り出されてもよい。通常、二酸化塩素ガスはその後に水に吸収されてその水溶液を生成する。   Chlorine dioxide is usually produced by reacting an alkali metal chlorate or chloric acid with a reducing agent in an aqueous reaction medium. Chlorine dioxide may be removed from the reaction medium as a gas, as in the methods described in US Pat. Nos. 5,091,166, 5,091,167 and EP Pat. No. 6,126,686. Normally, chlorine dioxide gas is then absorbed into water to produce its aqueous solution.

小規模ユニット、例えば、水精製用途又は小さい漂白プラントのための二酸化塩素の製造について、二酸化塩素ガスを反応媒体から分離しないが、必要により水による希釈後に、二酸化塩素含有溶液を反応器から直接回収することが有利である。このような方法が米国特許第2833624号、同第4534952号、同第5895638号及びWO 00/76916に記載されており、近年商用になりつつある。しかしながら、更なる改良についての要望が依然としてある。特に、リサイクル紙漂白、バガス漂白、又は小規模のパルプ漂白のような或る用途に必要とされるような充分に高い濃度の二酸化塩素を含む溶液を得ることは困難とわかった。また、高濃度の二酸化塩素は水流量を最小にすることが重要であるあらゆる用途に有益であり得る。   For the production of chlorine dioxide for small scale units, eg water purification applications or small bleach plants, chlorine dioxide gas is not separated from the reaction medium, but the chlorine dioxide-containing solution is recovered directly from the reactor, if necessary after dilution with water It is advantageous to do so. Such methods are described in U.S. Pat. Nos. 2,833,624, 4,534,952, 5,895,638 and WO 00/76916, which are becoming commercially available in recent years. However, there is still a need for further improvements. In particular, it has proved difficult to obtain solutions containing sufficiently high concentrations of chlorine dioxide as required for certain applications such as recycled paper bleaching, bagasse bleaching, or small scale pulp bleaching. Also, high concentrations of chlorine dioxide can be beneficial in any application where it is important to minimize water flow.

本発明の目的は高濃度の水溶液中の二酸化塩素の直接生成を可能にする方法を提供することである。   The object of the present invention is to provide a method which allows the direct production of chlorine dioxide in a highly concentrated aqueous solution.

本発明の別の目的は高い生産能力による水溶液中の二酸化塩素の直接生成方法を提供することである。   Another object of the present invention is to provide a method for the direct production of chlorine dioxide in aqueous solution with high production capacity.

本発明の更に別の目的はその方法を行なうための装置を提供することである。   Yet another object of the present invention is to provide an apparatus for performing the method.

驚くことに、
塩素酸イオン、酸及び過酸化水素を水溶液として反応器に供給する工程、
塩素酸イオンを反応器中で二酸化塩素に還元し、それにより二酸化塩素を含む生成物流を反応器中で生成する工程、
動機水をノズルを含むエダクターに供給する工程、
動機水をノズル中に流入させ、それを更に少なくとも部分的に、好ましくは実質的に、渦巻き又はらせん様式でエダクター中に流入させる工程、
生成物流を反応器からエダクターに移し、それを動機水と混合し、それにより二酸化塩素を含む希釈された水溶液を生成する工程、及び
二酸化塩素を含む希釈された水溶液をエダクターから取り出す工程
を含むことを特徴とする二酸化塩素の連続製造方法を提供することによりこれらの目的を満足することがわかった。
Surprisingly
Supplying chlorate ions, acid and hydrogen peroxide as an aqueous solution to the reactor;
Reducing chlorate ions to chlorine dioxide in the reactor, thereby producing a product stream containing chlorine dioxide in the reactor;
Supplying motive water to the eductor including the nozzle;
Allowing motive water to flow into the nozzle, which further flows at least partially, preferably substantially, into the eductor in a spiral or spiral manner;
Transferring the product stream from the reactor to an eductor, mixing it with motive water, thereby producing a diluted aqueous solution containing chlorine dioxide, and removing the diluted aqueous solution containing chlorine dioxide from the eductor. It was found that these objectives were satisfied by providing a continuous process for producing chlorine dioxide characterized by

塩素酸イオンは塩素酸及び/又は金属塩素酸塩、好ましくはアルカリ金属塩素酸塩を含む水溶液として反応器に供給し得る。アルカリ金属は、例えば、ナトリウム、カリウム又はこれらの混合物であってもよく、これらのうちでナトリウムが最も好ましい。塩素酸が使用されない限り、別の酸、好ましくは鉱酸、例えば、硫酸、塩酸又は硝酸が反応器に供給される必要があり、これらのうちで硫酸が最も好ましい。反応器に供給されるH22対ClO3 のモル比は好適には約0.2:1〜約2:1、好ましくは約0.5:1〜約1.5:1、最も好ましくは約0.5:1〜約1:1である。金属塩素酸塩及び塩素酸は常に不純物として若干の塩化物を含むが、一層多い塩化物、例えば、金属塩化物又は塩酸を反応器に供給することがまた充分に可能である。しかしながら、塩素の生成を最小にするために、反応器に供給される塩化物イオンの量を低く、好適には約1モル%以下、好ましくは約0.1モル%以下、更に好ましくは約0.05モル%以下、最も好ましくは約0.02モル%以下のClO3 のClに保つことが好ましい。 Chloric acid ions can be supplied to the reactor as an aqueous solution containing chloric acid and / or metal chlorate, preferably alkali metal chlorate. The alkali metal may be, for example, sodium, potassium or a mixture thereof, among which sodium is most preferred. Unless chloric acid is used, another acid, preferably a mineral acid, such as sulfuric acid, hydrochloric acid or nitric acid needs to be fed to the reactor, of which sulfuric acid is most preferred. The molar ratio of H 2 O 2 to ClO 3 fed to the reactor is suitably about 0.2: 1 to about 2: 1, preferably about 0.5: 1 to about 1.5: 1, most Preferably from about 0.5: 1 to about 1: 1. Metal chlorates and chloric acids always contain some chloride as an impurity, but it is also possible to supply more chloride, for example metal chloride or hydrochloric acid, to the reactor. However, to minimize chlorine production, the amount of chloride ions fed to the reactor is low, suitably about 1 mol% or less, preferably about 0.1 mol% or less, more preferably about 0 mol%. It is preferred to keep the ClO 3 Cl at 0.05 mol% or less, most preferably at about 0.02 mol% or less.

特に好ましい実施態様において、アルカリ金属塩素酸塩及び過酸化水素が予備混合された水溶液、例えば、WO 00/76916(これは参考として本明細書に含まれる)に記載されたような組成物の形態で反応器に供給される。このような組成物は約1〜約6.5モル/リットル、好ましくは約3〜約6モル/リットルのアルカリ金属塩素酸塩、約1〜約7モル/リットル、好ましくは約3〜約5モル/リットルの過酸化水素及び保護コロイド、遊離基脱除剤又はホスホン酸をベースとする錯生成剤の少なくとも一種を含む水溶液であってもよく、その水溶液のpHは好適には約0.5から約4まで、好ましくは約1から約3.5まで、最も好ましくは約1.5から約3までである。好ましくは、少なくとも一種のホスホン酸をベースとする錯生成剤が約0.1〜約5ミリモル/リットル、最も好ましくは約0.5〜約3ミリモル/リットルの量で存在する。保護コロイドが存在する場合、その濃度は好ましくは約0.001〜約0.5モル/リットル、最も好ましくは約0.02〜約0.05モル/リットルである。遊離基脱除剤が存在する場合、その濃度は好ましくは約0.01〜約1モル/リットル、最も好ましくは約0.02〜約0.2モル/リットルである。特に好ましい組成物は1−ヒドロキシエチリデン−1,1−ジホスホン酸、1−アミノエタン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、ジエチレントリアミンヘキサ(メチレンホスホン酸)、及び1−アミノアルカン−1,1−ジホスホン酸、例えば、モルホリノメタンジホスホン酸、N,N−ジメチルアミノジメチルジホスホン酸、アミノメチルジホスホン酸、又はこれらの塩、好ましくはナトリウム塩からなる群から選ばれた少なくとも一種のホスホン酸をベースとする錯生成剤を含む。有益な保護コロイドとして、スズ化合物、例えば、アルカリ金属スタネート、特にナトリウムスタネート(Na2(Sn(OH)6)が挙げられる。有益な遊離基脱除剤として、ピリジンカルボン酸、例えば、2,6−ピリジンジカルボン酸が挙げられる。好適には、塩化物イオンの量は約50ミリモル/リットル以下、好ましくは約5ミリモル/リットル以下、最も好ましくは約0.5ミリモル/リットル以下である。 In a particularly preferred embodiment, an aqueous solution premixed with alkali metal chlorate and hydrogen peroxide, for example in the form of a composition as described in WO 00/76916, which is hereby incorporated by reference. Is fed to the reactor. Such compositions have from about 1 to about 6.5 mol / liter, preferably from about 3 to about 6 mol / liter of alkali metal chlorate, from about 1 to about 7 mol / liter, preferably from about 3 to about 5 It may be an aqueous solution containing at least one mole / liter of hydrogen peroxide and a protective colloid, a free radical scavenger or a complexing agent based on phosphonic acid, and the pH of the aqueous solution is preferably about 0.5. To about 4, preferably from about 1 to about 3.5, and most preferably from about 1.5 to about 3. Preferably, at least one phosphonic acid based complexing agent is present in an amount of about 0.1 to about 5 mmol / liter, most preferably about 0.5 to about 3 mmol / liter. When present, the concentration is preferably from about 0.001 to about 0.5 mole / liter, most preferably from about 0.02 to about 0.05 mole / liter. When a free radical scavenger is present, its concentration is preferably from about 0.01 to about 1 mole / liter, most preferably from about 0.02 to about 0.2 mole / liter. Particularly preferred compositions are 1-hydroxyethylidene-1,1-diphosphonic acid, 1-aminoethane-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), hexamethylenediaminetetra (methylenephosphonic). Acid), diethylenetriaminepenta (methylenephosphonic acid), diethylenetriaminehexa (methylenephosphonic acid), and 1-aminoalkane-1,1-diphosphonic acid, such as morpholinomethane diphosphonic acid, N, N-dimethylaminodimethyldiphosphonic acid A complexing agent based on at least one phosphonic acid selected from the group consisting of, aminomethyldiphosphonic acid, or salts thereof, preferably sodium salts. Useful protective colloids include tin compounds such as alkali metal stannates, particularly sodium stannate (Na 2 (Sn (OH) 6 ). Useful free radical scavengers include pyridine carboxylic acids such as 2, Preferably, the amount of chloride ions is about 50 millimoles / liter or less, preferably about 5 millimoles / liter or less, and most preferably about 0.5 millimoles / liter or less.

硫酸が供給原料として使用される場合には、それは好ましくは約70〜約96重量%、最も好ましくは約75〜約85重量%の濃度及び好ましくは約0〜約80℃、最も好ましくは約20〜約60℃の温度を有する。何とならば、その方法を実質的に断熱的に操作することが可能であり得るからである。好ましくは約2〜約6kgのH2SO4、最も好ましくは約3〜約5kgのH2SO4が生成されるClO21kg当りに供給される。また、当量の別の鉱酸が使用されてもよい。 When sulfuric acid is used as the feed, it preferably has a concentration of about 70 to about 96% by weight, most preferably about 75 to about 85% by weight and preferably about 0 to about 80 ° C., most preferably about 20 It has a temperature of ~ 60 ° C. This is because it may be possible to operate the process substantially adiabatically. Preferably about 2 to about 6 kg of H 2 SO 4 , most preferably about 3 to about 5 kg of H 2 SO 4 are fed per kg of ClO 2 produced. An equivalent amount of another mineral acid may also be used.

二酸化塩素生成をもたらす正味の反応は下記の式により記載し得る。
2ClO3 +2H+H22→2ClO2+2H2O+O2
The net reaction leading to chlorine dioxide production can be described by the following equation:
2ClO 3 + 2H + + H 2 O 2 → 2ClO 2 + 2H 2 O + O 2

その正確なメカニズムは複雑であり、二酸化塩素及び塩素を生じるための塩素酸塩と塩化物(たとえ別々に添加されないとしても、塩素酸塩中に不純物として充分な量で常に存在する)の間の最初の反応、続いて塩化物に戻る過酸化水素との塩素の反応を伴うと考えられる。しかしながら、正味の反応を考慮して、過酸化水素は通常塩素酸イオンと反応する還元剤と見なされる。   Its exact mechanism is complex, between chlorate and chloride to yield chlorine dioxide and chlorine (although always present in chlorate as a sufficient amount of impurities, even if not added separately) It is believed to involve an initial reaction followed by a reaction of chlorine with hydrogen peroxide back to chloride. However, in view of the net reaction, hydrogen peroxide is usually regarded as a reducing agent that reacts with chlorate ions.

二酸化塩素への塩素酸イオンの還元は、通常液体と泡の両方を含み、また二酸化塩素、酸素及び殆どの場合には或る種の残存する未反応の供給薬品を含む、反応器中の生成物流の生成をもたらす。二酸化塩素及び酸素は液体中に溶解されたもの及び気泡の両方として存在し得る。金属塩素酸塩及び鉱酸が供給薬品として使用される場合、生成物流は、二酸化塩素及び酸素の他に、鉱酸の金属塩そして通常また残存金属塩素酸塩及び鉱酸を含むであろう。約75%〜100%、好ましくは約80〜100%、最も好ましくは約95〜100%の塩素酸イオンから二酸化塩素への転化率を得ることが可能とわかった。   Reduction of chlorate ions to chlorine dioxide usually involves both liquid and foam, and production in the reactor containing chlorine dioxide, oxygen and in some cases some remaining unreacted feed chemical. Bring about the generation of logistics. Chlorine dioxide and oxygen can exist both as dissolved in the liquid and as bubbles. When metal chlorates and mineral acids are used as feed chemicals, the product stream will contain metal salts of mineral acids and usually also residual metal chlorates and mineral acids in addition to chlorine dioxide and oxygen. It has been found possible to obtain a conversion of chlorate ions to chlorine dioxide of about 75% to 100%, preferably about 80 to 100%, most preferably about 95 to 100%.

反応器中の温度は行き渡っている圧力で反応体及び生成物流の沸点以下、好ましくは約20〜約80℃、最も好ましくは約30〜約60℃に維持されることが好適である。反応器内で維持される圧力は好適にはわずかに大気圧以下、好ましくは約30〜約100kPa(絶対圧)、最も好ましくは約65〜約95kPa(絶対圧)である。   It is preferred that the temperature in the reactor be maintained below the boiling point of the reactants and product stream at prevailing pressure, preferably from about 20 to about 80 ° C, and most preferably from about 30 to about 60 ° C. The pressure maintained in the reactor is suitably slightly below atmospheric pressure, preferably about 30 to about 100 kPa (absolute pressure), most preferably about 65 to about 95 kPa (absolute pressure).

反応器は、例えば、垂直、水平又は傾斜して配置された1個又は数個の容器を含んでもよい。反応体は反応器に直接に、又は別個の混合装置を介して供給されてもよい。好適には、反応器は好ましくは実質的に管状のスルーフロー容器又はパイプであり、最も好ましくは反応体を実質的に一様な様式で混合するための装置を含む。このような装置はアパーチャを備え、かつ反応器内に配置されたディスク等を含んでもよく、金属塩素酸塩及び過酸化水素がそのディスクの下流に供給され、一方、酸がディスクの上流に供給され、アパーチャを通って流入させられ、次いで金属塩素酸塩及び過酸化水素と混合させられる。このような配置は一様な混合及びその方法の安定な操作だけでなく、特に上向きの主たる流れ方向と実質的に垂直に配置された反応器中で、維持された高い薬品効率でもって生産速度を変える能力を与えることがわかった。しかしながら、反応体の一種、例えば、酸を別の反応体又は反応体の混合物、例えば、金属塩素酸塩と過酸化水素の混合物用の供給配管に単に供給することがまた可能である。   The reactor may comprise, for example, one or several containers arranged vertically, horizontally or inclined. The reactants may be fed directly to the reactor or via a separate mixing device. Suitably, the reactor is preferably a substantially tubular through-flow vessel or pipe and most preferably includes an apparatus for mixing the reactants in a substantially uniform manner. Such an apparatus may include a disk or the like with an aperture and disposed in the reactor, where metal chlorate and hydrogen peroxide are fed downstream of the disk, while acid is fed upstream of the disk. And flowed through the aperture and then mixed with the metal chlorate and hydrogen peroxide. Such an arrangement provides not only uniform mixing and stable operation of the process, but also a production rate with a high chemical efficiency maintained, especially in a reactor arranged substantially perpendicular to the upward main flow direction. It was found to give the ability to change. However, it is also possible to simply supply one type of reactant, for example an acid, to a supply line for another reactant or mixture of reactants, for example a mixture of metal chlorate and hydrogen peroxide.

使用される反応器の長さ(主たる流れ方向の)は好ましくは約50〜約800mm、最も好ましくは約350〜約650mmである。約25〜約300mm、好ましくは約70〜約200mmの内径を有する実質的に管状の反応器を使用することが有利とわかった。約12:1〜約1:1、最も好ましくは約8:1〜約4:1の長さ対内径の好ましい比を有する実質的に管状の反応器を使用することが特に有利である。反応器中の好適な平均滞留時間は殆どの場合に約1〜約1000秒、好ましくは約2〜約40秒である。   The length of the reactor used (in the main flow direction) is preferably from about 50 to about 800 mm, most preferably from about 350 to about 650 mm. It has been found advantageous to use a substantially tubular reactor having an inner diameter of about 25 to about 300 mm, preferably about 70 to about 200 mm. It is particularly advantageous to use a substantially tubular reactor having a preferred length to inner diameter ratio of about 12: 1 to about 1: 1, most preferably about 8: 1 to about 4: 1. A suitable average residence time in the reactor is in most cases from about 1 to about 1000 seconds, preferably from about 2 to about 40 seconds.

エダクターはあらゆる液体、泡及びガスをその中に含む、生成物流をエダクターに流入させ、動機水と混合させて二酸化塩素を含む希釈された溶液を生成する吸引力を生じる。動機水はあらゆる好適な装置、例えば、捻り羽根、内部旋条等(これらは一体であってもよく、又はノズルから分離してもよく、その内部又は上流に配置されてもよい)により少なくとも部分的に渦巻き又はらせん様式で流入させられる。ノズルはあらゆる好適な型のものであってもよく、1個又は数個の穴を含んでもよい。   The eductor, which contains any liquid, foam and gas, flows the product stream into the eductor and creates a suction force that mixes with the motive water to produce a diluted solution containing chlorine dioxide. The motive water is at least partly provided by any suitable device, such as twisted blades, internal slews, etc. (which may be integral or separated from the nozzle and located in or upstream thereof) In a spiral or spiral fashion. The nozzle may be of any suitable type and may include one or several holes.

エダクターは好適には、ノズルからの流れ方向に、吸引チャンバー(その中に、生成物流が反応器から移される)、及びベンチュリ部分(それを通って、このような場合に二酸化塩素を含む希釈された水溶液が取り出される)を更に含む。   The eductor is preferably diluted in the direction of flow from the nozzle, into which a suction chamber (in which the product stream is transferred from the reactor) and a venturi section (through which in this case chlorine dioxide is contained). The aqueous solution is removed).

動機水の少なくとも部分的に渦巻き又はらせんの流れは所定の動機水の流れについて二酸化塩素の生産能力を増大し、こうして従来二酸化塩素ガスを反応媒体から分離し、次いでそれを水に吸収すること(本発明では行なう必要のない工程)のみにより可能であったことよりも高い二酸化塩素濃度を有する生成物溶液の製造を可能にすることがわかった。こうして、約1〜約4g/リットルの二酸化塩素、好ましくは約1.5〜約3.5g/リットルの二酸化塩素を含む水溶液を生成することが可能である。   The at least partially swirl or spiral flow of motive water increases the chlorine dioxide production capacity for a given motive water flow, thus separating conventional chlorine dioxide gas from the reaction medium and then absorbing it into the water ( It has been found that the present invention makes it possible to produce a product solution having a higher chlorine dioxide concentration than was possible only by a process that does not need to be carried out. Thus, it is possible to produce an aqueous solution containing about 1 to about 4 g / liter of chlorine dioxide, preferably about 1.5 to about 3.5 g / liter of chlorine dioxide.

本発明の方法は小規模、例えば、一つの反応器中で約0.1〜約100kg/時間、好ましくは約0.1〜約50kg/時間の二酸化塩素の製造に特に適している。多くの用途について、好ましい二酸化塩素生成速度は一つの反応器中で約0.1〜約25kg/時間、最も好ましくは約0.5〜約10kg/時間である。典型的な小規模製造ユニットは通常唯一の反応器を含むが、数個、例えば、約15個以上までの反応器を、例えば、管の束のように、平行に配置することが可能である。   The process of the invention is particularly suitable for the production of chlorine dioxide on a small scale, for example about 0.1 to about 100 kg / hour, preferably about 0.1 to about 50 kg / hour in one reactor. For many applications, the preferred chlorine dioxide production rate is about 0.1 to about 25 kg / hour, most preferably about 0.5 to about 10 kg / hour in one reactor. A typical small-scale production unit usually contains only one reactor, but it is possible to arrange several reactors, for example up to about 15 or more, in parallel, for example like a bundle of tubes. .

更に、本発明は上記方法に従って二酸化塩素を製造するための装置に関する。その装置は塩素酸イオン、過酸化水素及び酸用の供給配管を備えた反応器を含み、その反応器が動機水用のノズル及び動機水を少なくとも部分的に渦巻き又はらせん様式でエダクター中に更に流入させるための装置を備えたエダクターに連結される。   Furthermore, the invention relates to an apparatus for producing chlorine dioxide according to the above method. The apparatus includes a reactor with supply piping for chlorate ions, hydrogen peroxide and acid, the reactor further including a nozzle for motive water and motive water at least partially in an eductor in a spiral or spiral fashion. Connected to an eductor with a device for inflow.

装置の好ましい実施態様は方法の先の記載及び図面を参照する以下の記載から明らかである。しかしながら、本発明は図面に示された実施態様に限定されるべきではなく、特許請求の範囲内の多くのその他の変化を含む。   Preferred embodiments of the device are evident from the previous description of the method and the following description with reference to the drawings. However, the invention should not be limited to the embodiments shown in the drawings, but includes many other variations within the scope of the claims.

図1を参照して、垂直のスルーフロー管状反応器3に供給配管1を通って硫酸そして配管2を通って塩素酸ナトリウム及び過酸化水素の予備混合された水溶液が供給される。反応器3中で、供給原料流が混合され、反応させられて二酸化塩素、酸素、硫酸ナトリウム及び若干の残存硫酸及び塩素酸ナトリウムを含む液体、泡及びガスの生成物流を生成する。エダクター6に、供給配管5を通って動機水が供給され、生成物流を反応器3から配管4を通ってエダクター6に押しやるわずかに大気圧以下の圧力を生じ、そこでそれが動機水と混合されて希釈された生成物水溶液を生成する。この希釈された溶液は反応器3からの二酸化塩素及びその他の成分を含み、配管8を通って最終生成物として取り出される。プログラム可能な論理制御装置(PLC)、二酸化塩素分析装置9、圧力トランスミッター(PT)及び流量トランスミッター(FT)を含むプロセス制御システムが、反応器3への薬品及びエダクター6への動機水用の供給ポンプ10を制御する。   Referring to FIG. 1, a vertical through-flow tubular reactor 3 is supplied with a premixed aqueous solution of sulfuric acid and sodium chlorate and hydrogen peroxide through a supply line 1 and through a line 2. In reactor 3, the feed streams are mixed and reacted to produce a liquid, foam and gas product stream containing chlorine dioxide, oxygen, sodium sulfate and some residual sulfuric acid and sodium chlorate. The eductor 6 is supplied with motive water through the supply pipe 5 and produces a slightly sub-atmospheric pressure that pushes the product stream from the reactor 3 through the pipe 4 to the eductor 6 where it is mixed with the motive water. To produce a diluted product aqueous solution. This diluted solution contains chlorine dioxide and other components from reactor 3 and is withdrawn as final product through line 8. Process control system including programmable logic controller (PLC), chlorine dioxide analyzer 9, pressure transmitter (PT) and flow transmitter (FT) supplies chemicals to reactor 3 and motivation water to eductor 6 The pump 10 is controlled.

図2を参照して、アパーチャを備えた分配ディスク21が反応器3の下部に配置されるが、硫酸用の供給配管1からの入口の上に配置される。予備混合された塩素酸ナトリウム及び過酸化水素溶液用の供給配管2は分配ディスクの丁度上の反応器の断面の中央に配置された分配ノズル20中で終端する。次いで塩素酸ナトリウム及び過酸化水素溶液が反応器3内の断面にわたって噴霧され、一方、硫酸が分配ディスク中のアパーチャを通って上向きに流れ、分配ディスク21の上で塩素酸ナトリウム及び過酸化水素と混合される。混合後に、二酸化塩素を生じる反応が開始し、液体、泡及びガスの生成物流を生じ、その流れが反応器3の上部で出口22を通って取り出される。   Referring to FIG. 2, a distribution disk 21 having an aperture is disposed at the lower part of the reactor 3, but is disposed above the inlet from the supply pipe 1 for sulfuric acid. The feed line 2 for the premixed sodium chlorate and hydrogen peroxide solution terminates in a distribution nozzle 20 located in the middle of the reactor cross section just above the distribution disk. A sodium chlorate and hydrogen peroxide solution is then sprayed across the cross section in the reactor 3, while sulfuric acid flows upward through the apertures in the distribution disk and on the distribution disk 21 with sodium chlorate and hydrogen peroxide. Mixed. After mixing, the reaction producing chlorine dioxide begins, producing a product stream of liquid, foam and gas, which stream is withdrawn through outlet 22 at the top of reactor 3.

図3a及び3bを参照して、エダクター6は吸引チャンバー25、捻り羽根28を含むインサート27(ノズルを通して見た図3bに示される)を有する一つの穴ノズル26、及びベンチュリ部分29を含む。動機水が供給配管5からノズル26及びインサート27を通って供給される。インサート27の捻り羽根28は水を更に吸引チャンバー25中に少なくとも部分的に渦巻き又はらせん様式で流入させ、そこでそれが反応器3(図1を参照のこと)から配管4中を流れている生成物流と混合されてベンチュリ部分29を通ってエダクター6から排出される希釈された二酸化塩素含有溶液を生成する。エダクター中の流れは生成物流を反応器からエダクターに流入するように強制するのに充分な大気圧以下の圧力を生じる。   Referring to FIGS. 3 a and 3 b, the eductor 6 includes a suction chamber 25, a single hole nozzle 26 having an insert 27 (shown in FIG. 3 b as viewed through the nozzle) including a twisted vane 28, and a venturi portion 29. Motivational water is supplied from the supply pipe 5 through the nozzle 26 and the insert 27. The torsion blades 28 of the insert 27 allow water to flow further into the suction chamber 25 at least partially in a spiral or spiral fashion where it flows from the reactor 3 (see FIG. 1) through the pipe 4. A diluted chlorine dioxide containing solution is produced that is mixed with the stream and discharged from the eductor 6 through the venturi portion 29. The flow in the eductor produces a subatmospheric pressure sufficient to force the product stream to enter the eductor from the reactor.

反応器3及びエダクター6を含む、プロセス装置は、過酸化水素、塩素酸ナトリウム、硫酸及び二酸化塩素に耐性の材料からつくられることが好適である。このような材料として、例えば、ガラス、タンタル、チタン、ガラス繊維強化プラスチック、PVDF(ポリフッ化ビニリデン)、CPVC(塩素化ポリ塩化ビニル)、PTFE(ポリテトラフルオロエチレン)、PFA(ペルフルオロアルコキシポリマー)、ECTFE(エチレンクロロトリフルオロエチレン)もしくはFEP(フッ素化エチレンプロピレン)のようなフルオロプラスチックが挙げられ、又は鋼もしくはステンレス鋼のような構造材料へのライナー材料としてのこれらの材料の使用が挙げられる。好適なフルオロプラスチックがトレードマークキナール(登録商標)、テフロン(登録商標)又はハラー(登録商標)として販売されている。
本発明が以下の実施例により更に説明される。
The process equipment, including the reactor 3 and the eductor 6, is preferably made from a material resistant to hydrogen peroxide, sodium chlorate, sulfuric acid and chlorine dioxide. Examples of such materials include glass, tantalum, titanium, glass fiber reinforced plastic, PVDF (polyvinylidene fluoride), CPVC (chlorinated polyvinyl chloride), PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxy polymer), Mention may be made of fluoroplastics such as ECTFE (ethylene chlorotrifluoroethylene) or FEP (fluorinated ethylene propylene), or the use of these materials as liner materials for structural materials such as steel or stainless steel. Suitable fluoroplastics are sold as trademark quinal (R), Teflon (R) or Haller (R).
The invention is further illustrated by the following examples.

二酸化塩素を図に示された装置中で本発明に従って製造した。75mmの内径及び610mmの長さを有する垂直の管状反応器3に、78重量%の硫酸並びにホスホン酸をベースとする錯生成剤で安定化された40重量%の塩素酸ナトリウム及び10重量%の過酸化水素の水溶液を連続的に供給した。反応器を約40−50℃の温度及び約84kPa(大気圧の約17kPa下)の絶対圧に維持し、エダクター6に790kPaの絶対圧で動機水を供給することにより大気圧以下の圧力を生じた。   Chlorine dioxide was produced according to the present invention in the apparatus shown in the figure. In a vertical tubular reactor 3 having an inner diameter of 75 mm and a length of 610 mm, 40% by weight sodium chlorate and 10% by weight stabilized with a complexing agent based on 78% by weight sulfuric acid and phosphonic acid are added. An aqueous solution of hydrogen peroxide was continuously fed. Maintaining the reactor at a temperature of about 40-50 ° C. and an absolute pressure of about 84 kPa (about 17 kPa below atmospheric pressure) and supplying eductor 6 with motive water at an absolute pressure of 790 kPa produces a sub-atmospheric pressure. It was.

比較として、使用したエダクターが動機水を少なくとも部分的に渦巻き又はらせん様式で流入させるノズルへのインサートを含まなかった以外は、同じ様式で二酸化塩素を製造した。
結果を下記の表に示す。
For comparison, chlorine dioxide was produced in the same manner, except that the eductor used did not include an insert into the nozzle that allowed the motive water to flow in at least partially in a spiral or spiral manner.
The results are shown in the table below.

Figure 0004006019

本発明の方法はClO2生産速度及びエダクターから取り出された最終生成物溶液中のClO2濃度の両方の有意な増大を生じることが明らかである。
Figure 0004006019

It is clear that the process of the present invention results in a significant increase in both the ClO 2 production rate and the ClO 2 concentration in the final product solution removed from the eductor.

本発明のプロセス略図を示す。1 shows a process schematic of the present invention. 反応器を図示する。The reactor is illustrated. エダクター及び動機水を少なくとも部分的に渦巻き又はらせん様式で流入させるための装置を図示する。Figure 2 illustrates an apparatus for injecting eductor and motive water at least partially in a spiral or spiral fashion. エダクター及び動機水を少なくとも部分的に渦巻き又はらせん様式で流入させるための装置を図示する。Figure 2 illustrates an apparatus for injecting eductor and motive water at least partially in a spiral or spiral fashion.

Claims (18)

塩素酸イオン、酸及び過酸化水素を水溶液として反応器に供給する工程、
該塩素酸イオンを反応器中で二酸化塩素に還元し、それにより二酸化塩素を含む生成物流を反応器中で生成する工程、
動機水をノズルを含むエダクターに供給する工程、
該動機水をノズル中に流入させ、それを更に少なくとも部分的に渦巻き又はらせん様式でエダクター中に流入させる工程、
前記生成物流を反応器からエダクターに移し、それを前記動機水と混合し、それにより二酸化塩素を含む希釈された水溶液を生成する工程、及び
該二酸化塩素を含む希釈された水溶液をエダクターから取り出す工程
を含むことを特徴とする二酸化塩素の連続製造方法。
Supplying chlorate ions, acid and hydrogen peroxide as an aqueous solution to the reactor;
Reducing the chlorate ions to chlorine dioxide in the reactor, thereby producing a product stream containing chlorine dioxide in the reactor;
Supplying motive water to the eductor including the nozzle;
Allowing the motive water to flow into the nozzle, which further flows into the eductor at least partially in a spiral or spiral manner;
Transferring the product stream from a reactor to an eductor, mixing it with the motive water, thereby producing a diluted aqueous solution containing chlorine dioxide, and removing the diluted aqueous solution containing chlorine dioxide from the eductor A method for continuously producing chlorine dioxide, comprising:
前記動機水を実質的に渦巻き又はらせん様式でエダクター中に更に流入させる、請求項1記載の方法。  The method of claim 1, wherein the motive water is further flowed into the eductor in a substantially spiral or spiral fashion. 前記動機水をエダクター中のノズル内又はその上流に配置された捻り羽根により少なくとも部分的に渦巻き又はらせん様式で流入させる、請求項1から2のいずれか1項記載の方法。  The method according to claim 1, wherein the motive water is allowed to flow in at least partly in a spiral or spiral manner by twisting blades arranged in or upstream of the nozzle in the eductor. 前記動機水をエダクター中のノズル内又はその上流の内部旋条により少なくとも部分的に渦巻き又はらせん様式で流入させる、請求項1から2のいずれか1項記載の方法。  3. A method according to any one of the preceding claims, wherein the motive water is introduced at least partially in a spiral or spiral manner by an internal swirl in or upstream of a nozzle in the eductor. 前記エダクターが、ノズルからの流れ方向に、生成物流が反応器から移される吸引チャンバー、及び二酸化塩素を含む希釈された水溶液が取り出されるベンチュリ部分を更に含む、請求項1から4のいずれか1項記載の方法。  5. The eductor further comprising a suction chamber in which the product stream is transferred from the reactor in the direction of flow from the nozzle, and a venturi portion from which the diluted aqueous solution containing chlorine dioxide is removed. The method described. 前記塩素酸イオンを金属塩素酸塩を含む水溶液として反応器に供給し、酸を鉱酸として反応器に供給する、請求項1から5のいずれか1項記載の方法。  The method according to claim 1, wherein the chlorate ion is supplied to the reactor as an aqueous solution containing a metal chlorate, and the acid is supplied to the reactor as a mineral acid. 前記鉱酸が硫酸である、請求項6記載の方法。  The method of claim 6, wherein the mineral acid is sulfuric acid. アルカリ金属塩素酸塩及び過酸化水素を予備混合された水溶液の形態で反応器に供給する、請求項6記載の方法。  The process of claim 6 wherein the alkali metal chlorate and hydrogen peroxide are fed to the reactor in the form of a premixed aqueous solution. 前記予備混合された水溶液が約1〜約6.5モル/リットルのアルカリ金属塩素酸塩、約1〜約7モル/リットルの過酸化水素、保護コロイド、遊離基脱除剤又はホスホン酸をベースとする錯生成剤の少なくとも一種を含み、約0.5から約4までのpHを有する、請求項8記載の方法。  The premixed aqueous solution is based on about 1 to about 6.5 mol / liter alkali metal chlorate, about 1 to about 7 mol / liter hydrogen peroxide, protective colloid, free radical scavenger or phosphonic acid 9. The method of claim 8, comprising at least one complexing agent having a pH of from about 0.5 to about 4. 反応器に供給される塩化物イオンの量がClO3 のCl約1モル%以下である、請求項1から9のいずれか1項記載の方法。The amount of chloride ions fed to the reactor is ClO 3 - in the Cl - is no more than about 1 mole%, any one process of claim 1 9. 前記二酸化塩素を含む反応器中の生成物流が液体及び泡を含む、請求項1から10のいずれか1項記載の方法。  11. A process according to any one of the preceding claims, wherein the product stream in the reactor comprising chlorine dioxide comprises liquid and foam. 前記反応器内の温度を約30℃から約60℃までに維持する、請求項1から11のいずれか1項記載の方法。  The process according to any one of the preceding claims, wherein the temperature in the reactor is maintained from about 30 ° C to about 60 ° C. 約30〜約100kPaの絶対圧を反応器内で維持する、請求項1から12のいずれか1項記載の方法。  13. A process according to any one of claims 1 to 12, wherein an absolute pressure of about 30 to about 100 kPa is maintained in the reactor. 前記反応器が実質的に管状のスルーフロー容器又はパイプである、請求項1から13のいずれか1項記載の方法。  14. A process according to any one of the preceding claims, wherein the reactor is a substantially tubular through flow vessel or pipe. 前記反応器が実質的に垂直に配置される、請求項14記載の方法。  The method of claim 14, wherein the reactor is arranged substantially vertically. 前記反応器がアパーチャを備え、かつ反応器内に配置されたディスク等を含み、金属塩素酸塩及び過酸化水素をディスクの下流に供給し、一方、酸をディスクの上流に供給し、アパーチャに流入させ、次いで金属塩素酸塩及び過酸化水素と混合する、請求項14から15のいずれか1項記載の方法。  The reactor includes an aperture and includes a disk or the like disposed in the reactor, and supplies metal chlorate and hydrogen peroxide downstream of the disk, while supplying acid upstream of the disk to the aperture. 16. A process as claimed in any one of claims 14 to 15, wherein it is introduced and then mixed with the metal chlorate and hydrogen peroxide. 主たる流れ方向が上向きである、請求項15記載の方法。  The method of claim 15, wherein the main flow direction is upward. 塩素酸イオン、過酸化水素及び酸用の供給配管を備えた反応器を含む、請求項1から17のいずれか1項記載の二酸化塩素の製造装置であって、反応器が動機水用のノズル及び動機水を少なくとも部分的に渦巻き又はらせん様式でエダクター中に更に流入させるための装置を備えたエダクターに連結されることを特徴とする製造装置。  18. The chlorine dioxide production apparatus according to claim 1, comprising a reactor equipped with supply pipes for chlorate ions, hydrogen peroxide and acid, wherein the reactor is a nozzle for motive water. And a manufacturing device connected to an eductor comprising a device for further flowing motive water at least partially into the eductor in a spiral or spiral manner.
JP2003506799A 2001-06-25 2002-06-03 Chlorine dioxide production method Expired - Lifetime JP4006019B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/887,264 US6790427B2 (en) 2001-06-25 2001-06-25 Process for producing chlorine dioxide
EP01850116 2001-07-02
PCT/SE2002/001068 WO2003000586A1 (en) 2001-06-25 2002-06-03 Process for producing chlorine dioxide

Publications (2)

Publication Number Publication Date
JP2004530626A JP2004530626A (en) 2004-10-07
JP4006019B2 true JP4006019B2 (en) 2007-11-14

Family

ID=26077511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003506799A Expired - Lifetime JP4006019B2 (en) 2001-06-25 2002-06-03 Chlorine dioxide production method

Country Status (14)

Country Link
EP (1) EP1399383B1 (en)
JP (1) JP4006019B2 (en)
KR (1) KR100590345B1 (en)
CN (1) CN1221469C (en)
AT (1) ATE465972T1 (en)
BR (1) BR0210340B1 (en)
DE (1) DE60236154D1 (en)
ES (1) ES2345185T3 (en)
MX (1) MXPA03010884A (en)
MY (1) MY130748A (en)
PL (1) PL200136B1 (en)
PT (1) PT1399383E (en)
RU (1) RU2268241C2 (en)
WO (1) WO2003000586A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770257B1 (en) * 1999-02-04 2004-08-03 Kawasaki Jukogyo Kabushiki Kaisha Processes for producing anatase titanium oxide and titanium oxide coating material
US20040175322A1 (en) * 2003-03-03 2004-09-09 Woodruff Thomas E. Process for producing chlorine dioxide
GB0317155D0 (en) * 2003-07-23 2003-08-27 Tristel Company The Ltd Chlorine dioxide generation
GB2415693B (en) * 2003-07-23 2007-04-11 Tristel Company Ltd Chlorine Dioxide Generation
US8642054B2 (en) 2004-09-07 2014-02-04 Tristel Plc Sterilant system
US7807118B2 (en) 2004-09-07 2010-10-05 Tristel Plc Decontamination system
CA2589721C (en) * 2004-12-06 2010-05-04 Akzo Nobel N.V. Chemical process and production unit
BRPI0518358B1 (en) * 2004-12-06 2016-09-13 Akzo Nobel Nv process and apparatus for the production of chlorine dioxide
RU2404118C2 (en) * 2005-11-10 2010-11-20 Акцо Нобель Н.В. Chlorine dioxide synthesis method
WO2007117205A1 (en) * 2006-04-10 2007-10-18 Akzo Nobel N.V. Process for the production of chlorine dioxide
HUP0600735A2 (en) 2006-09-21 2009-04-28 Zoltan Dr Noszticzius Permeation method and apparatus for preparing fluids containing high-purity chlorine dioxide
TWI447065B (en) * 2007-07-13 2014-08-01 Akzo Nobel Nv Process for the production of chlorine dioxide
ITMI20072388A1 (en) 2007-12-19 2009-06-20 Caffaro Chimica S R L EQUIPMENT AND METHOD FOR DISINFECTION OF WATER
KR101034747B1 (en) 2009-05-29 2011-05-17 삼성에스디아이 주식회사 Mixing device
KR101162536B1 (en) 2009-10-23 2012-07-05 주식회사 에코시아 Generator and process for aqueous solution of chlorine dioxide
DE202010017479U1 (en) 2010-04-16 2012-02-16 Infracor Gmbh diving reactor
JP5712371B2 (en) * 2010-07-08 2015-05-07 ナルコ ユーエス ワン エルエルシー Chlorine dioxide production process
GB2495309B (en) 2011-10-05 2014-02-19 Paradigm Flow Services Ltd Fire main cleaning apparatus and method
GB201612077D0 (en) * 2016-07-12 2016-08-24 Gaffey Technical Services Ltd A chlorine dioxide solution generating apparatus
TWI750330B (en) * 2017-02-27 2021-12-21 美商藝康美國公司 Method for onsite production of chlorine dioxide
UY37637A (en) 2017-03-24 2018-09-28 Ecolab Usa Inc IN SITU GENERATION SYSTEM FOR LOW RISK CHLORINE DIOXIDE
WO2019036065A1 (en) 2017-08-17 2019-02-21 Ecolab USA, Inc. Low risk chlorine dioxide onsite generation system
CN108328578B (en) * 2018-01-29 2020-03-10 荣成海奥斯生物科技有限公司 Filling device for gaseous available chlorine aqueous solution
US11970393B2 (en) 2018-07-05 2024-04-30 Ecolab Usa Inc. Decomposition mediation in chlorine dioxide generation systems through sound detection and control
CN109133008B (en) * 2018-08-23 2020-05-19 四川齐力绿源水处理科技有限公司 Preparation equipment of high-purity chlorine dioxide
US10881111B1 (en) 2019-11-26 2021-01-05 NEOCL Co., Ltd. Composition for providing room temperature long-term constant-concentration chlorine dioxide solution in aqueous medium and preparation method thereof
CN112999993B (en) * 2021-02-08 2023-04-07 乌兰浩特市圣益商砼有限公司 Vortex-spraying two-stage strengthening reactor for preparing polycarboxylate superplasticizer and preparation method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1015665B (en) * 1974-07-04 1977-05-20 Snam Progetti METHOD FOR THE PREPARATION IN WITH TINUE OF WATER OIL EMULSIONS AND EQUIPMENT SUITABLE FOR THE PURPOSE
US4247531A (en) * 1979-08-13 1981-01-27 Rio Linda Chemical Chlorine dioxide generation apparatus and process
CA1163420A (en) * 1982-09-09 1984-03-13 Gerald Cowley Production of chlorine dioxide on a small scale
US5204081A (en) * 1991-05-03 1993-04-20 Rio Linda Chemical Co., Ltd. Process for the generation of chlorine dioxide
GB2294646B (en) * 1994-10-29 1999-03-17 Transvac Systems Ltd Material treatment
US5968454A (en) * 1998-04-02 1999-10-19 Vulcan Chemical Technologies, Inc. Chlorine dioxide generator
US7070710B1 (en) * 1999-06-11 2006-07-04 Eka Chemicals Inc. Chemical composition and method

Also Published As

Publication number Publication date
MXPA03010884A (en) 2004-02-17
KR100590345B1 (en) 2006-06-15
BR0210340A (en) 2004-07-13
JP2004530626A (en) 2004-10-07
MY130748A (en) 2007-07-31
ES2345185T3 (en) 2010-09-17
EP1399383A1 (en) 2004-03-24
WO2003000586A1 (en) 2003-01-03
RU2268241C2 (en) 2006-01-20
PL364357A1 (en) 2004-12-13
CN1221469C (en) 2005-10-05
PT1399383E (en) 2010-07-19
EP1399383B1 (en) 2010-04-28
RU2004101962A (en) 2005-04-10
PL200136B1 (en) 2008-12-31
CN1520378A (en) 2004-08-11
BR0210340B1 (en) 2010-12-14
KR20040012889A (en) 2004-02-11
DE60236154D1 (en) 2010-06-10
ATE465972T1 (en) 2010-05-15

Similar Documents

Publication Publication Date Title
JP4006019B2 (en) Chlorine dioxide production method
US6790427B2 (en) Process for producing chlorine dioxide
JP4297910B2 (en) Chlorine dioxide production method
US7682592B2 (en) Chemical process and production unit
US20070116637A1 (en) Process for production of chlorine dioxide
US20050186131A1 (en) Process for production of chlorine dioxide
US20070237708A1 (en) Process for the production of chlorine dioxide
AU2005312379B2 (en) Chemical process and production unit
JP4457114B2 (en) Chlorine dioxide production method
EP2004545B1 (en) Process for the production of chlorine dioxide
EP1945566B1 (en) Process for production of chlorine dioxide

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070826

R150 Certificate of patent or registration of utility model

Ref document number: 4006019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term