JP4004965B2 - Manufacturing method of optical information recording medium - Google Patents

Manufacturing method of optical information recording medium Download PDF

Info

Publication number
JP4004965B2
JP4004965B2 JP2003006251A JP2003006251A JP4004965B2 JP 4004965 B2 JP4004965 B2 JP 4004965B2 JP 2003006251 A JP2003006251 A JP 2003006251A JP 2003006251 A JP2003006251 A JP 2003006251A JP 4004965 B2 JP4004965 B2 JP 4004965B2
Authority
JP
Japan
Prior art keywords
layer
thin film
recording medium
information recording
optical information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003006251A
Other languages
Japanese (ja)
Other versions
JP2003187496A (en
Inventor
秀春 田島
信之 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003006251A priority Critical patent/JP4004965B2/en
Publication of JP2003187496A publication Critical patent/JP2003187496A/en
Application granted granted Critical
Publication of JP4004965B2 publication Critical patent/JP4004965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、情報を記録又は再生する光情報記録媒体に関し、特に、環境変化や経時変化による反りを抑制できる光情報記録媒体、および、光情報記録媒体の製造方法に関する。
【0002】
【従来の技術】
図1は、光情報記録媒体の構成を示す断面模式図である。図6は、その光情報記録媒体の平面図(a)及び側面図(b)である。
【0003】
この光情報記録媒体は、図1,6に示すように、ポリカーボネート等からなる円板状の基板20上に、スパッタ等により誘電体膜41,43(窒化シリコン等)、記録膜42(TbFeCo等)、反射膜44(Al等)等の薄膜からなる単層、または多層からなる薄膜層40が形成されている。また、この薄膜層40上に樹脂膜等による薄膜保護膜50が、基板の光入射面上には樹脂等からなる基板保護膜30が形成されている。これらのそれぞれの層及び膜の膜厚は、基板20が約1.2〔mm〕、スパッタ等で形成される単層あるいは多層薄膜層40の厚さは10〜300〔nm〕、薄膜保護膜50の厚さが1〜30〔μm〕、基板保護膜30の厚さが1〜30〔μm〕であり、全厚のほとんどがポリカーボネイト基板20によって占められている。このため光情報記録媒体の剛性は、そのほとんどが、ポリカーボネート基板20に依存しており、ポリカーボネート基板20が十分に厚いため、環境変化(温湿度変化)による変形は非常に小さかった。このため、通常は、各層に発生する応力や曲げモーメントのバランスはほとんどの場合考慮されていなかった。
【0004】
しかしながら、光情報記録媒体においては、更なる高密度記録再生が求められており、収差の発生を抑制するために基板が薄型化する傾向(例1.2〔mm〕厚→0.6〔mm〕厚)にある。この場合、当然、光情報記録媒体の剛性は低下し、環境変化(温湿度変化)によって光情報記録媒体を形成している各層に発生する応力に起因する変形が大きくなり、情報の記録再生が困難になるという問題が生じる。したがって、基板が薄くなり剛性が低下した場合においても、対環境性能の高い光情報記録媒体が求められている。
【0005】
光情報記録媒体の変形を抑制する手法として、特開平4−195745号公報には基板の裏面(薄膜層の形成されていない側の面)に反り防止用の誘電体膜を設ける手法が提案されている。
【0006】
図7はこの光情報記録媒体の構成を示す断面図である。なお、図7において図1と同一部分については同一符号を付している。図7に示すように、ここでは、ポリカーボネート基板20の光入射側に誘電体層60を設けて、透明基板20の両側に位置する記録膜42と誘電体層60との膨張率を同等とすることで、光情報記録媒体を透明基板20に対して対称構造として、これにより光情報記録媒体の反りを防止できるようにしている。
【0007】
また、特開平10−64119号公報には、薄膜保護膜を厚く塗布することにより、光ディスクの温度上昇による反りを少なくすることが記載されている。
【0008】
また、光情報記録媒体が湿度変化によって反ることを問題として、図8に示すような、薄膜保護膜50,薄膜層40,基板20,基板保護膜30を有する光情報記録媒体において、基板20と基板保護膜30との間にSiO2やAlNからなる透湿防止膜70を設けたものが特開平4−364248号公報で提案されている。なお、図8において図1と同一部分については同一符号を付している。
【0009】
【発明が解決しようとする課題】
しかしながら、特開平4−195745号公報に記載の手法(図7参照)では、基板の光入射側にスパッタ等により誘電体層を設ける必要が有るため、生産において、基板に対して一方側の面に薄膜層を形成した後、その基板を引っ繰り返して反対側の面に誘電体層を形成する必要があり、工程が複雑化するとともに生産設備の高価格化を齎し、コストアップに繋がるという問題がある。
【0010】
また、特開平10−64119号公報に記載の手法では、薄膜保護膜の膜厚が厚くなりすぎ、製造上難があるという問題がある。また、例えば、光情報記録媒体が光磁気記録媒体であった場合、記録時に印加する磁界を高速で反転させるには磁界発生手段と薄膜層とを近接することが望ましく、薄膜保護膜の膜厚が厚くなることは磁気特性の劣化を齎し、問題である。
【0011】
さらに、特開平4−364248号公報に記載の手法(図8参照)でも、基板の光入射側にスパッタ等によりSiO2やAlNを設ける必要が有るため、生産において、基板に対して一方側の面に薄膜層を形成した後、その基板を引っ繰り返して反対側の面に誘電体層を形成する必要があり、工程が複雑化するとともに生産設備の高価格化を齎し、コストアップに繋がるという問題がある。
【0012】
本発明は、上記課題を解決するためになされたものであって、温湿度変化に伴う変形(反り)を防止でき、且つ、その製造が容易な光情報記録媒体、および、光情報記録媒体の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の第1の光情報記録媒体は、透明基板と、該透明基板上に形成され記録膜または反射膜のいずれか一方を少なくとも含む薄膜層と、該薄膜層上に形成された樹脂を主成分とする薄膜保護膜と、を少なくとも有する光情報記録媒体において、温度変化時に前記薄膜層に対し、透明基板による曲げモーメントと逆向きの曲げモーメントを与え、記録再生時の温度変化による膜厚方向の変形の中立面が前記薄膜層内あるいはその近傍となるように、前記薄膜保護膜の線膨張係数、ヤング率、及び膜厚が調整されており、前記薄膜保護膜は、そのヤング率及び線膨張係数の少なくとも一方が前記透明基板よりも大きいことを特徴とする。
【0014】
また、本発明の第2の光情報記録媒体は、透明基板と、該透明基板上に形成され記録膜または反射膜のいずれか一方を少なくとも含む薄膜層と、該薄膜層上に形成された樹脂を主成分とする薄膜保護膜と、を少なくとも有する光情報記録媒体において、前記薄膜層において、膜厚方向におけるその両側から受ける温度変化による曲げモーメントが、略等しくなるように、前記薄膜保護膜の線膨張係数、ヤング率、及び膜厚が調整されており、前記薄膜保護膜は、そのヤング率及び線膨張係数の少なくとも一方が前記透明基板よりも大きいことを特徴とする。
【0015】
また、上記した第1および第2の光情報記録媒体では、前記薄膜保護膜の膜厚が、20μm以下であることが好ましい。
【0016】
また、本発明の第3の光情報記録媒体は、透明基板と、該透明基板上に形成され記録膜または反射膜のいずれか一方を少なくとも含む薄膜層と、該薄膜層上に形成された樹脂を主成分とする薄膜保護膜と、前記透明基板の光入射側に形成された樹脂を主成分とする基板保護膜と、を少なくとも有する光情報記録媒体において、前記薄膜保護膜の透湿度より前記基板保護膜の透湿度が小さいことを特徴とする。
【0017】
また、この第3の光情報記録媒体は、温度変化時に前記薄膜層に対し、透明基板による曲げモーメントと逆向きの曲げモーメントを与え、記録再生時の温度変化による膜厚方向の変形の中立面が前記薄膜層内あるいはその近傍となるように、前記薄膜保護膜の線膨張係数、ヤング率、及び膜厚が調整されており、且つ、前記薄膜保護膜の膜厚が、前記基板保護膜の膜厚よりも厚いことが好ましい。
【0018】
なお、上記した変形の中立面とは、後述する式(1)〜(5)において、yの値により表される面を示している。
【0019】
また、本発明の第1の光情報記録媒体の製造方法は、透明基板と、該透明基板上に形成され記録膜または反射膜のいずれか一方を少なくとも含む薄膜層と、該薄膜層上に形成された樹脂を主成分とする薄膜保護膜と、を少なくとも有する光情報記録媒体の製造方法において、温度変化時に前記薄膜層に対し、透明基板による曲げモーメントと逆向きの曲げモーメントを与え、記録再生時の温度変化による膜厚方向の変形の中立面が前記薄膜層内あるいはその近傍となるように、前記薄膜保護膜の線膨張係数、ヤング率、及び膜厚を調整することを特徴とする。
【0020】
また、本発明の第2の光情報記録媒体の製造方法は、透明基板と、該透明基板上に形成され記録膜または反射膜のいずれか一方を少なくとも含む薄膜層と、該薄膜層上に形成された樹脂を主成分とする薄膜保護膜と、を少なくとも有する光情報記録媒体の製造方法において、前記薄膜層において、膜厚方向におけるその両側から受ける温度変化による曲げモーメントが、略等しくなるように、前記薄膜保護膜の線膨張係数、ヤング率、及び膜厚を調整することを特徴とする。
【0021】
また、これら第1および第2の光情報記録媒体の製造方法では、前記薄膜保護膜のヤング率及び線膨張係数の少なくとも一方を、前記透明基板よりも大きくすることが好ましい。
さらに、前記薄膜保護膜の膜厚を、20μm以下とすることが好ましい。
【0022】
また、本発明の第3の光情報記録媒体の製造方法は、透明基板と、該透明基板上に形成され記録膜または反射膜のいずれか一方を少なくとも含む薄膜層と、該薄膜層上に形成された樹脂を主成分とする薄膜保護膜と、前記透明基板の光入射側に形成された樹脂を主成分とする基板保護膜と、を少なくとも有する光情報記録媒体の製造方法において、前記薄膜保護膜の透湿度より前記基板保護膜の透湿度を小さくすることを特徴とする。
【0023】
また、この第3の光情報記録媒体の製造方法では、温度変化時に前記薄膜層に対し、透明基板による曲げモーメントと逆向きの曲げモーメントを与え、記録再生時の温度変化による膜厚方向の変形の中立面が前記薄膜層内あるいはその近傍となるように、前記薄膜保護膜の線膨張係数、ヤング率、及び膜厚を調整し、前記薄膜保護膜の膜厚を、前記基板保護膜の膜厚よりも厚くすることが好ましい。
【0024】
【発明の実施の形態】
(実施の形態1)
以下、本実施の形態の光情報記録媒体について説明するが、まず、本発明の原理を説明する。
【0025】
▲1▼原理
従来の技術の項で説明したように、特開平4−195745号公報(図7参照)に記載の光情報記録媒体では、透明基板20に対して対称になるよう層を構成することで、光情報記録媒体の反りを抑制していた。
【0026】
これに対して、本発明者は、例えば、図1の断面模式図に示すような薄膜保護膜50,薄膜層40,透明基板20,基板保護膜30を有する光情報記録媒体において、(a)薄膜層40を温度変化による変形の中心とすること,すなわち、薄膜層に対して対称に構成することで反りが抑制できる点、及び、(b)反りの抑制に併せて薄膜保護膜50の膜厚を薄くできる点を見出した。以下、さらに詳しく説明する。
【0027】
図1に示すように、一般に、光情報記録媒体は、ポリカーボネート等の透明基板20上にスパッタ等により誘電体膜41,43(窒化シリコン等)、記録膜42(TbFeCo等)、反射膜44(Al等)等の薄膜からなる単層又は多層の薄膜層40を有し、その薄膜層40上に樹脂を主成分とする薄膜保護膜50が形成されているとともに、その透明基板20の反対の面上に透明基板20を保護するために樹脂を主成分とする基板保護膜30が形成されている。
【0028】
このように光情報記録媒体は通常多層で構成されており、このため、各層の物性値である線膨張係数の相違等に起因して、温度変化時に各層に発生する応力が異なる結果となる。具体的には、一般に、ポリカーボネートからなる透明基板20、及び、基板保護膜30,薄膜保護膜50の線膨張係数は薄膜層40のそれに比較して大きく、薄膜層40の基板の半径方向への膨張はその他の各層に比較して非常に小さくなる。また、透明基板20の厚さは基板保護膜30及び薄膜保護膜50の厚さに比較して非常に大きく、薄膜層40の各薄膜のヤング率が他の層に比較して非常に大きくなる。このため、温度変化が生じると、薄膜層40の膨張が小さいの比して、透明基板20の膨張が大きくなり、結果的に、光情報記録媒体10は半径方向に垂直で且つ膜厚方向において薄膜保護膜50側に向かう反りが生じ易くなる。図2はその反りを説明する模式図であり、(a)は平面図,(b)は側面図である。
【0029】
本実施の形態ではこの反りを防止するために、薄膜層40上に形成される薄膜保護膜50の線膨張係数、ヤング率、及び膜厚を調整することで、薄膜層40に対して、透明基板20による曲げモーメントと逆向きの曲げモーメントを与え、そして、薄膜層40内に含まれ、膜面と平行な面を変形の中立面とすることで、温度変化による変形(図2に示すような反り)を抑制する。
【0030】
上記のような薄膜保護膜50の線膨張係数、ヤング率、及び膜厚の設定は、次のような近似計算によって行える。
【0031】
光情報記録媒体10には、温度変化時に半径方向に働く応力(軸力)と円周方向に働く応力と膜厚方向に働く応力が発生するが、光情報記録媒体10は、円板状であるため、円周方向に働く応力は円周内で均一になり、膜厚方向の力も各層内では一様に働くため、変形には寄与しないと仮定できるため、光情報記録媒体10の変形すなわち反り(図2参照)は、その断面部に相当する多層はりにおける反りに置換できる。図3はその多層はりを示す図である。なお、図3ではn層はりを示しているが、このnは光情報記録媒体の層数であり、図1の光情報記録媒体の場合にはn=7である。
【0032】
この多層はりにおける温度変化時の反り角度θは各層の軸力Pi(i=1,2,…,n)と曲げモーメントMiの釣り合いから導かれる式(1)〜(5)によって表わすことができる。
【0033】
【数1】

Figure 0004004965
【0034】
なお、式(1)〜(5)における各記号は、αi:i層の線膨張係数、Ei:i層のヤング率、ti:i層の厚さ、Pi:i層における軸力、Mi:i層における曲げモーメント、Ri:曲率半径、Ii:i層の断面2次モーメント、b:はりの幅(単位長とする)、T:変化温度、L:はりの長さ、y:n層はりの中立面位置、θ:最大変位部における長さ4mmでの反り角度、を示している。また、各層の厚さは曲率半径に比較してはるかに小さいため、各層(i=1,2,…,n)における曲率半径は同一(R1=R2=R3=…=R)とする。また、変化温度Tは光情報記録媒体の使用温度環境(一般に−15℃〜80℃)内における変化温度である。
【0035】
そして、この式(1)〜(5)においてyを薄膜層40内に設定したときにθが小さくなるように、すなわち曲率半径Rが大きくなるように各層(特に薄膜保護膜50(薄膜層40については光情報記録媒体の特性により予め決められていることが多い))の厚さ,線膨張係数α,ヤング率Eを決定すれば、温度変化に伴う図2の反りを抑制できる光情報記録媒体を得ることができる。
【0036】
ところで、光情報記録媒体において薄膜保護膜50の膜厚が厚くなると、それをスピンコートで形成することが難しくなる。また、光情報記録媒体が光磁気記録媒体の場合には薄膜保護膜50の膜厚が厚くなると、磁気ヘッドと薄膜層40との距離が離れることになり、磁気特性上好ましくない。これらのことから薄膜保護膜50の膜厚は30μm以下、更に良くは20μm以下に設定することが望ましい。したがって、薄膜保護膜50としては、上記膜厚条件(30μm以下(望ましくは20μm以下))を満たすとともに、上記式(1)〜(5)においてθを小さくできる線膨張係数α,ヤング率Eの材料を選定することが必要である。式(1)〜(5)によれば、線膨張係数α,ヤング率Eの少なくとも一方が大きければ、膜厚が小さくてもθを小さくすることが可能である。
【0037】
以上説明したように、本実施の形態の光情報記録媒体では薄膜層40内に温度変化時における変形の中立面がくるように各層(特に薄膜保護膜50)を設定するため、反りの発生を抑制できる。また、光情報記録媒体を構成している各層の中で変形速度の最も遅い薄膜層40の変形がごく小さくなり、実際の温度変化時に問題となる変位のオーバーシュートも小さなものになる。さらに、透明基板20の光入射側には樹脂を主成分とする基板保護膜30のみを形成すればよいため、スピンコート等により簡単に製造でき、製造工程を簡略化できる。
【0038】
なお、上記説明では、光情報記録媒体を構成する全ての層の材料特性を用いて、温度変化による変形の中立面が薄膜層40の内部に存在するように、各層(特に薄膜保護膜50)の設定を行うことについて述べたが、一般に、光情報記録媒体における薄膜層40を構成する各層は非常に薄いものであるため、薄膜層40を1つの層と見なして、薄膜層40に対してその両側(一方側が透明基板20及び基板保護膜30、他方側が薄膜保護膜50)が温度変化により与える曲げモーメントが略打ち消し合うように、各層(特に薄膜保護膜50)を設定しても良い。この場合でも、薄膜層40の温度変化による反りを略無くすことができる。このとき、薄膜保護膜50の膜厚を小さくする(30μm以下(望ましくは20μm以下))には、透明基板20の厚さが大きいことを鑑みると、薄膜保護膜50の線膨張係数α,ヤング率Eの少なくとも一方は、透明基板20よりも大きいものである必要がある。
【0039】
▲2▼実施例
次に、上記原理に基づき形成した光情報記録媒体の実施例について説明する。なお、本実施例は、薄膜層40が窒化アルミニウム1層のみからなると仮定している。これは、薄膜層40の変形は一般に窒化アルミニウム等の誘電体層が主にその原因となる場合が多いからである。また、本実施例では基板保護膜30が無い例を示している。基板保護膜30が存在する場合にはそれをも考慮して各層(特に薄膜保護膜50)の設定を行う必要がある。
【0040】
実施例1として、ポリカーボネイト基板(透明基板20)上に、窒化アルミニウム薄膜層(薄膜層40)と式(1)〜(5)を用いて設計された条件の紫外線(UV)硬化樹脂1(薄膜保護膜50)が形成された媒体を形成した。また、比較例1として、ポリカーボネイト基板上に、窒化アルミニウム薄膜層と従来の紫外線(UV)硬化樹脂2(薄膜保護膜)が形成された光情報記録媒体を形成した。表1,2にそれぞれ実施例1,比較例1の構成を示す。
【0041】
【表1】
Figure 0004004965
【0042】
【表2】
Figure 0004004965
【0043】
表1,2から分かるように、両者の違いは、主にUV硬化樹脂(薄膜保護膜50)の線膨張係数であり、実施例1の方が線膨張係数が大きいものを使用している。なお、透明基板20としては、両者とも内径φ15mm,外径120mmのものを使用している。
【0044】
実施例1と比較例1の媒体に対して25℃→55℃に上昇する温度変化(上記のT=30℃)を与えて、そのときの外周部(r=56mm)での反り角θの変化量の経時変化を測定した。なお、反り角そのものでなく反り角の変化量を測定した理由は、常温状態において、媒体は独自の反り角を持っているため、温度変化による変形を示すには不適格であるためである。
【0045】
図4はその結果を示す図である。実施例1の媒体の反り角の変化量は、最大値及び定常状態値のいずれも比較例1の媒体よりも小さく、変形を抑制していることが分かる。また、この図から、実施例1によれば、20μm以下の膜厚であっても、温度が変化により一時的にも大きな反りが生じることがないことが分かる。さらに、図4には、上記式(1)〜(5)を用いて予想した反り角θの変化量を併記しているが、上記式(1)〜(5)による近似が実測値に非常に近く、その近似は実際に適合していることが分かる。
【0046】
次に、ヤング率の大きなUV硬化樹脂3を使用した媒体(実施例2)について説明する。この実施例2の媒体は実施例1の媒体とUV硬化樹脂の特性が異なっているものである。表3に実施例2の構成を示す。
【0047】
【表3】
Figure 0004004965
【0048】
この実施例2の媒体について、上記式(1)〜(5)を用いて反り角θの変化量を予想すると、その値は5.18〔mrad〕であり、上述の比較例1に比して大幅に温度変化に起因する反りが減少していることが分かる。
【0049】
以上のように、本実施の形態の光情報記録媒体によれば、温度変化により一時的にも大きな反りが生じることを抑制できるため、記録再生時の温度上昇によても再生不良等の問題が生じることを抑えることができる。また、薄膜保護膜50の膜厚を薄くすることができる。
【0050】
(実施の形態2)
本実施の形態では、湿度変化による変形を防止できる光情報記録媒体について説明する。
【0051】
▲1▼原理
上述した図1に記載の光情報記録媒体10は、透明基板20としてポリカーボネート等からなる基板を用いているため、周辺が高湿となったとき、透明基板20が吸湿により膨張する。そして、これにより光情報記録媒体10に変形が生じる。特に、基板保護膜30の透湿度が薄膜保護膜50の透湿度に比較して大きい場合は、基板20の変形速度が薄膜保護膜50の変形速度より大きくなるため、実際の湿度変化時に大きな変位のオーバーシュートが起き実用上において大きな問題となっていた。
【0052】
本実施の形態では、基板保護膜30の透湿度を薄膜保護膜50の透湿度に比較して小さくして、このオーバーシュートを抑制しすることにより、実用時における問題を解決する。
【0053】
▲2▼実施例
実施例3として上述の実施例1に記載の媒体にUV硬化樹脂4からなる基板保護膜30を付加した媒体を形成した。また、比較のため、比較例2として、上述の実施例1に記載の媒体にUV硬化樹脂5からなる基板保護膜30を付加した媒体を形成した。この実施例3,比較例2における各UV硬化樹脂の透湿度について表4に示す。
【0054】
【表4】
Figure 0004004965
【0055】
この実施例3,比較例2の媒体に対して、湿度変化(周囲湿度を50%→90%に変化)を与えて、各媒体の外周部(r=56mm)における反り角θの変化量の経時変化を測定した。
【0056】
図5はその結果を示す図である。実施例3の反り角の変化量の最大値(オーバーシュート時に発生)は比較例2のそれに比較して非常に小さなものとなり、湿度変化による変形が抑制されていることがわかる。
【0057】
このように本実施の形態の光情報記録媒体によれば、湿度が変化しても一時的にも大きな反りが生じることがなく、記録再生時に再生不良等の問題が生じることを抑制できる。
【0058】
なお、本実施の形態の光情報記録媒体においても、実施の形態1に記載のように薄膜層40内に温度変化による変形の中立面を有するように、また、薄膜層40に対してその両側(一方側が透明基板20及び基板保護膜30、他方側が薄膜保護膜50)が温度変化により与える曲げモーメントが略打ち消し合うように、薄膜保護膜50及び基板保護膜30の設定を行えば、本実施の形態における湿度変化に起因する変形の防止のみならず、温度変化に起因する変形をも防止することができる。
【0059】
上記のように変形の中立面を薄膜層40内に設ける場合には、一般に光ビームの入射側となる基板保護膜30の膜厚は、薄膜保護膜50の膜厚より薄い方が良いため、それを満たすような線膨張係数等を有する保護膜材料を選択することが望ましい。
【0060】
なお、以上の実施の形態では変形の中立面が薄膜層内に位置するように媒体を構成したが、薄膜層近傍にあっても良い。勿論、薄膜層内にあることが変形量を減少させる上で望ましい。
【0061】
以上の実施の形態1、実施の形態2において説明した本発明の原理は、実施例1〜3より薄いポリカーボネイト基板等を用いた場合においても成り立つ。その具体例について、以下に説明する。
【0062】
実施例4として、板厚0.5mmの透明基板を用い、下記表5に示す構成の媒体を形成した。
【0063】
【表5】
Figure 0004004965
【0064】
この実施例4の媒体の温度変化時、及び湿度変化時における反り角θの変化量を測定した。図9、10はその結果を示す図である。なお、透明基板の大きさは、内径φ7mm、外径φ50mmである。
【0065】
図9は、雰囲気を温度25℃湿度50%から温度70℃湿度30%に変化させたときの媒体の外周部における反り角θの変化量を示している。この結果では、基板厚がより薄い(実施例4では0.5mm)場合においても、温度変化時における反りの変化量は3mrad程度であった。従来の手法により表5の条件の薄い透明基板を用いた場合、反りの変化量が10mradはるかに超えていたため、本発明により反りの変化を大幅に抑制できることがわかる。
【0066】
また、図10は雰囲気を温度25℃湿度60%から温度25℃湿度90%に湿度を変化させたときの媒体の外周部における反り角θの変化量を示している。この結果より、基板厚がより薄い(実施例4では0.5mm)場合においても、湿度変化時における反りの変化量が非常に小さいことが分かった。
【0067】
【発明の効果】
本発明では、光情報記録媒体を温度変化による変形時の中立面が磁性膜等の薄膜層近傍(望ましくは薄膜層内)にあるように構成することにより、温度変化時における変形量を小さくして、記録再生の信頼性を高めることができる。
【0068】
また、上記光情報記録媒体において、透明基板よりもヤング率,線膨張係数の少なくとも一方が大きな薄膜保護膜を設けることにより、薄膜保護膜の膜厚を薄くできる。これにより製造が容易になると共に、光磁気記録媒体の場合、その磁気特性を向上することができる。
【0069】
また、光情報記録媒体において薄膜保護膜の透湿度より小さい透湿度を有する基板保護膜を設けることにより、湿度変化時における変形量が小さくなり、記録再生の信頼性を高めることができる。
【図面の簡単な説明】
【図1】光情報記録媒体の構成を示す断面模式図である。
【図2】光情報記録媒体の反りを説明する図である。
【図3】多層はりを説明する図である。
【図4】温度変化時における反り角の変化量の時間依存性を示す図である。
【図5】湿度変化時における反り角の変化量の時間依存性を示す図である。
【図6】光情報記録媒体の構成を示す平面図,側面図である。
【図7】従来の光情報記録媒体の一例を示す断面模式図である。
【図8】従来の光情報記録媒体の他の例を示す断面模式図である。
【図9】板厚0.5mmの光記録媒体の温度・湿度を変化させたときの反り角の変化量の時間依存性を示す図である。
【図10】板厚0.5mmの光記録媒体の湿度変化時における反り角の変化量の時間依存性を示す図である。
【符号の説明】
10 光情報記録媒体
20 透明基板
30 基板保護膜
40 薄膜層
41 第1誘電体膜
42 記録膜
43 第2誘電体膜
44 反射膜
50 薄膜保護膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical information recording medium that records or reproduces information, and more particularly to an optical information recording medium that can suppress warping due to environmental changes and changes over time, and a method for manufacturing the optical information recording medium.
[0002]
[Prior art]
FIG. 1 is a schematic cross-sectional view showing the configuration of an optical information recording medium. FIG. 6 is a plan view (a) and a side view (b) of the optical information recording medium.
[0003]
As shown in FIGS. 1 and 6, this optical information recording medium has a dielectric film 41, 43 (silicon nitride, etc.) and a recording film 42 (TbFeCo, etc.) on a disk-like substrate 20 made of polycarbonate or the like by sputtering or the like. ), A thin film layer 40 made of a single layer or a multilayer made of a thin film such as a reflective film 44 (Al or the like). A thin film protective film 50 made of a resin film or the like is formed on the thin film layer 40, and a substrate protective film 30 made of a resin or the like is formed on the light incident surface of the substrate. The thickness of each of these layers and films is about 1.2 [mm] for the substrate 20, the thickness of the single layer or multilayer thin film layer 40 formed by sputtering or the like is 10 to 300 [nm], and the thin film protective film The thickness of 50 is 1 to 30 [μm], the thickness of the substrate protective film 30 is 1 to 30 [μm], and most of the total thickness is occupied by the polycarbonate substrate 20. For this reason, most of the rigidity of the optical information recording medium depends on the polycarbonate substrate 20. Since the polycarbonate substrate 20 is sufficiently thick, deformation due to environmental changes (temperature and humidity changes) was very small. For this reason, the balance of stress and bending moment generated in each layer is usually not considered in most cases.
[0004]
However, in the optical information recording medium, further high-density recording / reproduction is required, and the substrate tends to be thinned in order to suppress the occurrence of aberration (example 1.2 [mm] thickness → 0.6 [mm]. ] Thickness). In this case, naturally, the rigidity of the optical information recording medium decreases, deformation due to stress generated in each layer forming the optical information recording medium due to environmental change (temperature / humidity change) increases, and information recording / reproduction is performed. The problem becomes difficult. Therefore, there is a need for an optical information recording medium with high environmental performance even when the substrate is thin and the rigidity is reduced.
[0005]
As a technique for suppressing the deformation of the optical information recording medium, Japanese Patent Laid-Open No. 4-195745 proposes a technique of providing a dielectric film for preventing warpage on the back surface of the substrate (the surface on which the thin film layer is not formed). ing.
[0006]
FIG. 7 is a sectional view showing the structure of this optical information recording medium. In FIG. 7, the same parts as those in FIG. As shown in FIG. 7, here, the dielectric layer 60 is provided on the light incident side of the polycarbonate substrate 20, and the expansion rates of the recording film 42 and the dielectric layer 60 located on both sides of the transparent substrate 20 are made equal. Thus, the optical information recording medium has a symmetrical structure with respect to the transparent substrate 20, thereby preventing the warp of the optical information recording medium.
[0007]
Japanese Patent Application Laid-Open No. 10-64119 describes that the warp due to the temperature rise of the optical disk is reduced by applying a thin protective film.
[0008]
Further, the optical information recording medium having the thin film protective film 50, the thin film layer 40, the substrate 20, and the substrate protective film 30 as shown in FIG. Japanese Laid-Open Patent Publication No. 4-364248 has proposed that a moisture permeation preventive film 70 made of SiO 2 or AlN is provided between the substrate and the substrate protective film 30. In FIG. 8, the same parts as those in FIG.
[0009]
[Problems to be solved by the invention]
However, in the technique described in Japanese Patent Laid-Open No. 4-195745 (see FIG. 7), it is necessary to provide a dielectric layer by sputtering or the like on the light incident side of the substrate. After forming a thin film layer, it is necessary to repeat the substrate to form a dielectric layer on the opposite surface, which complicates the process and increases the cost of production equipment, leading to increased costs. There is.
[0010]
In addition, the technique described in Japanese Patent Application Laid-Open No. 10-64119 has a problem that the thickness of the thin film protective film becomes too thick, resulting in difficulty in manufacturing. Also, for example, when the optical information recording medium is a magneto-optical recording medium, it is desirable that the magnetic field generating means and the thin film layer be close to each other in order to reverse the magnetic field applied at the time of recording at high speed. Increasing the thickness is a problem due to deterioration of magnetic properties.
[0011]
Further, even in the technique described in JP-A-4-364248 (see FIG. 8), it is necessary to provide SiO 2 or AlN by sputtering or the like on the light incident side of the substrate. After forming a thin film layer on the surface, it is necessary to repeat the substrate to form a dielectric layer on the opposite surface, which complicates the process and increases the cost of production equipment, leading to increased costs There's a problem.
[0012]
The present invention has been made in order to solve the above-described problems, and is capable of preventing deformation (warpage) associated with a change in temperature and humidity, and an optical information recording medium that can be easily manufactured. An object is to provide a manufacturing method.
[0013]
[Means for Solving the Problems]
The first optical information recording medium of the present invention mainly comprises a transparent substrate, a thin film layer formed on the transparent substrate and containing at least one of a recording film and a reflective film, and a resin formed on the thin film layer. In an optical information recording medium having at least a thin film protective film as a component, a bending moment opposite to the bending moment by the transparent substrate is given to the thin film layer when the temperature changes, and the film thickness direction due to the temperature change during recording and reproduction The linear expansion coefficient, Young's modulus, and film thickness of the thin film protective film are adjusted so that the neutral surface of the deformation is in or near the thin film layer. The thin film protective film has its Young's modulus and At least one of the linear expansion coefficients is larger than that of the transparent substrate.
[0014]
The second optical information recording medium of the present invention includes a transparent substrate, a thin film layer formed on the transparent substrate and including at least one of a recording film and a reflective film, and a resin formed on the thin film layer. In the optical information recording medium having at least a thin film protective film mainly composed of a thin film protective film, the thin film layer is formed so that bending moments due to temperature changes received from both sides in the film thickness direction are substantially equal. The linear expansion coefficient, Young's modulus, and film thickness are adjusted, and the thin film protective film is characterized in that at least one of Young's modulus and linear expansion coefficient is larger than that of the transparent substrate.
[0015]
In the first and second optical information recording media described above, the thickness of the thin film protective film is preferably 20 μm or less.
[0016]
The third optical information recording medium of the present invention includes a transparent substrate, a thin film layer formed on the transparent substrate and including at least one of a recording film and a reflective film, and a resin formed on the thin film layer. In an optical information recording medium having at least a thin film protective film mainly composed of a resin and a substrate protective film mainly composed of a resin formed on the light incident side of the transparent substrate, the moisture permeability of the thin film protective film The substrate protective film has a low moisture permeability.
[0017]
Further, the third optical information recording medium gives a bending moment opposite to the bending moment due to the transparent substrate to the thin film layer when the temperature changes, and neutralizes the deformation in the film thickness direction due to the temperature change during recording and reproduction. The linear expansion coefficient, Young's modulus, and film thickness of the thin film protective film are adjusted so that the surface is in or near the thin film layer, and the film thickness of the thin film protective film is the substrate protective film It is preferable that it is thicker than the film thickness.
[0018]
The above-described neutral plane of deformation indicates a plane represented by the value of y in formulas (1) to (5) described later.
[0019]
The first method for producing an optical information recording medium of the present invention includes a transparent substrate, a thin film layer formed on the transparent substrate and including at least one of a recording film and a reflective film, and formed on the thin film layer. In a method of manufacturing an optical information recording medium having at least a thin film protective film mainly composed of a resin, a recording moment is applied to the thin film layer by applying a bending moment opposite to a bending moment by a transparent substrate when the temperature changes. The linear expansion coefficient, the Young's modulus, and the film thickness of the thin film protective film are adjusted so that the neutral plane of the deformation in the film thickness direction due to temperature change is in or near the thin film layer. .
[0020]
The second method for producing an optical information recording medium of the present invention includes a transparent substrate, a thin film layer formed on the transparent substrate and including at least one of a recording film and a reflective film, and formed on the thin film layer. In the method of manufacturing an optical information recording medium having at least a thin film protective film mainly composed of a resin, bending moments due to temperature changes received from both sides in the film thickness direction are substantially equal in the thin film layer. The linear expansion coefficient, Young's modulus, and film thickness of the thin film protective film are adjusted.
[0021]
In the first and second optical information recording medium manufacturing methods, it is preferable that at least one of the Young's modulus and the linear expansion coefficient of the thin film protective film is larger than that of the transparent substrate.
Furthermore, it is preferable that the thickness of the thin protective film is 20 μm or less.
[0022]
The third method for producing an optical information recording medium of the present invention includes a transparent substrate, a thin film layer formed on the transparent substrate and including at least one of a recording film and a reflective film, and formed on the thin film layer. In the method of manufacturing an optical information recording medium, the thin film protective film comprising at least a thin film protective film mainly composed of a resin and a substrate protective film mainly composed of a resin formed on a light incident side of the transparent substrate. The moisture permeability of the substrate protective film is made smaller than the moisture permeability of the film.
[0023]
In the third method for producing an optical information recording medium, a bending moment opposite to the bending moment caused by the transparent substrate is applied to the thin film layer when the temperature changes, and the deformation in the film thickness direction due to the temperature change during recording and reproduction is performed. The linear expansion coefficient, Young's modulus, and film thickness of the thin film protective film are adjusted so that the neutral plane is in or near the thin film layer, and the film thickness of the thin film protective film is adjusted to the thickness of the substrate protective film. It is preferable to make it thicker than the film thickness.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Hereinafter, the optical information recording medium of this embodiment will be described. First, the principle of the present invention will be described.
[0025]
(1) Principle As described in the section of the prior art, in the optical information recording medium described in Japanese Patent Laid-Open No. 4-195745 (see FIG. 7), the layers are configured to be symmetric with respect to the transparent substrate 20. Thus, the warp of the optical information recording medium is suppressed.
[0026]
In contrast, the present inventor, for example, in an optical information recording medium having a thin film protective film 50, a thin film layer 40, a transparent substrate 20, and a substrate protective film 30 as shown in the schematic sectional view of FIG. By making the thin film layer 40 the center of deformation due to temperature change, that is, by making it symmetrical with respect to the thin film layer, and (b) the film of the thin film protective film 50 along with the suppression of the warpage. I found that the thickness can be reduced. This will be described in more detail below.
[0027]
As shown in FIG. 1, in general, an optical information recording medium has a dielectric film 41, 43 (silicon nitride, etc.), a recording film 42 (TbFeCo, etc.), a reflective film 44 (etc.) on a transparent substrate 20 such as polycarbonate by sputtering or the like. A thin film protective layer 50 made of a resin as a main component is formed on the thin film layer 40 and is opposite to the transparent substrate 20. A substrate protective film 30 mainly composed of a resin is formed on the surface to protect the transparent substrate 20.
[0028]
As described above, the optical information recording medium is usually composed of multiple layers. For this reason, due to the difference in linear expansion coefficient, which is the physical property value of each layer, the stress generated in each layer varies when the temperature changes. Specifically, in general, the linear expansion coefficient of the transparent substrate 20 made of polycarbonate, the substrate protective film 30, and the thin film protective film 50 is larger than that of the thin film layer 40, and the thin film layer 40 in the radial direction of the substrate. The expansion is very small compared to the other layers. Further, the thickness of the transparent substrate 20 is very large compared to the thickness of the substrate protective film 30 and the thin film protective film 50, and the Young's modulus of each thin film of the thin film layer 40 is very large compared to the other layers. . For this reason, when the temperature change occurs, the expansion of the transparent substrate 20 becomes larger than the expansion of the thin film layer 40. As a result, the optical information recording medium 10 is perpendicular to the radial direction and in the film thickness direction. Warpage toward the thin film protective film 50 side is likely to occur. 2A and 2B are schematic views for explaining the warpage. FIG. 2A is a plan view and FIG. 2B is a side view.
[0029]
In the present embodiment, in order to prevent this warpage, the linear expansion coefficient, Young's modulus, and film thickness of the thin film protective film 50 formed on the thin film layer 40 are adjusted, so that the film is transparent to the thin film layer 40. A bending moment opposite to the bending moment caused by the substrate 20 is applied, and the surface included in the thin film layer 40 and parallel to the film surface is used as a neutral surface for deformation, whereby deformation due to temperature change (shown in FIG. 2). Warping).
[0030]
The linear expansion coefficient, Young's modulus, and film thickness of the thin protective film 50 as described above can be set by the following approximate calculation.
[0031]
In the optical information recording medium 10, stress (axial force) acting in the radial direction, stress acting in the circumferential direction, and stress acting in the film thickness direction are generated when the temperature changes, but the optical information recording medium 10 has a disk shape. Therefore, since the stress acting in the circumferential direction is uniform in the circumference and the force in the film thickness direction works uniformly in each layer, it can be assumed that the stress does not contribute to the deformation. The warp (see FIG. 2) can be replaced with the warp in the multi-layer beam corresponding to the cross section. FIG. 3 shows the multilayer beam. Although FIG. 3 shows an n-layer beam, this n is the number of layers of the optical information recording medium, and n = 7 in the case of the optical information recording medium of FIG.
[0032]
The warp angle θ at the time of temperature change in this multi-layer beam is expressed by equations (1) to (5) derived from the balance between the axial force P i (i = 1, 2,..., N) and the bending moment M i of each layer. Can do.
[0033]
[Expression 1]
Figure 0004004965
[0034]
In addition, each symbol in the formulas (1) to (5) represents α i : linear expansion coefficient of the i layer, E i : Young's modulus of the i layer, t i : thickness of the i layer, P i : axis in the i layer. Force, M i : bending moment in i layer, R i : radius of curvature, I i : secondary moment of section of i layer, b: width of beam (unit length), T: change temperature, L: length of beam Here, y represents the neutral plane position of the n-layer beam, and θ represents a warp angle at a length of 4 mm at the maximum displacement portion. Further, since the thickness of each layer is much smaller than the radius of curvature, the radius of curvature in each layer (i = 1, 2,..., N) is the same (R 1 = R 2 = R 3 = ... = R). To do. The change temperature T is a change temperature within the use temperature environment (generally −15 ° C. to 80 ° C.) of the optical information recording medium.
[0035]
In each of the formulas (1) to (5), when y is set in the thin film layer 40, each layer (particularly the thin film protection film 50 (thin film layer 40) is set so that θ is small, that is, the curvature radius R is large. 2 is often determined in advance depending on the characteristics of the optical information recording medium))), and the warping of FIG. 2 due to temperature change can be suppressed by determining the thickness, linear expansion coefficient α, and Young's modulus E. A medium can be obtained.
[0036]
By the way, when the film thickness of the thin protective film 50 is increased in the optical information recording medium, it is difficult to form it by spin coating. Further, when the optical information recording medium is a magneto-optical recording medium, if the thickness of the thin film protective film 50 is increased, the distance between the magnetic head and the thin film layer 40 is increased, which is not preferable in terms of magnetic characteristics. For these reasons, the film thickness of the thin protective film 50 is desirably set to 30 μm or less, and more preferably 20 μm or less. Therefore, the thin film protective film 50 satisfies the film thickness condition (30 μm or less (preferably 20 μm or less)) and has a linear expansion coefficient α and Young's modulus E that can reduce θ in the above formulas (1) to (5). It is necessary to select the material. According to the equations (1) to (5), if at least one of the linear expansion coefficient α and the Young's modulus E is large, it is possible to reduce θ even if the film thickness is small.
[0037]
As described above, in the optical information recording medium of the present embodiment, since each layer (particularly, the thin film protective film 50) is set so that the neutral surface of the deformation at the time of temperature change is set in the thin film layer 40, warping occurs. Can be suppressed. Further, the deformation of the thin film layer 40 having the slowest deformation speed among the respective layers constituting the optical information recording medium is extremely small, and the displacement overshoot which becomes a problem at the time of actual temperature change is also small. Furthermore, since only the substrate protective film 30 mainly composed of a resin needs to be formed on the light incident side of the transparent substrate 20, it can be easily manufactured by spin coating or the like, and the manufacturing process can be simplified.
[0038]
In the above description, each layer (particularly the thin film protective film 50) is formed so that a neutral surface of deformation due to temperature change exists inside the thin film layer 40 using the material characteristics of all layers constituting the optical information recording medium. In general, since each layer constituting the thin film layer 40 in the optical information recording medium is very thin, the thin film layer 40 is regarded as one layer, and the thin film layer 40 is compared with the thin film layer 40. Each layer (particularly, the thin film protective film 50) may be set so that the bending moments caused by temperature changes of both sides (the transparent substrate 20 and the substrate protective film 30 on one side and the thin film protective film 50 on the other side) are substantially canceled. . Even in this case, the warp due to the temperature change of the thin film layer 40 can be substantially eliminated. At this time, in order to reduce the film thickness of the thin film protective film 50 (30 μm or less (preferably 20 μm or less)), in view of the large thickness of the transparent substrate 20, the linear expansion coefficient α of the thin film protective film 50, Young At least one of the rates E needs to be larger than the transparent substrate 20.
[0039]
(2) Embodiment Next, an embodiment of an optical information recording medium formed based on the above principle will be described. In the present embodiment, it is assumed that the thin film layer 40 is composed of only one aluminum nitride layer. This is because deformation of the thin film layer 40 is generally caused mainly by a dielectric layer such as aluminum nitride. In this embodiment, an example in which the substrate protective film 30 is not provided is shown. When the substrate protective film 30 exists, it is necessary to set each layer (especially the thin film protective film 50) in consideration of it.
[0040]
As Example 1, an ultraviolet (UV) curable resin 1 (thin film) under conditions designed on a polycarbonate substrate (transparent substrate 20) using an aluminum nitride thin film layer (thin film layer 40) and formulas (1) to (5). A medium on which the protective film 50) was formed was formed. As Comparative Example 1, an optical information recording medium in which an aluminum nitride thin film layer and a conventional ultraviolet (UV) cured resin 2 (thin film protective film) were formed on a polycarbonate substrate was formed. Tables 1 and 2 show configurations of Example 1 and Comparative Example 1, respectively.
[0041]
[Table 1]
Figure 0004004965
[0042]
[Table 2]
Figure 0004004965
[0043]
As can be seen from Tables 1 and 2, the difference between the two is mainly the linear expansion coefficient of the UV curable resin (thin film protective film 50), and Example 1 uses the one having a larger linear expansion coefficient. In addition, as the transparent substrate 20, both have an inner diameter of 15 mm and an outer diameter of 120 mm.
[0044]
The medium of Example 1 and Comparative Example 1 was given a temperature change (T = 30 ° C.) rising from 25 ° C. to 55 ° C., and the warping angle θ at the outer periphery (r = 56 mm) at that time was The change over time in the amount of change was measured. The reason for measuring the amount of change of the warp angle instead of the warp angle itself is that the medium has its own warp angle at room temperature, and is therefore unsuitable for showing deformation due to temperature change.
[0045]
FIG. 4 is a diagram showing the results. It can be seen that the amount of change in the warp angle of the medium of Example 1 is smaller than that of the medium of Comparative Example 1 both in the maximum value and the steady state value, thereby suppressing deformation. Further, from this figure, it can be seen that, according to Example 1, even if the film thickness is 20 μm or less, there is no significant warping caused by a change in temperature. Further, FIG. 4 also shows the amount of change in the warp angle θ predicted using the above formulas (1) to (5), but the approximation by the above formulas (1) to (5) is extremely It can be seen that the approximation is actually fit.
[0046]
Next, a medium (Example 2) using the UV curable resin 3 having a large Young's modulus will be described. The medium of Example 2 is different from the medium of Example 1 in the characteristics of the UV curable resin. Table 3 shows the configuration of Example 2.
[0047]
[Table 3]
Figure 0004004965
[0048]
For the medium of Example 2, when the amount of change of the warp angle θ is predicted using the above formulas (1) to (5), the value is 5.18 [mrad], which is higher than that of Comparative Example 1 described above. It can be seen that the warpage caused by the temperature change is greatly reduced.
[0049]
As described above, according to the optical information recording medium of the present embodiment, it is possible to suppress a large warp even temporarily due to a temperature change. Can be prevented from occurring. In addition, the thickness of the thin protective film 50 can be reduced.
[0050]
(Embodiment 2)
In the present embodiment, an optical information recording medium capable of preventing deformation due to humidity change will be described.
[0051]
(1) Principle Since the optical information recording medium 10 shown in FIG. 1 described above uses a substrate made of polycarbonate or the like as the transparent substrate 20, the transparent substrate 20 expands due to moisture absorption when the surroundings become highly humid. . As a result, the optical information recording medium 10 is deformed. In particular, when the moisture permeability of the substrate protective film 30 is larger than the moisture permeability of the thin film protective film 50, the deformation rate of the substrate 20 is larger than the deformation rate of the thin film protective film 50, so that a large displacement occurs when the actual humidity changes. Overshoot occurred and became a big problem in practical use.
[0052]
In the present embodiment, the moisture permeability of the substrate protective film 30 is made smaller than the moisture permeability of the thin film protective film 50 to suppress this overshoot, thereby solving the problem in practical use.
[0053]
(2) Example As Example 3, a medium in which the substrate protective film 30 made of the UV curable resin 4 was added to the medium described in Example 1 was formed. For comparison, as Comparative Example 2, a medium in which the substrate protective film 30 made of the UV curable resin 5 was added to the medium described in Example 1 was formed. Table 4 shows the moisture permeability of each UV curable resin in Example 3 and Comparative Example 2.
[0054]
[Table 4]
Figure 0004004965
[0055]
A change in humidity (change in ambient humidity from 50% to 90%) was given to the medium of Example 3 and Comparative Example 2, and the amount of change in the warp angle θ at the outer periphery (r = 56 mm) of each medium was changed. The change with time was measured.
[0056]
FIG. 5 is a diagram showing the results. The maximum value of the change amount of the warp angle in Example 3 (occurred during overshoot) is much smaller than that in Comparative Example 2, and it can be seen that deformation due to humidity change is suppressed.
[0057]
As described above, according to the optical information recording medium of the present embodiment, even if the humidity changes, a large warp does not occur temporarily, and it is possible to suppress problems such as defective reproduction during recording and reproduction.
[0058]
It should be noted that the optical information recording medium of the present embodiment also has a neutral surface that is deformed due to temperature change in the thin film layer 40 as described in the first embodiment, and the thin film layer 40 has its neutral surface. If the thin film protective film 50 and the substrate protective film 30 are set so that the bending moments exerted by temperature changes on both sides (the transparent substrate 20 and the substrate protective film 30 on one side, and the thin film protective film 50 on the other side) are substantially cancelled, Not only the deformation due to the humidity change in the embodiment but also the deformation due to the temperature change can be prevented.
[0059]
When the neutral surface of deformation is provided in the thin film layer 40 as described above, generally, the thickness of the substrate protective film 30 on the light beam incident side is preferably smaller than that of the thin film protective film 50. It is desirable to select a protective film material having a linear expansion coefficient or the like that satisfies it.
[0060]
In the above embodiment, the medium is configured such that the neutral plane of deformation is located in the thin film layer, but it may be in the vicinity of the thin film layer. Of course, it is desirable to be in the thin film layer in order to reduce the amount of deformation.
[0061]
The principle of the present invention described in the first embodiment and the second embodiment is valid even when a polycarbonate substrate or the like thinner than those in the first to third embodiments is used. Specific examples thereof will be described below.
[0062]
As Example 4, a transparent substrate having a plate thickness of 0.5 mm was used, and a medium having a configuration shown in Table 5 below was formed.
[0063]
[Table 5]
Figure 0004004965
[0064]
The amount of change in the warp angle θ when the temperature of the medium of Example 4 was changed and when the humidity was changed was measured. 9 and 10 are diagrams showing the results. The transparent substrate has an inner diameter of 7 mm and an outer diameter of 50 mm.
[0065]
FIG. 9 shows the amount of change in the warp angle θ at the outer periphery of the medium when the atmosphere is changed from a temperature of 25 ° C. and a humidity of 50% to a temperature of 70 ° C. and a humidity of 30%. As a result, even when the substrate thickness was thinner (0.5 mm in Example 4), the amount of change in warpage at the time of temperature change was about 3 mrad. When a thin transparent substrate having the conditions shown in Table 5 was used according to the conventional method, the amount of change in warpage was far greater than 10 mrad, and it can be seen that the change in warpage can be greatly suppressed by the present invention.
[0066]
FIG. 10 shows the amount of change in the warp angle θ at the outer periphery of the medium when the humidity is changed from a temperature of 25 ° C. and a humidity of 60% to a temperature of 25 ° C. and a humidity of 90%. From this result, it was found that even when the substrate thickness is thinner (0.5 mm in Example 4), the amount of change in warpage when the humidity changes is very small.
[0067]
【The invention's effect】
In the present invention, the optical information recording medium is configured such that the neutral surface when deformed due to temperature change is in the vicinity of a thin film layer such as a magnetic film (preferably within the thin film layer), thereby reducing the amount of deformation during temperature change. Thus, the reliability of recording and reproduction can be improved.
[0068]
In the optical information recording medium, the thickness of the thin film protective film can be reduced by providing the thin film protective film having at least one of Young's modulus and linear expansion coefficient larger than that of the transparent substrate. This facilitates manufacturing and improves the magnetic characteristics of the magneto-optical recording medium.
[0069]
In addition, by providing a substrate protective film having a moisture permeability smaller than that of the thin film protective film in the optical information recording medium, the amount of deformation when the humidity changes is reduced, and the reliability of recording and reproduction can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a configuration of an optical information recording medium.
FIG. 2 is a diagram for explaining warpage of an optical information recording medium.
FIG. 3 is a diagram illustrating a multilayer beam.
FIG. 4 is a diagram showing the time dependence of the amount of change in the warping angle when the temperature changes.
FIG. 5 is a diagram showing the time dependence of the amount of change in the warping angle when the humidity changes.
FIG. 6 is a plan view and a side view showing a configuration of an optical information recording medium.
FIG. 7 is a schematic cross-sectional view showing an example of a conventional optical information recording medium.
FIG. 8 is a schematic cross-sectional view showing another example of a conventional optical information recording medium.
FIG. 9 is a diagram showing the time dependence of the amount of change in warping angle when the temperature and humidity of an optical recording medium having a thickness of 0.5 mm are changed.
FIG. 10 is a diagram showing the time dependence of the change amount of the warp angle when the humidity of an optical recording medium having a thickness of 0.5 mm is changed.
[Explanation of symbols]
10 optical information recording medium 20 transparent substrate 30 substrate protective film 40 thin film layer 41 first dielectric film 42 recording film 43 second dielectric film 44 reflective film 50 thin film protective film

Claims (3)

透明基板層上に、記録膜または反射膜のいずれか一方を少なくとも含む薄膜層と、樹脂を主成分とする薄膜保護膜層とがこの順で積層されており、前記透明基板層をひとつだけ有するn(nは3以上の自然数)層の光情報記録媒体の製造方法において、
前記透明基板層の厚さは、1.2mmより薄く、
記録再生時の前記光情報記録媒体の断面部を、はりの幅(単位長とする)b、はりの長さL、及び各層の曲率半径を同一の曲率半径Rとしたn層はりに置換した場合に、
前記n層はりに―15℃から80℃までの範囲内の変化温度Tを与えたときに生じる前記n層はりの最大変位部における長さ4mmでの反り角の変化量をθとし、前記変化温度Tを与えたときの前記反り角の変化量が定常状態値をとった場合における第i層(i=1,2,…,n)の線膨張係数をα 、ヤング率をE 、厚さをt 、及び断面2次モーメントをI 、並びに、第i層における軸力及び曲げモーメントをそれぞれP 及びM とするとき、
前記光情報記録媒体における前記断面部のはりの幅、はりの長さ、及び前記変化温度T、並びに各層の線膨張係数、ヤング率、厚さ、及び断面2次モーメントの値を、次式
Figure 0004004965
の対応する各パラメータに代入し、
変形前における前記透明基板層の、前記薄膜保護膜層と異なる側の表面に相当する位置を基準面とする位置yを、t ≦y≦t +t (t :透明基板層の厚さ,t :薄膜層の厚さ)を満たす位置に設定して得られた、前記n層はりの前記反り角の変化量の近似値を6mrad以下とすることを特徴とする光情報記録媒体の製造方法。
On the transparent substrate layer, a thin film layer including at least one of the recording film and the reflective film and a thin film protective film layer mainly composed of a resin are laminated in this order, and has only one transparent substrate layer. In the method of manufacturing an optical information recording medium having n (n is a natural number of 3 or more) layers ,
The transparent substrate layer is thinner than 1.2 mm,
The cross section of the optical information recording medium at the time of recording / reproducing was replaced with an n-layer beam having a beam width (unit length) b, a beam length L, and the curvature radius of each layer being the same curvature radius R. In case,
The amount of change in the warp angle at a length of 4 mm at the maximum displacement portion of the n-layer beam generated when a change temperature T in the range from −15 ° C. to 80 ° C. is given to the n-layer beam is defined as θ. Α i is the linear expansion coefficient of the i-th layer (i = 1, 2,..., N) when the change amount of the warp angle when the temperature T is given takes a steady state value , E i , When the thickness is t i , the sectional moment is I i , and the axial force and bending moment in the i-th layer are P i and M i , respectively ,
In the optical information recording medium, the beam width of the cross section, the length of the beam, the change temperature T, and the linear expansion coefficient, Young's modulus, thickness, and cross sectional secondary moment of each layer are expressed by the following equations.
Figure 0004004965
Substituting for each corresponding parameter of
A position y with respect to a position corresponding to the surface on the side different from the thin film protective film layer of the transparent substrate layer before deformation is defined as t 1 ≦ y ≦ t 1 + t 2 (t 1 : thickness of the transparent substrate layer) , T 2 : the thickness of the thin film layer), and an approximate value of the change amount of the warp angle of the n-layer beam is set to 6 mrad or less. Manufacturing method.
前記薄膜保護膜層のヤング率及び線膨張係数の少なくとも一方を、前記透明基板層よりも大きくすることを特徴とする請求項1に記載の光情報記録媒体の製造方法。 2. The method for producing an optical information recording medium according to claim 1 , wherein at least one of a Young's modulus and a linear expansion coefficient of the thin protective film layer is made larger than that of the transparent substrate layer . 前記薄膜保護膜厚さを、20μm以下とすることを特徴とする請求項1又は2に記載の光情報記録媒体の製造方法 The method of manufacturing an optical information recording medium according to claim 1 or 2, characterized in that the thickness of the protective film layer, a 20μm or less.
JP2003006251A 1999-02-24 2003-01-14 Manufacturing method of optical information recording medium Expired - Fee Related JP4004965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006251A JP4004965B2 (en) 1999-02-24 2003-01-14 Manufacturing method of optical information recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-46189 1999-02-24
JP4618999 1999-02-24
JP2003006251A JP4004965B2 (en) 1999-02-24 2003-01-14 Manufacturing method of optical information recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000045449A Division JP3411537B2 (en) 1999-02-24 2000-02-23 Optical information recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007167031A Division JP4545779B2 (en) 1999-02-24 2007-06-25 Optical information recording medium and method of manufacturing optical information recording medium

Publications (2)

Publication Number Publication Date
JP2003187496A JP2003187496A (en) 2003-07-04
JP4004965B2 true JP4004965B2 (en) 2007-11-07

Family

ID=27614968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006251A Expired - Fee Related JP4004965B2 (en) 1999-02-24 2003-01-14 Manufacturing method of optical information recording medium

Country Status (1)

Country Link
JP (1) JP4004965B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5284723B2 (en) * 2007-08-24 2013-09-11 三菱化学メディア株式会社 Radiation curable composition for back layer of optical recording medium, cured product thereof, and optical recording medium using the same

Also Published As

Publication number Publication date
JP2003187496A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
KR100424602B1 (en) Optical information recording medium
US6128274A (en) Optical recording disk capable of suppressing bimetallic effects caused by thermal expansion
JP3859458B2 (en) Optical information recording medium
JP3137657B2 (en) Optical information recording medium and method of manufacturing the same
JP3411537B2 (en) Optical information recording medium
JP4004965B2 (en) Manufacturing method of optical information recording medium
US20050132395A1 (en) Optical information recording medium
JP4545779B2 (en) Optical information recording medium and method of manufacturing optical information recording medium
KR100444711B1 (en) Optical Data Recording Medium
JP4080234B2 (en) Information processing medium and information processing apparatus using the same
KR100476286B1 (en) Optical Data Recording Medium
JP4080506B2 (en) Optical information recording medium
JP4642312B2 (en) Information recording medium and information processing apparatus using the information recording medium
JP3577782B2 (en) optical disk
JPH0896415A (en) Optical information recording medium
JP2003059097A (en) Optical recording medium
JPH09161341A (en) Production of disk-shaped recording medium
WO2003017266A1 (en) Optical recording medium
JP2004103090A (en) Flexible optical disk and its manufacturing method
JPH09180258A (en) Optical disk

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050201

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees