JP4004850B2 - Magnetron device - Google Patents

Magnetron device Download PDF

Info

Publication number
JP4004850B2
JP4004850B2 JP2002136487A JP2002136487A JP4004850B2 JP 4004850 B2 JP4004850 B2 JP 4004850B2 JP 2002136487 A JP2002136487 A JP 2002136487A JP 2002136487 A JP2002136487 A JP 2002136487A JP 4004850 B2 JP4004850 B2 JP 4004850B2
Authority
JP
Japan
Prior art keywords
magnetron
transmission line
filter
mode
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002136487A
Other languages
Japanese (ja)
Other versions
JP2003331746A (en
Inventor
直樹 辻
康次郎 南谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2002136487A priority Critical patent/JP4004850B2/en
Priority to GB0229357A priority patent/GB2392004B/en
Publication of JP2003331746A publication Critical patent/JP2003331746A/en
Application granted granted Critical
Publication of JP4004850B2 publication Critical patent/JP4004850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • H01J25/52Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
    • H01J25/58Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having a number of resonators; having a composite resonator, e.g. a helix
    • H01J25/587Multi-cavity magnetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
    • H01J23/54Filtering devices preventing unwanted frequencies or modes to be coupled to, or out of, the interaction circuit; Prevention of high frequency leakage in the environment

Landscapes

  • Microwave Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スプリアス放射を低減するためにフィルタを設けたマグネトロン装置に関し、特に発振の安定度の良いマグネトロン装置に関する。
【0002】
【従来の技術】
マグネトロンは、低価格で、かつ取扱が容易であるため、レーダ装置等の送信器に広く用いられているが、その発振機構上スプリアス放射を抑制するのが難しい装置の一つといえる。一方近年、マイクロ波を放射する装置に対し、スプリアス放射の規制が厳しくなる状況にあり、スプリアス放射を低減するためにフィルタを設けたマグネトロン装置の開発が行われている。
【0003】
一般に、マグネトロンはπモードと呼ばれるメインモードで発振しているが、それ以外に各種のスプリアス放射が生じている。スプリアス放射の中でもπ−1モードと呼ばれるマグネトロンの共振回路に起因するモードでの放射電力が、最も大きい。例えばπモードが9.4GHz帯で発振するベーンストラップタイプのマグネトロンでは、π−1モードが10.5GHz付近にあり、πモードよりも高い周波数帯となっている。そこで、πモードの周波数が通過帯域で、π−1モードの周波数が阻止帯域であるフィルタを用いることにより、スプリアス放射は抑制可能である。
【0004】
図7は、従来例のブロック図を示す。マグネトロン1で発振したマイクロ波は、アイソレータ6およびフィルタ3を経由して、レーダ装置のアンテナ等の負荷に供給される。フィルタ3はπモードの周波数を通過域とし、π−1モードの周波数を阻止域とする帯域通過フィルタ、低域通過フィルタ、または帯域阻止フィルタなどが用いられる。アイソレータ6は、マグネトロン1で発振したマイクロ波がフィルタ3で反射し、マグネトロンの発振へ影響を与えることを防止するために設けられている。このような構造のマグネトロン装置では、スプリアス抑制効果はフィルタ固有の特性がそのまま期待でき設計も容易である。しかしながら、アイソレータ6を用いたマグネトロン装置は、アイソレータのコストが高く、装置の低コスト化が困難であった。
【0005】
図8は、伝送線路7でマグネトロン1とフィルタ3を直接結合させた別の従来例である。この場合、フィルタ3で反射したマイクロ波が直接マグネトロン1に入射するため、反射波がマグネトロン1の発振に影響を与えてしまう。そこで、伝送線路7の線路長は任意に決めることはできず、所望の長さに設定する必要がある。従来この伝送線路の線路長は、πモードの出力が最も有効に引き出せる位相となるように調整されていた。しかし、このように線路長が設定されたマグネトロン装置では、πモードでの発振が安定せず、π−1モードで動作してしまう、いわゆるミッシングパルスの頻度が高くなり、発振の安定度が良くないという問題があった。また、フィルタ固有のスプリアス抑制効果が得られないという問題があった。
【0006】
【発明が解決しようとする課題】
以上のように、従来のアイソレータを用いる構成では、アイソレータのコストが高く装置の低コスト化が困難であるという問題点があった。また、マグネトロンに伝送線路を介してスプリアス抑制用のフィルタを直接結合させる構成では、マグネトロンの発振の安定度が悪く、フィルタのスプリアス抑制効果が十分に得られないという問題点があった。本発明は、上記問題点を解消し、マグネトロンとフィルタを伝送線路で直接結合させた構成のマグネトロン装置において、発振の安定度が良好な装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本願請求項1に係る発明は、マグネトロンと、所定の周波数帯の電波を阻止するフィルタを伝送線路で結合させたマグネトロン装置において、前記マグネトロン、前記伝送線路及び前記フィルタによって構成される回路系の共振周波数を、前記マグネトロンが放射するスプリアス成分のうち、前記フィルタの阻止周波数帯に含まれる少なくとも一つのスプリアス成分の周波数と略一致させるように伝送線路の長さを設定し、前記一つのスプリアス成分の共振モードのQ値を下げることを特徴とするものである。
【0008】
請求項2に係る発明は、請求項1の発明において、前記伝送線路に前記共振周波数の調整機構が設置されていることを特徴とするものである。
【0009】
請求項3に係る発明は、請求項1又は請求項2の発明において、前記マグネトロン及び前記伝送線路が結合した前記フィルタの負荷側に別の伝送線路が結合し、該伝送線路に送信出力を調整する調整機構が設置されていることを特徴とするものである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。図1は本発明の実施例で、マグネトロン1はベーンストラップタイプを用いており、メインモードであるπモードの周波数は9.441GHz、スプリアス成分の一つであるπ−1モードの周波数は10.464GHzである。
【0011】
図2は本発明のマグネトロン1のインピーダンスZmを測定した結果である。πモード、π−1モードに対応する共振を、それぞれマーカ1(▲)、マーカ2(▼)で示している。一方、フィルタ3はマグネトロン1のπモードの周波数を通過させ、π−1モードの周波数を阻止する低域通過フィルタで、図3に示すインピーダンスZfを持っている。ここでマーカ1(▲)、マーカ2(▼)は、図2と同じ周波数(それぞれ9.441GHz、10.464GHz)に設定している。図3より、πモードで反射がほとんどなく、π−1モードで完全反射に近い特性であることがわかる。このような装置において、πモードの送信出力が良好に伝送されるように伝送線路2の線路長を決定すると、マグネトロン1のπ−1モードの共振は、フィルタ3がその周波数帯で阻止、すなわち完全反射に近い状態であるので、そのQ値が高くなってしまう。これが従来例のマグネトロンとフィルタを伝送線路で結合させたマグネトロン装置が安定に動作しない原因である。そこで本発明では、π−1モードの共振のQ値を低くするために、マグネトロン1、伝送線路2及びフィルタ3によって構成される回路系での共振周波数をπ−1モードの周 波数に一致させるようにする。このように構成することによって、π−1モードのマイクロ波エネルギーが伝送線路の共振により抵抗損失し、Q値が低下することになる。
【0012】
以下、マグネトロン1、伝送線路2、フィルタ3で構成される回路系での共振周波数をπ−1モードの周波数にあわせる方法として、伝送線路を2の長さLを設定する方法について説明する。これは、この回路系のアドミッタンスの虚数成分の和を0にすることで実現できる。マグネトロン1をみこんだインピーダンスは図2に示したようにπ−1モードでZm=0.786+0.205jで位相角は128度である。フィルタ3をみこんだインピーダンスは図3に示すようにZf=0.033−1.149jで位相角は−82度である。したがって、マグネトロンをみこんだアドミッタンスの虚数成分を0にするためには、マグネトロンに128度の線路長の伝送線路を加えればよい。一方、フィルタをみこんだアドミッタンスの虚数成分を0にするためには、フィルタに−82度の線路長の伝送線路を加えればよい。従って、伝送線路2の線路長は、46度(128−82度)とすればよい。π−1モードの周波数10.464GHzでの実効波長λgは使用した導波管が、22.9mm×10.2mmの矩形導波管なので、36.76mmである。よって伝送線路の線路長Lは、L=36.76mm×(46/720)=2.35mmとなる。伝送線路にはλg/2の整数倍の長さの線路を加えても等価であるので、線路長Lは、2.35mm、20.73mm、39.11mm等に設定すればよい。
【0013】
図4に伝送線路の線路長とミスパルスの関係を示す。図4より、マグネトロンが安定に発振する範囲は、L±λ/16であることがわかる。この寸法上の許容値を、逆に伝送線路長を固定して周波数の許容値に換算した値が、伝送線路の共振周波数とπ−1モードの周波数を一致させる際の周波数の許容値となる。
【0014】
次に、図5を用いて伝送線路の共振周波数を調整する調整機構を付加した場合について説明する。図5はマグネトロン1からフィルタ3までの間の伝送線路として矩形導波管4を用い、矩形導波管4に共振周波数の調整機構として共振周波数調整用スクリュースタブ8を設けたものである。これは、マグネトロンのπ−1モードにおけるインピーダンスのバラツキを補償するために設けたもので、スクリュースタブ8を矩形導波管8に挿入する長さを調整することで、その先端の容量値を調整し、共振周波数を所望の値にすることができる。
【0015】
図6は図5で示した実施例に送信出力の調整機構として、フィルタ3の負荷側に更に別の矩形導波管5を結合させ、この矩形導波管5にπモードの送信出力調整用スクリュースタブ9を追加したものである。これは、回路系の共振周波数をπ−1モードの周波数と略一致させた場合、πモードの発振にも影響を与えてしまい、出力が低下してしまうため、それを補償するために設けている。また、マグネトロン1のπモードにおけるインピーダンスのバラツキを補償する効果もある。従って、図6に示すように、矩形導波管4に共振周波数調整用スクリュースタブ8を備えた場合に限らず、矩形導波管4の長さを所定の長さに設定したのみで、共振周波数調整用スクリュースタブ8を備えない場合であっても、πモードの発振出力を調整するために効果がある。なお、この送信出力調整用スクリュースタブ9はフィルタ3から負荷側に設置することが望ましい。それは、フィルタ3からマグネトロン1側の矩形導波管4に設置すると、送信出力の調整によって、π−1モードにおけるマグネトロンのインピーダンスに影響を与えてしまい、マグネトロン動作の安定度が低下してしまうからである。
【0016】
上記の説明では伝送線路として矩形導波管の場合を示したが、伝送線路は同軸線路でも平面回路でも同様に実現可能である。また、フィルタはπモードを通過させ、π−1モードを遮断する低域通過フィルタの場合を示したがメインモードが通過し、スプリアス成分が遮断する構成であれば、帯域通過フィルタや帯域阻止フィルタ等でも同様に実現可能である。なお、マグネトロンの発振のメインモードがπモードであり、スプリアス成分としてπ−1モードの場合について説明をしたが、これに限定されるものでないことはもちろんである。
【0017】
【発明の効果】
以上説明したように、本発明ではマグネトロンからフィルタに至る回路系の共振周波数を、放射を抑制したい周波数に合わせることで、その周波数のQ値を低下させることができ、安定度の良いマグネトロン装置が実現できた。
【0018】
また、伝送線路に共振周波数調整用スクリュースタブや送信出力調整用スクリュースタブを設けることによって、マグネトロンのインピーダンスのバラツキを補償することができ、歩留まりよくマグネトロン装置を製造することができるとう利点がある。
【図面の簡単な説明】
【図1】 本発明の実施例を示すマグネトロン装置のブロック図である。
【図2】 図1のマグネトロンのインピーダンスの測定結果を示す図である。
【図3】 図1のフィルタのインピーダンスの測定結果を示す図である。
【図4】 伝送線路長とミスパルス頻度の関係を示す図である。
【図5】 本発明の伝送線路の共振周波数を調整する方法を説明する図である。
【図6】 本発明の送信出力を調整する方法を説明する図である。
【図7】 従来例を示すブロック図である。
【図8】 別の従来例を示すブロック図である。
【符号の説明】
1:マグネトロン、 2:伝送線路、 3:フィルタ、 4:矩形導波管、 5:矩形導波管、 6:アイソレータ、 7:伝送線路、 8:共振周波数調整用スクリュ−スタブ、 9:送信出力調整用スクリュ−スタブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetron device provided with a filter to reduce spurious radiation, and more particularly to a magnetron device with good oscillation stability.
[0002]
[Prior art]
A magnetron is widely used in transmitters such as radar devices because it is inexpensive and easy to handle, but it can be said that it is one of the devices in which it is difficult to suppress spurious radiation due to its oscillation mechanism. On the other hand, in recent years, there is a situation in which the regulation of spurious radiation becomes stricter with respect to a device that emits microwaves, and a magnetron device provided with a filter has been developed in order to reduce spurious radiation.
[0003]
In general, a magnetron oscillates in a main mode called a π mode, but various spurious emissions are also generated. Among spurious emissions, the radiation power in the mode caused by the resonance circuit of the magnetron called π-1 mode is the largest. For example, in a vane strap type magnetron in which the π mode oscillates in the 9.4 GHz band, the π-1 mode is in the vicinity of 10.5 GHz, which is a higher frequency band than the π mode. Therefore, spurious radiation can be suppressed by using a filter in which the frequency of the π mode is a pass band and the frequency of the π-1 mode is a stop band.
[0004]
FIG. 7 shows a block diagram of a conventional example. The microwave oscillated by the magnetron 1 is supplied to a load such as an antenna of the radar apparatus via the isolator 6 and the filter 3. As the filter 3, a band pass filter, a low pass filter, a band rejection filter or the like having a frequency of π mode as a pass band and a frequency of π-1 mode as a stop band is used. The isolator 6 is provided in order to prevent the microwave oscillated by the magnetron 1 from being reflected by the filter 3 and affecting the oscillation of the magnetron. In the magnetron device having such a structure, the spurious suppression effect can be expected from the characteristic characteristic of the filter as it is, and the design is easy. However, the magnetron device using the isolator 6 has a high cost of the isolator, and it is difficult to reduce the cost of the device.
[0005]
FIG. 8 shows another conventional example in which the magnetron 1 and the filter 3 are directly coupled by the transmission line 7. In this case, since the microwave reflected by the filter 3 is directly incident on the magnetron 1, the reflected wave affects the oscillation of the magnetron 1. Therefore, the line length of the transmission line 7 cannot be arbitrarily determined and needs to be set to a desired length. Conventionally, the line length of this transmission line has been adjusted so that the phase of the π mode output can be extracted most effectively. However, in the magnetron device in which the line length is set in this way, the oscillation in the π mode is not stable, the frequency of so-called missing pulses that operate in the π-1 mode is increased, and the stability of the oscillation is good. There was no problem. There is also a problem that the spurious suppression effect inherent to the filter cannot be obtained.
[0006]
[Problems to be solved by the invention]
As described above, the configuration using the conventional isolator has a problem that the cost of the isolator is high and it is difficult to reduce the cost of the apparatus. Further, in the configuration in which a spurious suppression filter is directly coupled to the magnetron via a transmission line, there is a problem in that the oscillation stability of the magnetron is poor and the spurious suppression effect of the filter cannot be obtained sufficiently. An object of the present invention is to solve the above-described problems and provide a device having good oscillation stability in a magnetron device having a configuration in which a magnetron and a filter are directly coupled by a transmission line.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present application is a magnetron device in which a magnetron and a filter for blocking radio waves in a predetermined frequency band are coupled by a transmission line, wherein the magnetron, the transmission line, and the filter are used. the resonant frequency of the configured circuit system, one of the spurious components the magnetron emits, sets the length of the transmission line so as to substantially coincide with a frequency of at least one spurious component included in the stop band of the filter The Q value of the resonance mode of the one spurious component is lowered .
[0008]
The invention according to claim 2 is characterized in that, in the invention of claim 1, the resonance frequency adjusting mechanism is provided in the transmission line.
[0009]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein another transmission line is coupled to a load side of the filter to which the magnetron and the transmission line are coupled, and the transmission output is adjusted to the transmission line. An adjusting mechanism is installed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 shows an embodiment of the present invention. The magnetron 1 uses a vane strap type, the frequency of a π mode as a main mode is 9.441 GHz, and the frequency of a π-1 mode which is one of spurious components is 10. It is 464 GHz.
[0011]
FIG. 2 shows the result of measuring the impedance Zm of the magnetron 1 of the present invention. Resonances corresponding to the π mode and π-1 mode are indicated by marker 1 (▲) and marker 2 (▼), respectively. On the other hand, the filter 3 is a low-pass filter that passes the π mode frequency of the magnetron 1 and blocks the π-1 mode frequency, and has the impedance Zf shown in FIG. Here, the marker 1 (▲) and the marker 2 (▼) are set to the same frequency as that in FIG. 2 (9.441 GHz and 10.464 GHz, respectively). From FIG. 3, it can be seen that there is almost no reflection in the π mode and a characteristic close to complete reflection in the π-1 mode. In such a device, when the line length of the transmission line 2 is determined so that the transmission output of the π mode is transmitted satisfactorily, the resonance of the π-1 mode of the magnetron 1 is blocked by the filter 3 in that frequency band, that is, Since it is in a state close to complete reflection, the Q value becomes high. This is the reason why the conventional magnetron device in which the magnetron and the filter are coupled by the transmission line does not operate stably. Therefore, in the present invention, in order to lower the Q value of the resonance in the π-1 mode, the resonance frequency in the circuit system constituted by the magnetron 1, the transmission line 2, and the filter 3 is made to coincide with the frequency of the π-1 mode. Like that. With this configuration, the microwave energy in the π-1 mode loses resistance due to the resonance of the transmission line, and the Q value decreases.
[0012]
Hereinafter, a method for setting the length L of the transmission line 2 will be described as a method for adjusting the resonance frequency in the circuit system including the magnetron 1, the transmission line 2, and the filter 3 to the frequency of the π-1 mode. This can be realized by setting the sum of the imaginary components of the admittance of this circuit system to zero. As shown in FIG. 2, the impedance of the magnetron 1 is Zm = 0.786 + 0.205j in the π-1 mode and the phase angle is 128 degrees. As shown in FIG. 3, the impedance including the filter 3 is Zf = 0.33-1.149j and the phase angle is -82 degrees. Therefore, in order to reduce the imaginary component of the admittance including the magnetron to 0, a transmission line having a line length of 128 degrees may be added to the magnetron. On the other hand, in order to set the imaginary component of the admittance including the filter to 0, a transmission line having a line length of −82 degrees may be added to the filter. Therefore, the line length of the transmission line 2 may be 46 degrees (128-82 degrees). The effective wavelength λg at the frequency of π-1 mode of 10.464 GHz is 36.76 mm because the used waveguide is a rectangular waveguide of 22.9 mm × 10.2 mm. Therefore, the line length L of the transmission line is L = 36.76 mm × (46/720) = 2.35 mm. Since it is equivalent to adding a line having an integral multiple of λg / 2 to the transmission line, the line length L may be set to 2.35 mm, 20.73 mm, 39.11 mm, or the like.
[0013]
FIG. 4 shows the relationship between the transmission line length and the miss pulse. FIG. 4 shows that the range in which the magnetron oscillates stably is L ± λ / 16. On the contrary, the value obtained by converting the allowable value on this dimension to the allowable value of the frequency with the transmission line length fixed becomes the allowable value of the frequency when the resonance frequency of the transmission line is matched with the frequency of the π-1 mode. .
[0014]
Next, the case where the adjustment mechanism which adjusts the resonant frequency of a transmission line is added using FIG. 5 is demonstrated. In FIG. 5, a rectangular waveguide 4 is used as a transmission line between the magnetron 1 and the filter 3, and a resonance frequency adjusting screw stub 8 is provided on the rectangular waveguide 4 as a resonance frequency adjusting mechanism. This is provided to compensate for the impedance variation in the π-1 mode of the magnetron. The length of the screw stub 8 inserted into the rectangular waveguide 8 is adjusted to adjust the capacitance value at the tip. The resonance frequency can be set to a desired value.
[0015]
FIG. 6 shows another embodiment of the transmission output adjusting mechanism shown in FIG. 5 in which another rectangular waveguide 5 is coupled to the load side of the filter 3 and the π-mode transmission output adjustment mechanism is coupled to the rectangular waveguide 5. A screw stub 9 is added. This is provided to compensate for the fact that if the resonant frequency of the circuit system is substantially matched with the frequency of the π-1 mode, it also affects the oscillation of the π mode and the output decreases. Yes. In addition, there is an effect of compensating for variations in impedance in the π mode of the magnetron 1. Therefore, as shown in FIG. 6, not only when the rectangular waveguide 4 is provided with the screw stub 8 for adjusting the resonance frequency, but only when the length of the rectangular waveguide 4 is set to a predetermined length, the resonance is achieved. Even if the screw stub 8 for frequency adjustment is not provided, there is an effect for adjusting the oscillation output in the π mode. The transmission output adjusting screw stub 9 is preferably installed on the load side from the filter 3. If the filter 3 is installed in the rectangular waveguide 4 on the magnetron 1 side, the adjustment of the transmission output affects the impedance of the magnetron in the π-1 mode, and the stability of the magnetron operation is lowered. It is.
[0016]
In the above description, a rectangular waveguide is shown as the transmission line. However, the transmission line can be realized by a coaxial line or a planar circuit. In addition, the filter is shown as a low-pass filter that passes the π mode and cuts off the π-1 mode. However, a band-pass filter or a band-stop filter can be used if the main mode passes and the spurious component is cut off. Etc. can be similarly realized. In addition, although the case where the main mode of oscillation of the magnetron is the π mode and the π-1 mode is used as the spurious component has been described, it is needless to say that the present invention is not limited to this.
[0017]
【The invention's effect】
As described above, in the present invention, by adjusting the resonance frequency of the circuit system from the magnetron to the filter to the frequency at which radiation is desired to be suppressed, the Q value of the frequency can be lowered, and a magnetron device with good stability can be obtained. Realized.
[0018]
Further, by providing the transmission line with a resonance frequency adjusting screw stub and a transmission output adjusting screw stub, it is possible to compensate for variations in the impedance of the magnetron and to manufacture a magnetron device with a high yield.
[Brief description of the drawings]
FIG. 1 is a block diagram of a magnetron apparatus showing an embodiment of the present invention.
FIG. 2 is a diagram showing measurement results of impedance of the magnetron of FIG. 1;
FIG. 3 is a diagram illustrating a measurement result of impedance of the filter of FIG. 1;
FIG. 4 is a diagram showing the relationship between transmission line length and miss pulse frequency.
FIG. 5 is a diagram for explaining a method of adjusting a resonance frequency of a transmission line according to the present invention.
FIG. 6 is a diagram illustrating a method for adjusting a transmission output according to the present invention.
FIG. 7 is a block diagram showing a conventional example.
FIG. 8 is a block diagram showing another conventional example.
[Explanation of symbols]
1: magnetron, 2: transmission line, 3: filter, 4: rectangular waveguide, 5: rectangular waveguide, 6: isolator, 7: transmission line, 8: screw stub for adjusting resonance frequency, 9: transmission output Screw stub for adjustment

Claims (3)

マグネトロンと、所定の周波数帯の電波を阻止するフィルタを伝送線路で結合させたマグネトロン装置において、前記マグネトロン、前記伝送線路及び前記フィルタによって構成される回路系の共振周波数を、前記マグネトロンが放射するスプリアス成分のうち、前記フィルタの阻止周波数帯に含まれる少なくとも一つのスプリアス成分の周波数と略一致させるように伝送線路の長さを設定し、前記一つのスプリアス成分の共振モードのQ値を下げることを特徴とするマグネトロン装置。A magnetron, the magnetron apparatus coupled by a transmission line filter for blocking a radio wave in a predetermined frequency band, the magnetron, the resonance frequency of the formed circuit system by the transmission line and the filter, the magnetron emits Of the spurious components, the length of the transmission line is set so as to substantially match the frequency of at least one spurious component included in the blocking frequency band of the filter, and the Q value of the resonance mode of the one spurious component is lowered. Magnetron device characterized by. 前記伝送線路に、前記共振周波数の調整機構が設置されていることを特徴とする請求項1記載のマグネトロン装置。  The magnetron device according to claim 1, wherein an adjustment mechanism for the resonance frequency is installed in the transmission line. 前記マグネトロン及び前記伝送線路が結合した前記フィルタの負荷側に別の伝送線路が結合し、該別の伝送線路に送信出力を調整する調整機構が設置されていることを特徴とする請求項1または2いずれか記載のマグネトロン装置。  2. The transmission device according to claim 1, wherein another transmission line is coupled to a load side of the filter to which the magnetron and the transmission line are coupled, and an adjustment mechanism for adjusting a transmission output is installed in the other transmission line. 2. The magnetron device according to any one of the above.
JP2002136487A 2002-05-13 2002-05-13 Magnetron device Expired - Fee Related JP4004850B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002136487A JP4004850B2 (en) 2002-05-13 2002-05-13 Magnetron device
GB0229357A GB2392004B (en) 2002-05-13 2002-12-17 Magnetron device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002136487A JP4004850B2 (en) 2002-05-13 2002-05-13 Magnetron device

Publications (2)

Publication Number Publication Date
JP2003331746A JP2003331746A (en) 2003-11-21
JP4004850B2 true JP4004850B2 (en) 2007-11-07

Family

ID=19194473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002136487A Expired - Fee Related JP4004850B2 (en) 2002-05-13 2002-05-13 Magnetron device

Country Status (2)

Country Link
JP (1) JP4004850B2 (en)
GB (1) GB2392004B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114464515B (en) * 2021-11-18 2023-04-18 电子科技大学 Frequency-locking phase-locking and allocating structure of different-cavity magnetron

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909754A (en) * 1974-02-26 1975-09-30 Sage Laboratories Waveguide bandstop filter
JPS61143923A (en) * 1984-12-17 1986-07-01 New Japan Radio Co Ltd Output circuit of magnetron
JPS62119836A (en) * 1985-11-20 1987-06-01 Sanyo Electric Co Ltd Magnetron
WO1997038437A1 (en) * 1996-04-08 1997-10-16 The Board Of Trustees Of The Leland Stanford Junior University Resonant cavity for attenuating electromagnetic standing waves in a waveguide
US5910710A (en) * 1996-11-22 1999-06-08 Fusion Lighting, Inc. Method and apparatus for powering an electrodeless lamp with reduced radio frequency interference
JP2001035399A (en) * 1999-07-23 2001-02-09 New Japan Radio Co Ltd Magnetron

Also Published As

Publication number Publication date
JP2003331746A (en) 2003-11-21
GB2392004B (en) 2006-01-18
GB2392004A (en) 2004-02-18
GB0229357D0 (en) 2003-01-22

Similar Documents

Publication Publication Date Title
CN107910629B (en) Low-phase-noise substrate integrated waveguide oscillator
JP2001313526A (en) Oscillator and communication unit
JP3115431B2 (en) Microwave oscillator
JP2007049689A (en) Feed-forward amplifier
Varcheh et al. A modified Jerusalem microstrip filter and its complementary for low phase noise X-band oscillator
JP4004850B2 (en) Magnetron device
JPS63206001A (en) Low-pass filter waveguide type diode limiter
US6344779B1 (en) Oscillator and radio equipment
CN205141352U (en) Low noise reputation electric oscillator based on supplementary variable frequency technology
Bai et al. Broadband waveguide-to-microstrip antipodal finline transition without additional resonance preventer
JP3913942B2 (en) Radar device and filter
EP1369989B1 (en) Voltage-controlled oscillator, high-frequency module, and communication apparatus
JP2007142977A (en) Tunable antenna and its control method
GB2419746A (en) Planar dielectric line, high frequency active circuit, and transmitting/receiving device
GB2388717A (en) Magnetron arrangement
US7760038B2 (en) Voltage controlled oscillator capable of tuning negative resistance
JPH052871Y2 (en)
JP2009139274A (en) High-frequency sensor
JPS63119305A (en) Oscillator
JP2001035399A (en) Magnetron
JP4169874B2 (en) Magnetron output structure
JP2010091439A (en) Radar system
Ondria Quartz microstrip radial disk fundamental and second harmonic mmW Gunn oscillators
JPS6120165B2 (en)
Yuen et al. Low voltage circuit design techniques for voltage controlled oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Ref document number: 4004850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees