JP4004179B2 - In-cylinder injection engine - Google Patents

In-cylinder injection engine Download PDF

Info

Publication number
JP4004179B2
JP4004179B2 JP11353999A JP11353999A JP4004179B2 JP 4004179 B2 JP4004179 B2 JP 4004179B2 JP 11353999 A JP11353999 A JP 11353999A JP 11353999 A JP11353999 A JP 11353999A JP 4004179 B2 JP4004179 B2 JP 4004179B2
Authority
JP
Japan
Prior art keywords
piston
inclined surface
intake
fuel
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11353999A
Other languages
Japanese (ja)
Other versions
JP2000002118A (en
Inventor
裕一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP11353999A priority Critical patent/JP4004179B2/en
Publication of JP2000002118A publication Critical patent/JP2000002118A/en
Application granted granted Critical
Publication of JP4004179B2 publication Critical patent/JP4004179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、燃料を燃焼室に燃料噴射装置から直接噴射して燃焼させる筒内噴射エンジンに関するものである。
【0002】
【従来の技術】
この種のものとしては、例えば図9及び図10に示すようなものがある。図9の(a),図10の(a)は筒内噴射エンジンのピストン1の平面図、図9の(b),図10の(b)はピストン1の断面図で、これらの図に示すように、ピストン1の頂部2には、凹所であるキャビティ3が形成されている。
【0003】
そして、筒内噴射エンジンの圧縮行程において、燃料噴射装置4から燃料を、キャビティ3の図中右側端部(基端部3a)から斜めに底面3bに向けて直接噴射する。これにより、噴霧Gがキャビティ3の先端部3cの縦壁部3dにて上方に持ち上げられ、この燃料が点火プラグ5にて着火されて燃焼される。
【0004】
このようにキャビティ3を設けて、ここに燃料を噴射することで、空気との混合性を向上させると共に、上方に持ち上げて着火性を確保するようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来のものにあっては、キャビティ3により、混合気を上方に持ち上げるようにしているが、点火プラグ5は、中心電極5aの下側に側方電極5bが回り込むように構成されているため、この側方電極5bにより混合気が遮られてしまっていた。
【0006】
そこで、この発明は、側方電極に遮られることなく、より着火性を向上させることができる筒内噴射エンジンを提供することを課題としている。
【0007】
【課題を解決するための手段】
かかる課題を達成するために、請求項1に記載の発明は、シリンダブロックにシリンダヘッドが取り付けられ、前記シリンダブロックにピストンが配設されると共に、前記ピストン上方の前記シリンダヘッドの略中央に点火プラグが配設され、さらに燃料を燃焼室に直接噴射する燃料噴射装置が配設された筒内噴射エンジンにおいて、前記ピストンは、頂部の周囲に平面部が形成され、前記平面部の内側に該平面部から上方に突出する凸部と該凸部及び前記平面部に渡って凹所形状のキャビティとが形成され、前記凸部は、ピストン頂部中央に位置して径方向に延在する平面状の天面と、該天面の両側で下端が前記平面部に至る平面状の吸気側の傾斜面と排気側の傾斜面とを有し、前記ピストンの上死点位置において、前記吸気側の傾斜面の傾斜角度が前記排気側の傾斜面よりも大きくかつ吸気弁下面の傾斜角度と相違し、該吸気側の傾斜面と該吸気弁下面との隙間が傾斜下方に行くに連れて広がっていると共に、前記排気側の傾斜面と排気弁下面とがほぼ平行であり、前記キャビティは、平面視で鶏卵形状を呈し、当該鶏卵形状の細い方の先端部側を、前記点火プラグ下方の前記天面内に配置させ、当該鶏卵形状の太い方の基端部側を、前記吸気側の傾斜面を横切って前記平面部内に配置させ、かつ、前記燃料噴射装置の噴射口近傍に配置させ、燃料が前記基端部側から先端部側に向けて噴射するようにした筒内噴射エンジンとしたことを特徴とする。
【0008】
請求項2に記載の発明は、請求項1に記載の構成に加え、前記キャビティ底面には、前記先端部側が高くなるように傾斜する平坦部が、基端を前記吸気側の傾斜面の下端を越えて前記平面部下方に位置するように形成されたことを特徴とする。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態について説明する。
【0010】
図1乃至図8には、この発明の実施の形態を示す。
【0011】
まず構成を説明すると、図1中符号21はシリンダブロックで、このシリンダブロック21の上側には、シリンダヘッド22が配設される一方、そのシリンダブロック21にはピストン23が上下動自在に配設されている。
【0012】
また、シリンダヘッド22には、図1,図3等に示すように、2つづつの吸気ポート24及び排気ポート25をそれぞれ開閉する吸気バルブ26及び排気バルブ27が配設されている。これら吸気バルブ26及び排気バルブ27は図示省略の吸気側カムシャフト及び排気側カムシャフトにより所定のタイミングで開閉されるようになっている。また、図3に示すように、一対の吸気ポート24のそれぞれに連続する吸気通路43の一方の内部に開閉弁45が配設されている。
【0013】
さらに、そのシリンダヘッド22には、燃料噴射装置31及び点火プラグ42が配設され、その燃料噴射装置31の噴射口31a及び点火プラグ42の先端部32aが燃焼室33に臨んでいる。その燃料噴射装置31は、吸気ポート24の下側近傍で、斜めに配置される一方、点火プラグ42は、燃焼室33の平面視において中央で、燃焼室33の最高位置に上下方向に沿って配置されている。
【0014】
その点火プラグ42は、図1及び図2に示すように、中心部に中心電極42aが設けられ、この中心電極42aの周囲に側方電極42bが3片、120°間隔で、半径方向に沿って配設されている。これら側方電極42bは、略直角に折曲され、先端部42cが中心電極42aの側方に対向し、この中心電極42a側面と側方電極先端部42cとの間が火花ギャップとなっている。この中心電極42a等がキャビティ先端部39aの上方に位置している。
【0015】
また、吸気ポート24は、燃料噴射装置31側に斜めに形成され、この吸気ポート24の吸気口24aの下縁部24bには、図6の(a)に示すように、マスキング46が設けられ、同図に示すように、吸気バルブ26を開いた状態では、吸気口24aの上縁部24c側の方が、下縁部24b側よりも流入空気量が多くなるように構成されている。これにより、図6の(a)に示すように、前記ピストンキャビティ39の先端部39aを左側、基端部39bを右側として燃焼室33内を見た場合に、吸気ポート24の吸気口24aから燃焼室33内に流入する空気が、図中矢印Xに示すように、反時計回りのタンブルを生じるように構成されている。
【0016】
一方、前記ピストン23の頂部36の形状は、以下のように形成されている。
【0017】
すなわち、周囲に平面部37が形成され、この平面部37の内側に、上方に突出する凸部38と、この凸部38及び平面部37に渡って凹所形状であるキャビティ39とが形成されている。
【0018】
図1、図2に示すように、凸部38は、天面38aが平面形状に形成されると共に、その天面38aまで至る傾斜面38bが形成されている。天面38aは、ピストン頂部中央に位置して径方向に延在する。傾斜面38bは、天面38aの両側で下端が前記平面部37に至る平面状の吸気側の傾斜面38b1と排気側の傾斜面38b2とを有している。図1に示すように、ピストン23の上死点位置において、吸気側の傾斜面38b1の傾斜角度が排気側の傾斜面38b2よりも大きくかつ吸気バルブ26下面の傾斜角度と相違し、該吸気側の傾斜面38b1と該吸気バルブ26下面との隙間が傾斜下方に行くに連れて広がっていると共に、排気側の傾斜面38b2と排気バルブ27下面とがほぼ平行である。
【0019】
また、前記キャビティ39は、平面視で鶏卵形状を呈しており、当該鶏卵形状の細い方の先端部39aが、ピストン23頂面部の中央部(点火プラグ42の下方)の天面内38aに配置され、又、当該鶏卵形状の太い方の基端部39bが、吸気側の傾斜面38b1を横切って平面部37内に配置させ、かつ、燃料噴射装置31の噴射口31a近傍に配置されている。さらに、このキャビティ39の底面39cは、図4の(b)等に示すように、先端部39a側が高くなるように傾斜して形成され、ここでは角度α°(5°〜7°)に設定されている。そして、図1に示すように、キャビティ底面39cには、先端部側が高くなるように傾斜する平坦部が、基端を吸気側の傾斜面38b1の下端を越えて平面部37下方に位置するように形成されている。さらにまた、先端部39a側の底面39cから縦壁39dに渡るR形状部39eは、ここでは曲率半径Rが13mmに設定されている。
【0020】
なお、前記キャビティ底面39cの傾斜角度α°とそのR形状部39eの曲率半径Rとの関係は、その傾斜角度が0°の場合、つまり傾斜していない場合には、曲率半径Rが15mm乃至30mmに設定されており、又、底面39cが傾斜している場合には、曲率半径Rが8mm乃至15mmに設定するのが良い。
【0021】
また、図4の(c)に示すように、キャビティ底面39cと側壁39fとの間のR形状部39gは、ここでは8mm乃至10mmに設定されており、前記R形状部39eより小さく形成されている。勿論、両者を同じに形成することもできる。この場合には、一つの工具で両R形状部39g,39eを連続して形成できる。
【0022】
そして、このピストン凸部38の傾斜面38bと燃焼室天井傾斜面33aとの間にスキッシュエリアが設けられている(図6(c)参照)。
【0023】
次に、作用について説明する。
【0024】
まず、図6の(a)に示すBDC(下死点)では、開かれた吸気バルブ26から燃焼室33内に外気が導入され、図中矢印Xに示すような反時計回りのタンブルが生じる。これは、吸気口24aの上縁部24c側からの空気の吸入量が多いため、反時計回りのタンブルが生じるものである。
【0025】
次に、図6の(b)に示すBTDC60°では、ピストン23が上昇し、空気が押し上げられることから、矢印Sに示す流れを生じる。これと共に、図7に示すようにBTDC63°乃至58°で、燃料噴射装置31から燃料がキャビティ39内に燃料が噴射され、キャビティ底面39cに付着した燃料が気化されて上昇する。
【0026】
また、その矢印Sに示す流れにより、図6の(a)に示すタンブルの流れXが矢印X1に示すように徐々に変化して行く。
【0027】
このようにタンブルはピストン23が上昇するにつれて全体的なタンブルの流れは失われて(タンブルが崩壊して)、細かい乱れの流れ成分になる。
【0028】
これにより、空気への燃料の混合が良好に行われることとなる。
【0029】
そして、図6の(c)に示すBTDC30°では、ピストン凸部38の傾斜面38bと、燃焼室33の天井傾斜面33aとの間にスキッシュエリアが形成されているため、図6の(b)の流れSは、図6の(c)中矢印S1のような流れに変化して行く。この際のいわゆるスキッシュ効果により、混合気の攪拌がより良好に行われると共に、ピストンキャビティ39内の先端部39aにおいて、上向きの流れYが生じることとなる。さらに、BTDC20°における気液混合気の流れは図6の(d)に示すようになる。
【0030】
上記のようなタンブル,スキッシュの効果により、燃料と空気とが良好に混合されると共に、キャビティ39の形状により、先端部39aに集められて他の部分より燃料の濃い気液混合気が持ち上げられる。
【0031】
一方、上記のように燃料噴射装置31の噴射口31aから燃料が、図4の(a)中、噴射角度θが60°〜80°の範囲で噴射されると、この噴霧の形に対してキャビティ39の基端部39b側の幅Hが広くなっているため、図4の(a)中矢印Aに示すように、その基端部39b側に筒内スワール流による空気が入り噴霧Gに空気が混入し易いと共に、前記のように噴射角度θがある程度大きいため、この点でも空気が混入し易い。
【0032】
そして、その噴霧Gは、キャビティ39の底面39cに当たり、この底面39cにて先端部39a側に向けて案内されると共に、前記のように片側から流入する筒内スワール流により側壁39fに押し付けられながら、この側壁39fにて先端部39a側に向けて案内される。この側壁39fは、従来の図9の(b)等に示すものより高いと同時に、R形状部39gの曲率半径Rが小さいため、噴霧Gの横漏れを防止することができる。
【0033】
次いで、この噴霧Gは、キャビティ先端部39aのR形状部39e及び縦壁39dに案内されて上方に持ち上がる。この場合には、底面39cをスロープ形状とすることにより、噴霧Gを持ち上げ易く、又、R形状部39eを大きくすることにより、この部分での噴霧Gの溜まりを抑制できる。
【0034】
そして、図5の(a),(b)に示すように、鶏卵形状の細い方の先端部39aにて、噴霧Gの一旦広がった前方部が狭められて集中されることにより、成層化が図られ、点火プラグ42へと移送され、図7に示すように、BTDC20°付近で、点火プラグ42により着火される。
【0035】
このようにすれば、燃料と空気と混合が十分に行われることにより、スモークの発生を抑制できると同時に、成層化が図られて点火プラグ42への移送が良好に行われることにより燃焼が安定する。
【0036】
しかも、成層化が図られるため、点火プラグ42の燃焼室33内への突出量を短くしても着火性を確保できることから、点火プラグ42の加熱を抑制できる。
【0037】
また、この点火プラグ42は、図1及び図2に示すように、中心電極42aに対して側方電極42bの先端部42cが側方で対向しているため、側方に火花が飛ぶこととなる。従って、上昇してきた混合気が側方電極42bで遮られることなく、直接火花が飛んでいる部分に上昇してくるため、着火性能が良好となる。
【0038】
一方、一対の吸気通路43の一方の内部には開閉弁45が配設されており、低回転域では、その開閉弁45が閉じられているため、燃焼室33内へは、他方の吸気通路43から、つまり、燃焼室33に対して偏った位置から空気が流入してくることから、燃焼室33内においては、スワールが発生することとなる。従って、ここでは、上記のようなタンブルとスワールが合わさった流れとなり、より気液混合性能が向上することとなる。この開閉弁45は、成層燃焼又は均一希薄燃焼時の要求に応じて筒内のスワール流をコントロールするために電子制御される。
【0039】
ちなみに、図8には、空燃比を変えたときの吸入空気量と回転数との関係のグラフ図を示すが、上記のような燃焼が行われるのは、図中斜線部、つまり、空燃比(A/F)が30〜70の範囲である。
【0040】
【発明の効果】
以上説明してきたように、請求項1に記載された発明によれば、吸気バルブから燃焼室内に外気が導入され、タンブルが生じ、次いで、ピストンが上昇し、空気が押し上げられ、燃料噴射装置から燃料がキャビティ内に燃料が噴射され、キャビティ底面に付着した燃料が気化されて上昇する過程で全体的なタンブルの流れは失われ、細かい乱れの流れ成分になり、空気への燃料の混合が良好に行われる。ピストン凸部の傾斜面と、燃焼室の天井傾斜面との間にスキッシュエリアが形成されているので、スキッシュ効果が生じ、混合気の攪拌がより良好に行われると共に、キャビティ内の先端部において、上向きの流れが生じる。スキッシュの効果により、燃料と空気とが良好に混合されると共に、キャビティの形状により、先端部に集められて他の部分より燃料の濃い気液混合気が持ち上げられる。燃料噴射装置の噴射口から燃料が噴射されると、この噴霧の形に対してキャビティの基端部側の幅が広くなっているため、基端部側に筒内スワール流による空気が入り噴霧に空気が混入し易いと共に、前記のように噴射角度がある程度大きいため、この点でも空気が混入し易い。その噴霧は、キャビティの底面に当たり、この底面にて先端部側に向けて案内されると共に、前記のように片側から流入する筒内スワール流により側壁に押し付けられながら、この側壁にて先端部側に向けて案内され、成層化が図られ、点火プラグへと移送され、点火プラグにより着火され燃焼が安定する。
【図面の簡単な説明】
【図1】この発明の実施の形態に係る筒内噴射エンジンの縦断面図である。
【図2】同実施の形態に係るピストンの平面図である。
【図3】同実施の形態に係るシリンダヘッドの裏面図である。
【図4】同実施の形態に係るピストンを示す図で、(a)は同ピストンの平面図、(b)は(a)のA−A線に沿う断面図、(c)は(a)のBーB線に沿う断面図である。
【図5】同実施の形態に係るピストンを示す図で、(a)は図4の(a)に相当する平面図、(b)は図4の(b)に相当する断面図である。
【図6】同実施の形態2に係るピストンの位置と混合気等の流れとの関係を示す説明図で、(a)は同ピストンがBDC、(b)はBTDC60°、(c)はBTDC30°、(d)はBTDC20°の状態における説明図である。
【図7】同実施の形態に係る噴射タイミング等を示すダイヤグラム図である。
【図8】同実施の形態に係る空燃比を変えたときの吸入空気量と回転数との関係を示すグラフ図である。
【図9】従来のピストン等を示す図で、(a)はピストンの平面図、(b)はピストンの断面図である。
【図10】同従来のピストン等を示す図で、(a)は図12の(a)に相当する平面図、(b)は図12の(b)に相当する断面図である。
【符号の説明】
21 シリンダブロック
22 シリンダヘッド
23 ピストン
31 燃料噴射装置
31a 噴射口
33 燃焼室
36 頂部
39 キャビティ
39a 先端部
39b 基端部
42 点火プラグ
42a 中心電極
42b 側方電極
42c 先端部
G 噴霧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-cylinder injection engine in which fuel is directly injected into a combustion chamber from a fuel injection device and burned.
[0002]
[Prior art]
Examples of this type include those shown in FIGS. 9 and 10. 9 (a) and 10 (a) are plan views of the piston 1 of the direct injection engine, FIGS. 9 (b) and 10 (b) are cross-sectional views of the piston 1, and FIG. As shown, a cavity 3 that is a recess is formed in the top 2 of the piston 1.
[0003]
In the compression stroke of the in-cylinder injection engine, fuel is directly injected from the fuel injection device 4 obliquely from the right end (base end 3a) of the cavity 3 toward the bottom surface 3b. As a result, the spray G is lifted upward by the vertical wall portion 3d of the tip 3c of the cavity 3, and this fuel is ignited by the spark plug 5 and burned.
[0004]
Thus, by providing the cavity 3 and injecting the fuel therein, the mixing property with the air is improved, and it is lifted upward to ensure the ignitability.
[0005]
[Problems to be solved by the invention]
However, in such a conventional one, the air-fuel mixture is lifted upward by the cavity 3, but the spark plug 5 is configured such that the side electrode 5b wraps around the lower side of the center electrode 5a. Therefore, the air-fuel mixture was blocked by the side electrode 5b.
[0006]
Then, this invention makes it the subject to provide the cylinder injection engine which can improve ignitability more, without being interrupted by a side electrode.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, according to the first aspect of the present invention , a cylinder head is attached to a cylinder block, a piston is disposed on the cylinder block, and ignition is performed at a substantially center of the cylinder head above the piston. In the in- cylinder injection engine in which the plug is disposed and the fuel injection device that directly injects the fuel into the combustion chamber is disposed , the piston has a flat portion formed around the top portion, and the piston is disposed inside the flat portion. A convex part projecting upward from the flat part and a concave cavity are formed across the convex part and the flat part, and the convex part is located in the center of the piston top and extends in the radial direction. An intake side inclined surface and an exhaust side inclined surface whose lower ends reach the planar portion on both sides of the top surface, and at the top dead center position of the piston, Inclined surface The slant angle is larger than the slant surface on the exhaust side and different from the slant angle on the bottom surface of the intake valve, and the gap between the slant surface on the suction side and the bottom surface of the intake valve widens as the slope goes down, The inclined surface on the exhaust side is substantially parallel to the lower surface of the exhaust valve, and the cavity has an egg shape in plan view, and the narrower tip end side of the egg shape is placed in the top surface below the spark plug. is disposed in the base end side of the thicker of the egg shape, across the inclined surface of the intake side is disposed within said planar portion, and is disposed in the injection port near the fuel injector, the fuel the The in-cylinder injection engine is configured to inject from the proximal end side toward the distal end side.
[0008]
According to a second aspect of the present invention, in addition to the configuration according to the first aspect, a flat portion that inclines so that the tip end side is higher is formed on the bottom surface of the cavity, and a base end is a lower end of the inclined surface on the intake side. It is characterized by being formed so as to be positioned below the plane part beyond
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0010]
1 to 8 show an embodiment of the present invention.
[0011]
First, the configuration will be described. Reference numeral 21 in FIG. 1 denotes a cylinder block. A cylinder head 22 is disposed above the cylinder block 21, and a piston 23 is disposed on the cylinder block 21 so as to be movable up and down. Has been.
[0012]
The cylinder head 22 is provided with an intake valve 26 and an exhaust valve 27 for opening and closing two intake ports 24 and two exhaust ports 25, respectively, as shown in FIGS. The intake valve 26 and the exhaust valve 27 are opened and closed at a predetermined timing by an intake side camshaft and an exhaust side camshaft (not shown). Further, as shown in FIG. 3, an on-off valve 45 is disposed inside one of the intake passages 43 that are continuous with each of the pair of intake ports 24.
[0013]
Further, the cylinder head 22 is provided with a fuel injection device 31 and a spark plug 42, and an injection port 31 a of the fuel injection device 31 and a tip end portion 32 a of the spark plug 42 face the combustion chamber 33. The fuel injection device 31 is disposed obliquely in the vicinity of the lower side of the intake port 24, while the spark plug 42 is centered in the plan view of the combustion chamber 33, and vertically along the highest position of the combustion chamber 33. Has been placed.
[0014]
As shown in FIGS. 1 and 2, the spark plug 42 is provided with a center electrode 42a at the center, and three side electrodes 42b around the center electrode 42a at intervals of 120 ° along the radial direction. Arranged. These side electrodes 42b are bent at a substantially right angle, the tip portion 42c faces the side of the center electrode 42a, and a spark gap is formed between the side surface of the center electrode 42a and the side electrode tip portion 42c. . The center electrode 42a and the like are located above the cavity tip 39a.
[0015]
The intake port 24 is formed obliquely on the fuel injection device 31 side, and a masking 46 is provided at the lower edge 24b of the intake port 24a of the intake port 24 as shown in FIG. As shown in the figure, when the intake valve 26 is opened, the amount of inflow air is larger on the upper edge portion 24c side of the intake port 24a than on the lower edge portion 24b side. As a result, as shown in FIG. 6A, when the inside of the combustion chamber 33 is viewed with the distal end 39a of the piston cavity 39 on the left side and the base end 39b on the right side, the intake port 24 has an intake port 24a. As shown by an arrow X in the figure, the air flowing into the combustion chamber 33 is configured to generate a counterclockwise tumble.
[0016]
On the other hand, the shape of the top portion 36 of the piston 23 is formed as follows.
[0017]
That is, a flat portion 37 is formed in the periphery, and a convex portion 38 that protrudes upward and a cavity 39 that is a concave shape across the convex portion 38 and the flat portion 37 are formed inside the flat portion 37. ing.
[0018]
As shown in FIGS. 1 and 2, the convex portion 38 has a top surface 38a formed in a planar shape and an inclined surface 38b reaching the top surface 38a. The top surface 38a is located at the center of the piston top and extends in the radial direction. The inclined surface 38b has a flat intake-side inclined surface 38b1 and an exhaust-side inclined surface 38b2 whose lower ends reach the flat portion 37 on both sides of the top surface 38a. As shown in FIG. 1, at the top dead center position of the piston 23, the inclination angle of the inclined surface 38b1 on the intake side is larger than the inclined surface 38b2 on the exhaust side and is different from the inclination angle on the lower surface of the intake valve 26. The gap between the inclined surface 38b1 and the lower surface of the intake valve 26 widens as it goes downward, and the exhaust-side inclined surface 38b2 and the lower surface of the exhaust valve 27 are substantially parallel.
[0019]
Further, the cavity 39 has an egg shape in plan view, and the narrow tip end 39a of the egg shape is disposed in the top surface 38a at the center of the top surface of the piston 23 (below the ignition plug 42). In addition, the thick base end 39b of the egg shape is disposed in the flat portion 37 across the inclined surface 38b1 on the intake side, and is disposed in the vicinity of the injection port 31a of the fuel injection device 31. . Further, as shown in FIG. 4B and the like, the bottom surface 39c of the cavity 39 is formed so as to be inclined so that the tip end 39a side becomes higher, and is set to an angle α ° (5 ° to 7 °) here. Has been. As shown in FIG. 1, the cavity bottom surface 39 c has a flat portion that is inclined so that the tip end side is higher so that the base end is positioned below the flat surface portion 37 beyond the lower end of the inclined surface 38 b 1 on the intake side. Is formed. Furthermore, the radius of curvature R of the R-shaped portion 39e extending from the bottom surface 39c on the tip end portion 39a side to the vertical wall 39d is set to 13 mm here.
[0020]
The relationship between the inclination angle α ° of the cavity bottom surface 39c and the curvature radius R of the R-shaped portion 39e is such that when the inclination angle is 0 °, that is, when the inclination is not inclined, the curvature radius R is 15 mm or more. When the bottom surface 39c is inclined, the radius of curvature R is preferably set to 8 mm to 15 mm.
[0021]
Further, as shown in FIG. 4C, the R-shaped portion 39g between the cavity bottom surface 39c and the side wall 39f is set to 8 mm to 10 mm here, and is formed smaller than the R-shaped portion 39e. Yes. Of course, both can be formed the same. In this case, both R-shaped portions 39g and 39e can be formed continuously with one tool.
[0022]
And the squish area is provided between the inclined surface 38b of this piston convex part 38, and the combustion chamber ceiling inclined surface 33a (refer FIG.6 (c)).
[0023]
Next, the operation will be described.
[0024]
First, in the BDC (bottom dead center) shown in FIG. 6A, outside air is introduced into the combustion chamber 33 from the opened intake valve 26, and a counterclockwise tumble as shown by an arrow X in the figure occurs. . This is because a large amount of air is sucked in from the upper edge 24c side of the intake port 24a, and thus counterclockwise tumble occurs.
[0025]
Next, at BTDC 60 ° shown in FIG. 6B, the piston 23 rises and the air is pushed up, so that the flow indicated by the arrow S is generated. At the same time, as shown in FIG. 7, at BTDC 63 ° to 58 °, fuel is injected from the fuel injection device 31 into the cavity 39, and the fuel adhering to the cavity bottom surface 39c is vaporized and rises.
[0026]
Further, due to the flow indicated by the arrow S, the tumble flow X shown in FIG. 6A gradually changes as indicated by the arrow X1.
[0027]
In this way, the tumble is lost as the piston 23 ascends, so that the entire tumble flow is lost (the tumble collapses) and becomes a fine turbulent flow component.
[0028]
As a result, the fuel is mixed well with the air.
[0029]
And in BTDC30 degree shown in FIG.6 (c), since the squish area is formed between the inclined surface 38b of the piston convex part 38, and the ceiling inclined surface 33a of the combustion chamber 33, (b) of FIG. ) Flow S changes to a flow as indicated by an arrow S1 in FIG. Due to the so-called squish effect at this time, the air-fuel mixture is stirred more favorably, and an upward flow Y is generated at the tip 39 a in the piston cavity 39. Further, the flow of the gas-liquid mixture at BTDC 20 ° is as shown in FIG.
[0030]
Due to the effects of the tumble and squish as described above, the fuel and air are mixed well, and the shape of the cavity 39 causes the gas-liquid mixture rich in fuel to be collected at the tip 39a and lifted from the other parts. .
[0031]
On the other hand, when the fuel is injected from the injection port 31a of the fuel injection device 31 in the range of 60 ° to 80 ° in FIG. Since the width H on the base end portion 39b side of the cavity 39 is widened, as shown by an arrow A in FIG. 4A, air due to the in-cylinder swirl flow enters the spray end G on the base end portion 39b side. Air is likely to be mixed in, and since the injection angle θ is somewhat large as described above, air is also likely to be mixed in this respect.
[0032]
The spray G hits the bottom surface 39c of the cavity 39, is guided toward the tip 39a side by the bottom surface 39c, and is pressed against the side wall 39f by the in-cylinder swirl flow flowing from one side as described above. The side wall 39f guides the tip 39a. The side wall 39f is higher than the conventional one shown in FIG. 9B and the like, and at the same time, the curvature radius R of the R-shaped portion 39g is small, so that side leakage of the spray G can be prevented.
[0033]
Next, the spray G is guided by the R-shaped portion 39e and the vertical wall 39d of the cavity tip portion 39a and lifts upward. In this case, it is easy to lift the spray G by making the bottom surface 39c into a slope shape, and the accumulation of the spray G in this portion can be suppressed by increasing the R-shaped portion 39e.
[0034]
And as shown to (a), (b) of FIG. 5, at the front-end | tip part 39a of the egg-shaped thin one, the front part which spray G once spread is narrowed and concentrated, and stratification is carried out. As shown in FIG. 7, it is ignited by the spark plug 42 at around BTDC 20 °.
[0035]
In this case, the fuel and air are sufficiently mixed to suppress the generation of smoke, and at the same time, the stratification is achieved and the transfer to the spark plug 42 is favorably performed, thereby stabilizing the combustion. To do.
[0036]
In addition, since the stratification is achieved, the ignition plug 42 can be prevented from being heated since the ignitability can be ensured even if the amount of projection of the spark plug 42 into the combustion chamber 33 is shortened.
[0037]
In addition, as shown in FIGS. 1 and 2, the spark plug 42 has a tip portion 42c of the side electrode 42b that faces the center electrode 42a laterally, so that a spark can fly to the side. Become. Therefore, the air-fuel mixture that has risen is not blocked by the side electrodes 42b, but rises directly to the part where the spark is flying, so that the ignition performance is good.
[0038]
On the other hand, an opening / closing valve 45 is disposed inside one of the pair of intake passages 43. Since the opening / closing valve 45 is closed in the low rotation speed region, the other intake passage is introduced into the combustion chamber 33. 43, that is, air flows in from a position biased with respect to the combustion chamber 33, so that a swirl is generated in the combustion chamber 33. Accordingly, here, the flow of tumble and swirl is combined, and the gas-liquid mixing performance is further improved. The on-off valve 45 is electronically controlled in order to control the swirl flow in the cylinder according to the demand at the time of stratified combustion or uniform lean combustion.
[0039]
Incidentally, FIG. 8 shows a graph of the relationship between the intake air amount and the rotational speed when the air-fuel ratio is changed. The combustion as described above is performed in the shaded portion in the figure, that is, the air-fuel ratio. (A / F) is in the range of 30-70.
[0040]
【The invention's effect】
As described above, according to the first aspect of the present invention , outside air is introduced into the combustion chamber from the intake valve, tumble is generated, the piston is then lifted, the air is pushed up, and the fuel injection device As the fuel is injected into the cavity and the fuel adhering to the bottom of the cavity is vaporized and rises, the overall tumble flow is lost, it becomes a fine turbulent flow component, and the fuel is well mixed into the air To be done. A squish area is formed between the inclined surface of the piston convex part and the ceiling inclined surface of the combustion chamber, so that a squish effect is produced, and the mixture is agitated better, and at the tip in the cavity. , An upward flow occurs. Due to the effect of squish, fuel and air are mixed well, and the shape of the cavity raises the gas-liquid mixture that is collected at the tip and richer in fuel than the other parts. When fuel is injected from the injection port of the fuel injection device, the width of the base end side of the cavity becomes wider with respect to the shape of the spray, so that air from the in-cylinder swirl flow enters the base end side and sprays. Since air is easily mixed in and the injection angle is somewhat large as described above, air is also easily mixed in this respect. The spray hits the bottom surface of the cavity and is guided toward the front end side at this bottom surface, and is pressed against the side wall by the in-cylinder swirl flow flowing from one side as described above, while the front end side is formed on this side wall. Is directed toward the stratified, stratified, transferred to the spark plug, ignited by the spark plug, and the combustion is stabilized.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a direct injection engine according to an embodiment of the present invention.
FIG. 2 is a plan view of the piston according to the same embodiment.
FIG. 3 is a rear view of the cylinder head according to the same embodiment.
4A and 4B are views showing the piston according to the embodiment, wherein FIG. 4A is a plan view of the piston, FIG. 4B is a cross-sectional view taken along line AA in FIG. 4A, and FIG. It is sectional drawing which follows the BB line.
5A is a plan view corresponding to FIG. 4A, and FIG. 5B is a cross-sectional view corresponding to FIG. 4B.
6 is an explanatory diagram showing the relationship between the position of a piston and the flow of an air-fuel mixture or the like according to the second embodiment, where FIG. 6A is a BDC for the piston, FIG. 6B is a BTDC 60 °, and FIG. ° and (d) are explanatory diagrams in the state of BTDC 20 °.
FIG. 7 is a diagram showing injection timing and the like according to the same embodiment.
FIG. 8 is a graph showing the relationship between the intake air amount and the rotation speed when the air-fuel ratio is changed according to the same embodiment.
9A and 9B are diagrams showing a conventional piston and the like, in which FIG. 9A is a plan view of the piston, and FIG. 9B is a cross-sectional view of the piston.
10A is a plan view corresponding to FIG. 12A, and FIG. 10B is a cross-sectional view corresponding to FIG. 12B.
[Explanation of symbols]
21 Cylinder block
22 Cylinder head
23 Piston
31 Fuel injector
31a Injection port
33 Combustion chamber
36 Top
39 cavity
39a Tip
39b Base end
42 Spark plug
42a Center electrode
42b Side electrode
42c Tip G spray

Claims (2)

シリンダブロックにシリンダヘッドが取り付けられ、前記シリンダブロックにピストンが配設されると共に、前記ピストン上方の前記シリンダヘッドの略中央に点火プラグが配設され、さらに燃料を燃焼室に直接噴射する燃料噴射装置が配設された筒内噴射エンジンにおいて、
前記ピストンは、頂部の周囲に平面部が形成され、
前記平面部の内側に該平面部から上方に突出する凸部と該凸部及び前記平面部に渡って凹所形状のキャビティとが形成され、
前記凸部は、ピストン頂部中央に位置して径方向に延在する平面状の天面と、該天面の両側で下端が前記平面部に至る平面状の吸気側の傾斜面と排気側の傾斜面とを有し、前記ピストンの上死点位置において、前記吸気側の傾斜面の傾斜角度が前記排気側の傾斜面よりも大きくかつ吸気弁下面の傾斜角度と相違し、該吸気側の傾斜面と該吸気弁下面との隙間が傾斜下方に行くに連れて広がっていると共に、前記排気側の傾斜面と排気弁下面とがほぼ平行であり、
前記キャビティは、
平面視で鶏卵形状を呈し、
当該鶏卵形状の細い方の先端部側を、前記点火プラグ下方の前記天面内に配置させ、
当該鶏卵形状の太い方の基端部側を、前記吸気側の傾斜面を横切って前記平面部内に配置させ、かつ、前記燃料噴射装置の噴射口近傍に配置させ、
燃料が前記基端部側から先端部側に向けて噴射するようにしたことを特徴とする筒内噴射エンジン。
A cylinder head is mounted on the cylinder block, a piston is disposed on the cylinder block, and a spark plug is disposed substantially at the center of the cylinder head above the piston, and further fuel is injected directly into the combustion chamber. In the cylinder injection engine provided with the device,
The piston has a flat portion around the top,
A convex portion protruding upward from the flat portion and a concave cavity are formed across the convex portion and the flat portion inside the flat portion,
The convex portion includes a flat top surface extending in the radial direction at the center of the top of the piston, a flat intake-side inclined surface on the both sides of the top surface and a lower end reaching the flat portion, and an exhaust side An inclination angle of the intake-side inclined surface is larger than that of the exhaust-side inclined surface and is different from an inclination angle of the lower surface of the intake valve at the top dead center position of the piston. The clearance between the inclined surface and the lower surface of the intake valve widens as it goes downwardly, and the inclined surface on the exhaust side and the lower surface of the exhaust valve are substantially parallel,
The cavity is
The egg shape is shown in plan view.
The tip side of the egg-shaped thin one is placed in the top surface below the spark plug,
The base end side of the thicker egg-shaped portion is disposed in the flat portion across the inclined surface on the intake side, and is disposed in the vicinity of the injection port of the fuel injection device,
An in-cylinder injection engine characterized in that fuel is injected from the base end side toward the tip end side.
前記キャビティ底面には、前記先端部側が高くなるように傾斜する平坦部が、基端を前記吸気側の傾斜面の下端を越えて前記平面部下方に位置するように形成されたことを特徴とする請求項1に記載の筒内噴射エンジン。 The bottom surface of the cavity is formed with a flat portion that is inclined so that the tip end side is higher so that a base end is positioned below the flat surface portion beyond a lower end of the inclined surface on the intake side. The in-cylinder injection engine according to claim 1.
JP11353999A 1998-03-23 1999-04-21 In-cylinder injection engine Expired - Lifetime JP4004179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11353999A JP4004179B2 (en) 1998-03-23 1999-04-21 In-cylinder injection engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9397298 1998-03-23
JP10-93972 1998-03-23
JP11353999A JP4004179B2 (en) 1998-03-23 1999-04-21 In-cylinder injection engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07553599A Division JP4004176B2 (en) 1998-03-23 1999-03-19 Piston for in-cylinder injection engine and in-cylinder injection engine using this piston

Publications (2)

Publication Number Publication Date
JP2000002118A JP2000002118A (en) 2000-01-07
JP4004179B2 true JP4004179B2 (en) 2007-11-07

Family

ID=26435240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11353999A Expired - Lifetime JP4004179B2 (en) 1998-03-23 1999-04-21 In-cylinder injection engine

Country Status (1)

Country Link
JP (1) JP4004179B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000809A1 (en) 2005-06-28 2007-01-04 Spansion Llc Semiconductor device and control method thereof
JP4501832B2 (en) * 2005-09-29 2010-07-14 マツダ株式会社 Spark ignition direct injection engine

Also Published As

Publication number Publication date
JP2000002118A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
KR100471202B1 (en) Gasoline direct injection
KR19990042831A (en) Tumble Direct Injection Engine
JP2002188448A (en) Cylinder fuel injection type gasoline engine where fuel is injected inside the cylinder
JP3840823B2 (en) In-cylinder injection engine
US6269790B1 (en) Combustion chamber for DISI engines with exhaust side piston bowl
JPH11324680A (en) Cylinder injection engine
EP1043484B1 (en) Direct fuel injection-type spark-ignition internal combustion engine
JP2000248945A (en) Cylinder direct injection engine
JP4004179B2 (en) In-cylinder injection engine
JP4316719B2 (en) In-cylinder injection control device
JP2000045778A (en) Combustion chamber for cylinder fuel injection engine
JP4004176B2 (en) Piston for in-cylinder injection engine and in-cylinder injection engine using this piston
JPH11324681A (en) Direct injection spark ignition 4-stroke internal combustion engine
EP1088972B1 (en) In-cylinder direct-injection spark-ignition engine
JPH09317479A (en) Cylinder injection engine
JP3904858B2 (en) In-cylinder fuel injection internal combustion engine
JP3820688B2 (en) In-cylinder direct injection spark ignition engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JP3838346B2 (en) In-cylinder injection spark ignition internal combustion engine
JPH0510137A (en) Cylinder injection type internal combustion engine
JP3163979B2 (en) In-cylinder injection engine
JP2000045777A (en) Cylinder direct injection type internal combustion engine
JPH09209759A (en) Cylinder direct injection type internal combustion engine
JP3160450B2 (en) Four-valve internal combustion engine
JPS5941289Y2 (en) Combustion chamber of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term