JP4003858B2 - Radiant tube excellent in high-temperature oxidation resistance, internal structure member and method for producing the same - Google Patents

Radiant tube excellent in high-temperature oxidation resistance, internal structure member and method for producing the same Download PDF

Info

Publication number
JP4003858B2
JP4003858B2 JP09726899A JP9726899A JP4003858B2 JP 4003858 B2 JP4003858 B2 JP 4003858B2 JP 09726899 A JP09726899 A JP 09726899A JP 9726899 A JP9726899 A JP 9726899A JP 4003858 B2 JP4003858 B2 JP 4003858B2
Authority
JP
Japan
Prior art keywords
coating
tube
radiant tube
thermal spray
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09726899A
Other languages
Japanese (ja)
Other versions
JP2000291914A (en
Inventor
洋弘 納谷
良夫 原田
幸彦 廣岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP09726899A priority Critical patent/JP4003858B2/en
Publication of JP2000291914A publication Critical patent/JP2000291914A/en
Application granted granted Critical
Publication of JP4003858B2 publication Critical patent/JP4003858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Gas Burners (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱処理炉内に配設されるラジアントチューブ及びこれに装着される燃焼用空気ノズルの耐高温酸化性の改良に関する。
【0002】
【従来の技術】
鋼板,鋼管等の鋼材の熱処理炉に配設されるラジアントチューブは、管路の開口端部にバーナが装着され、バーナの燃焼火炎,燃焼ガスにより、約900〜1100℃に加熱されて赤熱状態となり、輻射熱を放出して炉内の被熱処理鋼材を所定温度に加熱する。従来より、そのラジアントチューブおよび燃焼用空気ノズルとして、Cr−Ni系耐熱鋳鋼(JIS G5122 規定のSCH 12, SCH 15,SCH 22,SCH 24等)からなる鋳鋼品が使用されている。
【0003】
ラジアントチューブはバーナで強熱されるため、熱応力による変形を不可避的に生じる。更に、燃焼ガスに含まれる高温の水蒸気,二酸化炭素等により、酸化スケールが生成し、その剥離と生成が繰り返されることにより、チューブ肉厚は経時的に減少(酸化減肉)していく。チューブの変形,酸化減肉は、バーナの燃焼火炎で直接熱せられる領域に生じ易い。また、酸化スケールの剥離・堆積が局所的に生じることにより、チューブの偏熱とそれに因る熱応力が増大し、チューブの変形が加速される。
【0004】
一方、ラジアントチューブの開口端部に装着される燃焼用空気ノズルについても、高温燃焼炎の輻射熱および燃焼ガスによる酸化作用を受けて消耗し、輻射熱の局部的集中・酸化消耗部の局在化等によりしばしば変形する。このノズルの変形は、ラジアントチューブの温度分布の偏りを助長し、その局部加熱と酸化消耗現象を一層加速させる。
このため、従来のチューブは耐用寿命が短く、取り替え作業の頻繁な実施に伴う多大の労力とコスト負担のみならず、そのつど炉運転を停止することによる生産性の低下を余儀なくされる。
【0005】
【発明が解決しようとする課題】
ラジアントチューブの耐用寿命の改善策として、Co,W,Nb等を多量に添加する等の成分設計の工夫により、チューブ自身の耐高温酸化性,高温強度等を高めることが考えられる。しかし、高価な元素を多量に使用するため、材料コストが著しく高くなり、しかも高コストに見合う程の改善効果は期待し難い。
【0006】
他方、チューブ内面に皮膜処理を施して耐酸化性を改善する方法として、クロム酸等を含む処理液を塗布し、焼き付けしてCr膜を形成する(特開平6−280043号公報)、あるいはCoもしくはNi,又はCoとNiを主成分とする合金の溶射膜を形成する(特開平6−281119号公報)等が提案されている。その皮膜処理により耐熱性・耐酸化性の改善効果が得られるが、皮膜処理コストが高く付き、またその耐酸化性は更に改良すべき余地がある。
耐用寿命の一層の向上のために、耐高温酸化性をより強化し、かつ処理コストの低いラジアントチューブおよび燃焼用空気ノズルの開発が要請されている。
本発明は上記要請に応えることを目的としてなされたものである。
【0007】
【課題を解決するための手段】
本発明のラジアントチューブおよび内部構造部材は、
チューブ内面の高温被曝部に、Al又は0.5〜15重量%のSiを含有するAl−Si合金の溶射皮膜であるアンダーコートと、Ni,Co,Cr,Al,Y,Ta,Siから選ばれる2種以上の元素からなる耐熱合金の溶射皮膜であるトップコートが積層形成され,チューブの開口端に装着される燃焼用空気ノズルの外表面の高温被曝部に、Al又は0.5〜15重量%のSiを含有するAl−Si合金の溶射皮膜が形成された被覆保護膜構造を有している。
【0008】
燃焼用空気ノズルの外表面の高温被曝部は、所望により、上記Al又はAl−Si合金の溶射皮膜をアンダーコートとし、Ni,Co,Cr,Al,Y,Ta,Siから選ばれる2種以上の元素からなる耐熱合金の溶射皮膜であるトップコートが積層形成されされた被覆保護膜構造が与えられる。
【0009】
ラジアントチューブおよび燃焼用空気ノズルの所要表面に形成されるAl又はAl−Si合金からなる溶射皮膜は、熱処理炉の運転環境で高温に加熱され、Alの融点(約660℃)以上の温度域において、Al成分が基材中に拡散浸透し、皮膜と基材との界面にAl−Fe合金層(Fe−Al,Fe−Al,Fe−Al等)を生成する。このAl−Fe合金層は、高融点(約1160℃以上)であり、かつ冶金結合していることにより、溶射膜の密着性を高め、加熱・冷却及び変形等で容易に剥離することのない安定性を付与する。また、該皮膜は高温酸化雰囲気との接触によりAl膜を生成する。Al膜は緻密かつ熱的安定性に優れていることにより、酸素の侵入を遮断するバリアー層として、基材の酸化損耗を抑制防止する。
【0010】
また、Al−Si合金からなる溶射皮膜の場合は、Si含有効果として、上記効果(Al−Fe合金層による高密着性,Alによる高耐酸化性)のほか、Al−Fe合金の生成反応を適度に抑制する効果が得られる。例えば、Al−5%Si合金の場合、700℃の加熱条件におけるAl−Fe合金層の生成層厚は、Al単相の場合の約75%程度に抑制される。従ってラジアントチューブの実機使用条件に応じ、Si含有量を適宜調節することにより、Al−Fe合金層の過剰生成を抑制し、Alを十分に生成させることが容易になる。またSiは、高温環境において耐熱性に優れたSiO2 を生成し、Alと共に、基材の酸化損耗の抑制に寄与する。
【0011】
上記溶射皮膜(Al又はAl−Si合金)をアンダーコートとし、これにNi,Co,Cr,Al,Y,Ta,Siから選ばれる2種以上の元素からなる耐熱合金からなる溶射皮膜をトップコートとして積層形成することにより、基材に対する保護膜機能が強化される。すなわち、この合金皮膜はラジアントチューブの運転環境で高温に加熱されることにより、下層の皮膜(Al又はAl−Si合金溶射皮膜)と冶金的に結合すると共に、Cr,Al,SiO等の保護性酸化膜を生成し優れた耐酸化性を発揮する。しかも、その合金層の融点は、1000〜1500℃の高温域であると共に、Ni−Al系,Co−Al系の硬い金属間化合物を生成するため、燃焼ガス中に含まれている微細なカーボン粒子等によるエロージョンに対しても良好な抵抗性を示す。
【0012】
【発明の実施の形態】
本発明のラジアントチューブおよび燃焼用空気ノズルに対する溶射皮膜の形成は、常法に従って基材の要所表面領域に脱脂および粗面化(ブラスト処理等)を施した後、溶射施工することにより行われる。基材の材種は、各種耐熱鋳鋼(JIS G5122 )、あるいはSUS 321 等の各種ステンレス鋼(JIS G4303)を適宜使用することができ、材種の選択に特別の制限はない。
【0013】
基材表面を被覆する溶射皮膜を、Alで形成する場合は、99重量%以上の純度を有するもの(JIS H4040 規定の合金番号1070,1050,1100,1200 等に相応)を使用するが好ましい。これより低い純度では、混在する不純物により、溶射膜の皮膜性能の低下を付随する。
Alに代え、Al−Si合金を使用する場合、そのSi含有量は0.5〜15重量%であるのが好ましい。Si含有量がこれより少ないと、Si含有効果(溶射膜−基材界面のAl−Fe合金生成反応の抑制効果)が不足し、他方この範囲を超えると、Si含有効果はほぼ飽和するからである。Al−Si合金に付随する不純物は、上記Alの場合と同様に、1重量%以下であることが望ましい。
【0014】
また、上記Al又はAl−Si合金の溶射皮膜をアンダーコートとし、これに耐熱合金(Ni,Co,Cr,Al,Y,Ta,Siから選ばれる2種以上の元素からなる合金)の溶射皮膜をトップコートとして形成する場合、該耐熱合金として、重量%で、Cr:5〜25%,Al:1〜29%を含有し、所望によりY:0〜5%,Si:0〜14%の1種ないし2種以上の元素を含み,残部はNi,Coの1種または2種の元素(但し,Ni≦75%,Co≦70%)からなる組成を有する合金が好ましく使用される。
【0015】
溶射皮膜(Al又はAl−Si合金皮膜,耐熱合金皮膜)の膜厚は、それぞれ30〜500μmであるのが好ましい。これより薄い膜厚では、耐高温酸化性等の改善効果が不十分となり、他方これを超えて膜厚を増加しても、効果の増加は少なく、経済性を損なうからである。
【0016】
上記溶射皮膜の形成は、チューブ内面のバーナによる直接的な強熱作用を受ける領域および燃焼用空気ノズルの外表面に行われる。図1に示すW字型のラジアントチューブでは、4つの直管部(11)(12)(13)(14) と3つの曲管(21)(22)(23) とが溶接により連結された管路を有し、その一端側の直管(11) にバーナ(B) が挿入設置され、図2に示すU字型ラジアントチューブでは、2つの直管(11)(12)と1つの曲管(21)が連結された管路における一端側の直管(11)にバーナ(B)が挿入設置される。
バーナ(B)は燃焼用空気ノズル(A)を付帯している。図では、バーナ(B)を二重管構造とし、内側の管より燃料が噴射され、外側の管(A)が燃焼用空気を供給する空気ノズルを構成した例を示している。このほか、バーナ(B)の外側面の近傍に位置してその円周方向の複数個所に、燃焼用空気ノズルとして細管をバーナ(B)と平行な向きに配設した構成が適用される場合もある。
【0017】
バーナ(B)が設置されるチューブ開口端の直管として、Al又はAl−Si合金からなる溶射皮膜(アンダーコート)と耐熱合金からなる溶射皮膜(トップコート)を積層成膜されたものが使用され、燃焼用空気ノズルは、その外表面にAl又はAl−Si合金の溶射皮膜、またはその溶射皮膜の上に耐熱合金の溶射皮膜を積層形成されたものが使用される。なお、チューブの管路両端にバーナを装着し、バーナの燃焼を交互に行わせる交番燃焼方式の場合は、管路の両端の各直管および各燃焼用空気ノズルに、上記溶射皮膜を形成したものが適用される。バーナを装着される管端部以外の領域は、必ずしも溶射皮膜の施工を必要とせず、その要否は実機使用条件に応じて適宜設定される。
【0018】
溶射施工されたラジアントチューブ及び燃焼用空気ノズルは、所望により実機使用に先立って熱処理が施される。この熱処理は、約660℃以上の温度域に適当時間(約1〜 5 hr)加熱保持することにより行われる。この熱処理により、Al成分の拡散反応(基材内部への拡散浸透および溶射皮膜相互の拡散浸透)を生じ、基材に対する冶金的結合及び皮膜相互の結合が強化される。
【0019】
なお、溶射皮膜は比較的多孔質であるので、上記熱処理の実施に際しては、溶射皮膜面を気密性の樹脂塗膜で被覆するのが好ましい。これにより、気孔内への空気の侵入による膜品質の低下を懸念することなく、熱処理を首尾よく達成することができる。樹脂塗膜は一時的に空気の浸入を防ぐバリアー層として機能するものであればよく、その後の塗膜の残存は不要である。その樹脂塗膜として、珪素質系樹脂塗料,瀝青質塗料等が使用される。
【0020】
【実施例】
[実施例1](耐高温酸化性の評価)
(1)供試材の調製
基材の表裏両面をブラスト処理(研磨材: アルミナ粒子)して溶射皮膜を形成し、その皮膜面に樹脂塗膜を形成した後、熱処理を施して供試材を得る。
基材: SUS 321 ステレス鋼(0.05%C−10.5%Ni−18.1%Cr−残Fe)
溶射施工・皮膜構成等:表1参照
樹脂塗膜:珪素質系樹脂を刷毛塗りで2回塗装。
熱処理 : 700 ℃×2 hr(電気炉中)
【0021】
(2)酸化試験および試験結果
各供試材を酸化試験(雰囲気: 大気,温度: 1050℃)に付し、表面の酸化損耗状況を観察すると共に重量変化を測定する。
比較例として、溶射皮膜の形成を省略したもの(基材材種は上記と同一)を用意し、同一条件の酸化試験を行い、表1に示す結果を得た。
表中、「重量変化(mg/cm)」欄の発明例No.11〜13の数値は、酸化による重量増加を示し、比較例No.14の数値は酸化スケールの剥離・脱落による重量減少を示している。
【0022】
表1に示したように、比較例No.14(溶射皮膜なし)では、わずか20時間の加熱で酸化スケールの生成・剥落が顕著となり、著しい重量減少をきたしている。これに対し、発明例のものは、20時間の加熱はむろん、600時間後においても重量変化(酸化に伴う重量増加)はわずかであり、卓抜した高温酸化抵抗性を有している。なお、発明例の試験材は、試験後の溶射膜面が当初の金属光沢から灰白ないし黒白色に変化しているが、この色変化は何ら膜性能を損なうものではない。
【0023】
【表1】

Figure 0004003858
【0024】
[実施例2](耐熱衝撃特性の評価)
(1)供試材の調製
基材(50mm×50mm×厚さ5 mmの板状材)の片側面をブラスト処理(研磨材: アルミナ粒子)した後、溶射施工し、熱処理を実施し又は省略して供試材を得る。
基材: 耐熱鋼(0.3%C−23.0%Cr−13.0%Ni−0.8%Nb−残Fe)
溶射施工・皮膜構成等:表2参照
熱処理 : 700 ℃×30min(電気炉中)
【0025】
(2)熱衝撃試験および試験結果
上記各供試材を、電気炉中で加熱(950℃×15min )した後、水中(25℃)に投入する加熱/冷却の操作を反復実施し、溶射膜の剥離損傷の有無および剥離の程度を目視観察し、表2に示す試験結果を得た。
【0026】
表2に示したように、比較例No.29および No.30(溶射膜:80%Ni-20%Cr耐熱合金),No.31および No.32(溶射膜:9%Ni-18%Cr-Fe耐熱合金鋼)は、2〜6回の加熱/冷却の反復により、皮膜の剥離損傷をきたしている。これに対し、発明例では、20回の繰り返しによっても剥離は全くなく健全な皮膜状態を保持している。
【0027】
各試験材について、試験後に行った溶射膜断面の光学顕微鏡観察によれば、発明例は、いずれも基材内部へのAlの拡散浸透(Al−Fe合金層の生成)により、溶射膜と基材とが強固に結合していることが確認された。比較例の溶射膜断面には、このような拡散浸透現象は全くみられなかった。
なお、試験後の発明例の溶射膜表面は、当初の金属光沢から灰白ないし黒白色に変化しているが、この色変化は何ら皮膜性能を損なうものではない。
【0028】
【表2】
Figure 0004003858
【0029】
【発明の効果】
本発明のラジアントチューブおよびその管路開口端部に装着される燃焼用空気ノズルは、溶射膜による保護効果として、高温酸化雰囲気に対する卓抜した酸化抵抗性を有している。その溶射膜はチューブ基材に強固に密着結合しており、熱衝撃等を受けても容易に剥離することがない。この溶射膜の被覆保護効果により、本発明のラジアントチューブは、長期に亙って安定に使用することができ、そのメンテナンスの軽減,熱処理炉の操炉効率の改善、生産性の向上等に寄与するものである。
【図面の簡単な説明】
【図1】ラジアントチューブを示す断面図である。
【符号の説明】
11〜14: 直管
21〜23: 曲管
A:燃焼用空気ノズル
B:バーナ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in high-temperature oxidation resistance of a radiant tube disposed in a heat treatment furnace and a combustion air nozzle attached to the radiant tube.
[0002]
[Prior art]
Radiant tubes installed in heat treatment furnaces for steel materials such as steel plates and steel pipes are equipped with a burner at the open end of the pipeline, and are heated to about 900-1100 ° C by the burner's combustion flame and combustion gas, resulting in a red-hot state Thus, radiant heat is released to heat the heat-treated steel material in the furnace to a predetermined temperature. Conventionally, cast steel products made of Cr—Ni heat-resistant cast steel (SCH 12, SCH 15, SCH 22, SCH 24, etc. defined in JIS G5122) have been used as the radiant tube and the combustion air nozzle.
[0003]
Since the radiant tube is ignited by a burner, deformation due to thermal stress is inevitably generated. Furthermore, an oxide scale is generated by high-temperature water vapor, carbon dioxide, etc. contained in the combustion gas, and the peeling and generation are repeated, so that the tube thickness decreases with time (oxidation thinning). Tube deformation and oxidative thinning tend to occur in areas directly heated by the burner flame. Further, when the oxide scale is peeled and deposited locally, the heat deviation of the tube and the thermal stress caused thereby increase, and the deformation of the tube is accelerated.
[0004]
On the other hand, the combustion air nozzle attached to the opening end of the radiant tube is also consumed due to the oxidative action of the radiant heat and combustion gas of the high-temperature combustion flame, local concentration of radiant heat, localization of the oxidative consumption part, etc. Often deforms. This deformation of the nozzle promotes the deviation of the temperature distribution of the radiant tube, and further accelerates the local heating and oxidation depletion phenomenon.
For this reason, the conventional tube has a short useful life, and not only a great labor and cost burden associated with frequent implementation of replacement work, but also a decrease in productivity due to stopping the furnace operation each time.
[0005]
[Problems to be solved by the invention]
As measures for improving the service life of the radiant tube, it is conceivable to improve the high-temperature oxidation resistance, high-temperature strength, etc. of the tube itself by devising the component design such as adding a large amount of Co, W, Nb or the like. However, since a large amount of expensive elements are used, the material cost is remarkably high, and it is difficult to expect an improvement effect that can meet the high cost.
[0006]
On the other hand, as a method for improving the oxidation resistance by applying a coating treatment to the inner surface of the tube, a treatment liquid containing chromic acid or the like is applied and baked to form a Cr 2 O 3 film (Japanese Patent Laid-Open No. 6-280043). Alternatively, a thermal sprayed film of Co or Ni, or an alloy mainly composed of Co and Ni is formed (Japanese Patent Laid-Open No. Hei 6-281119). The effect of improving the heat resistance and oxidation resistance can be obtained by the coating treatment, but the coating treatment cost is high, and there is room for further improvement in the oxidation resistance.
In order to further improve the service life, development of a radiant tube and a combustion air nozzle that further enhances high-temperature oxidation resistance and has a low processing cost is required.
The present invention has been made for the purpose of meeting the above requirements.
[0007]
[Means for Solving the Problems]
The radiant tube and the internal structural member of the present invention are:
For the high-temperature exposed part on the inner surface of the tube, an undercoat that is a sprayed coating of Al or an Al-Si alloy containing 0.5 to 15% by weight of Si, and Ni, Co, Cr, Al, Y, Ta, Si are selected. A top coat, which is a thermal spray coating of a heat-resistant alloy composed of two or more elements, is laminated and formed on the high-temperature exposed portion of the outer surface of the combustion air nozzle attached to the open end of the tube. It has a coating protective film structure in which a sprayed coating of an Al—Si alloy containing wt% Si is formed.
[0008]
The high temperature exposed portion of the outer surface of the combustion air nozzle has two or more types selected from Ni, Co, Cr, Al, Y, Ta, and Si, if desired, with the above-mentioned sprayed coating of Al or Al—Si alloy as an undercoat. A coating protective film structure in which a top coat, which is a thermal spray coating of a heat-resistant alloy composed of the above elements, is formed.
[0009]
The thermal spray coating made of Al or Al-Si alloy formed on the required surfaces of the radiant tube and the combustion air nozzle is heated to a high temperature in the operating environment of the heat treatment furnace, and in a temperature range above the melting point of Al (about 660 ° C). Then, the Al component diffuses and penetrates into the base material, and an Al—Fe alloy layer (Fe—Al 3 , Fe 2 —Al 5 , Fe—Al 6, etc.) is generated at the interface between the coating and the base material. This Al—Fe alloy layer has a high melting point (about 1160 ° C. or higher) and is metallurgically bonded to improve the adhesion of the sprayed film and does not easily peel off by heating, cooling, deformation, or the like. Gives stability. In addition, the film forms an Al 2 O 3 film by contact with a high-temperature oxidizing atmosphere. Since the Al 2 O 3 film is dense and excellent in thermal stability, the Al 2 O 3 film suppresses and prevents the oxidative wear of the base material as a barrier layer that blocks oxygen intrusion.
[0010]
In the case of the thermal spray coating consisting of Al-Si alloy, a Si-containing effects, the effects (high adhesion due to Al-Fe alloy layer, Al 2 O 3 by high oxidation resistance) addition, the Al-Fe alloy An effect of moderately suppressing the production reaction can be obtained. For example, in the case of an Al-5% Si alloy, the generated layer thickness of the Al—Fe alloy layer under a heating condition of 700 ° C. is suppressed to about 75% in the case of an Al single phase. Accordingly, by appropriately adjusting the Si content according to the actual use conditions of the radiant tube, it becomes easy to suppress the excessive formation of the Al—Fe alloy layer and to sufficiently generate Al 2 O 3 . The Si generates SiO2 having excellent heat resistance in a high temperature environment, the Al 2 O 3, which contribute to the suppression of oxidation wear of the substrate.
[0011]
The above thermal spray coating (Al or Al-Si alloy) is used as an undercoat, and a thermal spray coating composed of a heat-resistant alloy composed of two or more elements selected from Ni, Co, Cr, Al, Y, Ta, and Si is top-coated thereon. As a result, the protective film function for the base material is enhanced. That is, when this alloy film is heated to a high temperature in the operating environment of the radiant tube, it is metallurgically bonded to the underlying film (Al or Al—Si alloy sprayed film), and Cr 2 O 3 , Al 2 O 3. , A protective oxide film such as SiO 2 is produced to exhibit excellent oxidation resistance. In addition, the melting point of the alloy layer is a high temperature range of 1000 to 1500 ° C., and Ni—Al-based and Co—Al-based hard intermetallic compounds are produced, so that the fine carbon contained in the combustion gas. Good resistance to erosion caused by particles.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The sprayed coating is formed on the radiant tube and the combustion air nozzle of the present invention by degreasing and roughening (blasting, etc.) the main surface area of the base material according to a conventional method and then spraying. . As the material type of the base material, various heat-resistant cast steels (JIS G5122) or various stainless steels such as SUS 321 (JIS G4303) can be used as appropriate, and there is no particular limitation on the selection of the material type.
[0013]
When the sprayed coating for coating the substrate surface is made of Al, it is preferable to use a coating having a purity of 99% by weight or more (corresponding to alloy numbers 1070, 1050, 1100, 1200, etc. defined in JIS H4040). If the purity is lower than this, a decrease in the film performance of the sprayed film is accompanied by the impurities mixed therein.
When an Al—Si alloy is used instead of Al, the Si content is preferably 0.5 to 15% by weight. If the Si content is less than this, the Si content effect (inhibition effect of the Al-Fe alloy formation reaction at the interface between the sprayed film and the substrate) is insufficient, and if it exceeds this range, the Si content effect is almost saturated. is there. The impurities accompanying the Al—Si alloy are desirably 1% by weight or less, as in the case of Al.
[0014]
Further, the above-mentioned sprayed coating of Al or Al-Si alloy is used as an undercoat, and a sprayed coating of a heat-resistant alloy (an alloy composed of two or more elements selected from Ni, Co, Cr, Al, Y, Ta, and Si). When forming a top coat, the heat-resistant alloy contains Cr: 5 to 25%, Al: 1 to 29% by weight, Y: 0 to 5%, Si: 0 to 14% as desired. An alloy having a composition containing one or more elements and the balance being one or two elements of Ni and Co (where Ni ≦ 75%, Co ≦ 70%) is preferably used.
[0015]
The film thickness of the thermal spray coating (Al or Al—Si alloy coating, heat-resistant alloy coating) is preferably 30 to 500 μm. If the film thickness is thinner than this, the effect of improving high-temperature oxidation resistance and the like is insufficient, and on the other hand, even if the film thickness is increased beyond this, the effect is small and the economy is impaired.
[0016]
The thermal spray coating is formed on the region of the tube inner surface that is directly subjected to the igniting action by the burner and on the outer surface of the combustion air nozzle. In the W-shaped radiant tube shown in FIG. 1, four straight pipe portions (11) (12) (13) (14) and three curved pipes (21) (22) (23) are connected by welding. It has a pipe, and a burner (B) is inserted and installed in the straight pipe (11) at one end thereof. In the U-shaped radiant tube shown in FIG. 2, there are two straight pipes (11) and (12) and one bend. The burner (B) is inserted and installed in the straight pipe (11) on one end side in the pipe line connected to the pipe (21).
The burner (B) is accompanied by a combustion air nozzle (A). The figure shows an example in which the burner (B) has a double tube structure, fuel is injected from the inner tube, and the outer tube (A) constitutes an air nozzle that supplies combustion air. In addition, a configuration in which narrow tubes are arranged as combustion air nozzles in a direction parallel to the burner (B) at a plurality of locations in the circumferential direction located in the vicinity of the outer surface of the burner (B). There is also.
[0017]
As a straight pipe at the tube opening end where the burner (B) is installed, a thermal spray coating (undercoat) made of Al or Al-Si alloy and a thermal spray coating (top coat) made of a heat-resistant alloy are used. As the combustion air nozzle, a thermal spray coating of Al or an Al-Si alloy on the outer surface thereof or a thermal spray coating of a heat resistant alloy on the thermal spray coating is used. In the case of the alternating combustion method in which burners are attached to both ends of the tube line of the tube and the burners are alternately burned, the above-mentioned sprayed coating is formed on each straight pipe and each combustion air nozzle at both ends of the line. Things apply. The area other than the pipe end where the burner is attached does not necessarily require the application of the thermal spray coating, and the necessity is appropriately set according to the actual machine use conditions.
[0018]
The thermal sprayed radiant tube and combustion air nozzle are subjected to heat treatment prior to actual use as desired. This heat treatment is performed by heating and holding in a temperature range of about 660 ° C. or higher for an appropriate time (about 1 to 5 hours). This heat treatment causes a diffusion reaction of the Al component (diffusion / penetration into the base material and diffusion / penetration between spray coatings), and strengthens the metallurgical bond to the base material and the bond between the coatings.
[0019]
Since the thermal spray coating is relatively porous, it is preferable to coat the thermal spray coating surface with an airtight resin coating when performing the heat treatment. As a result, the heat treatment can be successfully achieved without concern about the deterioration of the film quality due to the intrusion of air into the pores. The resin coating film only needs to function as a barrier layer that temporarily prevents air from entering, and the remaining coating film does not need to remain thereafter. As the resin coating film, a silicon-based resin paint, a bituminous paint, or the like is used.
[0020]
【Example】
[Example 1] (Evaluation of high temperature oxidation resistance)
(1) Preparation of test material Both sides of the base material are blasted (abrasive: alumina particles) to form a thermal spray coating, and after forming a resin coating on the coating surface, heat treatment is applied to the test material. Get.
Base material: SUS 321 stainless steel (0.05% C-10.5% Ni-18.1% Cr-residual Fe)
Thermal spraying construction, coating composition, etc .: See Table 1. Resin coating: Apply a silicon-based resin twice with a brush.
Heat treatment: 700 ° C x 2 hr (in an electric furnace)
[0021]
(2) Oxidation test and test results Each test material is subjected to an oxidation test (atmosphere: air, temperature: 1050 ° C.), and the state of oxidation wear on the surface is observed and the change in weight is measured.
As a comparative example, a sample in which the formation of the sprayed coating was omitted (the base material type was the same as described above) was prepared, an oxidation test under the same conditions was performed, and the results shown in Table 1 were obtained.
In the table, Invention Example No. in the column “weight change (mg / cm 2 )” is shown. Numerical values 11 to 13 indicate weight increase due to oxidation. A numerical value of 14 indicates a weight reduction due to peeling / dropping of the oxide scale.
[0022]
As shown in Table 1, in Comparative Example No. 14 (no thermal spray coating), the generation and exfoliation of oxide scale became noticeable by heating for only 20 hours, resulting in a significant weight reduction. On the other hand, the examples of the invention have excellent high-temperature oxidation resistance, as well as heating for 20 hours, with little change in weight (weight increase due to oxidation) even after 600 hours. In the test material of the invention, the sprayed film surface after the test changed from the original metallic luster to grayish white or blackish white, but this color change does not impair the film performance at all.
[0023]
[Table 1]
Figure 0004003858
[0024]
[Example 2] (Evaluation of thermal shock resistance)
(1) Preparation of test material One side of the base material (plate material of 50mm x 50mm x 5mm thickness) is blasted (abrasive: alumina particles), then sprayed and heat treated or omitted To obtain the specimen.
Base material: Heat-resistant steel (0.3% C-23.0% Cr-13.0% Ni-0.8% Nb-Remaining Fe)
Thermal spraying, coating composition, etc .: see Table 2 Heat treatment: 700 ° C x 30 min (in an electric furnace)
[0025]
(2) Thermal shock test and test results Each of the above specimens is heated in an electric furnace (950 ° C. × 15 min) and then repeatedly heated / cooled into water (25 ° C.) to form a sprayed film. The presence or absence of peeling damage and the degree of peeling were visually observed, and the test results shown in Table 2 were obtained.
[0026]
As shown in Table 2, Comparative Examples No. 29 and No. 30 (sprayed film: 80% Ni-20% Cr heat resistant alloy), No.31 and No. 32 (sprayed film: 9% Ni-18% Cr) -Fe heat-resisting alloy steel) causes film peeling damage by repeated heating / cooling 2-6 times. On the other hand, in the example of the invention, there is no peeling even after 20 repetitions, and a healthy film state is maintained.
[0027]
For each test material, according to the optical microscope observation of the cross section of the sprayed coating performed after the test, all of the inventive examples were formed by diffusing and penetrating Al into the base material (generation of an Al—Fe alloy layer) and It was confirmed that the material was firmly bonded. Such a diffusion penetration phenomenon was not observed at all in the cross section of the sprayed film of the comparative example.
In addition, although the sprayed coating surface of the invention example after the test changed from the original metallic luster to grayish white or black white, this color change does not impair the coating performance at all.
[0028]
[Table 2]
Figure 0004003858
[0029]
【The invention's effect】
The radiant tube of the present invention and the combustion air nozzle attached to the opening end of the conduit have excellent oxidation resistance against a high-temperature oxidizing atmosphere as a protective effect by the sprayed film. The sprayed film is firmly bonded to the tube base material and does not easily peel off even when subjected to thermal shock or the like. Due to the coating protection effect of the sprayed film, the radiant tube of the present invention can be used stably over a long period of time, contributing to the reduction of maintenance, improvement of operating efficiency of the heat treatment furnace, improvement of productivity, etc. To do.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a radiant tube.
[Explanation of symbols]
11-14: Straight pipe 21-23: Curved pipe A: Combustion air nozzle B: Burner

Claims (5)

チューブ内面の高温被曝部に、Al又は0.5〜15重量%のSiを含有するAl−Si合金の溶射皮膜であるアンダーコートと、Ni,Co,Cr,Al,Y,Ta,Siから選ばれる2種以上の元素からなる耐熱合金の溶射皮膜であるトップコートが積層形成され,チューブの開口端に装着される燃焼用空気ノズルの外表面の高温被曝部に、Al又は0.5〜15重量%のSiを含有するAl−Si合金の溶射皮膜が形成されている耐高温酸化性に優れるラジアントチューブおよび内部構造部材。For the high-temperature exposed part on the inner surface of the tube, an undercoat which is a sprayed coating of Al or an Al-Si alloy containing 0.5 to 15% by weight of Si, and Ni, Co, Cr, Al, Y, Ta, Si are selected. A top coat, which is a thermal spray coating of a heat-resistant alloy composed of two or more elements, is laminated and formed on the high-temperature exposed portion of the outer surface of the combustion air nozzle attached to the open end of the tube. A radiant tube excellent in high-temperature oxidation resistance and an internal structure member, on which a sprayed coating of an Al-Si alloy containing Si by weight is formed. 燃焼用空気ノズルの外表面の高温被曝部に、Al又は0.5〜15重量%のSiを含有するAl−Si合金の溶射皮膜をアンダーコートとし、Ni,Co,Cr,Al,Y,Ta,Siから選ばれる2種以上の元素からなる耐熱合金の溶射皮膜であるトップコートが積層形成されされている請求項1に記載の耐高温酸化性に優れるラジアントチューブおよび内部構造部材。Ni, Co, Cr, Al, Y, Ta with a thermal spray coating of Al or an Al—Si alloy containing 0.5 to 15% by weight of Si as an undercoat on the high temperature exposed portion of the outer surface of the combustion air nozzle The radiant tube and internal structure member excellent in high-temperature oxidation resistance according to claim 1, wherein a top coat, which is a thermal spray coating of a heat-resistant alloy comprising two or more elements selected from Si and Si, is laminated. トップコートの溶射皮膜の耐熱合金は、重量%で、Cr:5〜25%,Al:1〜29%,Y:0〜5%,Si:0〜14%,残部はNi75%以下およびCo70%以下からなる請求項1又は請求項2に記載の耐高温酸化性に優れるラジアントチューブおよび内部構造部材。 The heat-resistant alloy of the thermal spray coating of the top coat is, by weight, Cr: 5 to 25%, Al: 1 to 29%, Y: 0 to 5%, Si: 0 to 14%, the balance being Ni 75% or less and Co 70% The radiant tube and internal structure member excellent in high temperature oxidation resistance of Claim 1 or Claim 2 which consist of the following . 溶射皮膜のそれぞれの膜厚は、30〜500μmである請求項1ないし請求項3のいずれか1項に記載の耐高温酸化性に優れるラジアントチューブおよび内部構造部材。The radiant tube and internal structure member excellent in high-temperature oxidation resistance according to any one of claims 1 to 3, wherein the thickness of each thermal spray coating is 30 to 500 µm. チューブの内面又は/及びその開口端に設置される燃焼用空気ノズルの外表面の高温被曝部に、溶射皮膜を形成し、660℃以上の温度に加熱保持することからなる請求項1ないし請求項4のいずれか1項に記載のラジアントチューブおよび内部構造部材の製造方法。The thermal spray coating is formed on the inner surface of the tube and / or the outer surface of the combustion air nozzle installed on the open end of the tube, and the coating is heated and maintained at a temperature of 660 ° C or higher. 5. The method for producing the radiant tube and the internal structural member according to claim 4.
JP09726899A 1999-04-05 1999-04-05 Radiant tube excellent in high-temperature oxidation resistance, internal structure member and method for producing the same Expired - Fee Related JP4003858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09726899A JP4003858B2 (en) 1999-04-05 1999-04-05 Radiant tube excellent in high-temperature oxidation resistance, internal structure member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09726899A JP4003858B2 (en) 1999-04-05 1999-04-05 Radiant tube excellent in high-temperature oxidation resistance, internal structure member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000291914A JP2000291914A (en) 2000-10-20
JP4003858B2 true JP4003858B2 (en) 2007-11-07

Family

ID=14187797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09726899A Expired - Fee Related JP4003858B2 (en) 1999-04-05 1999-04-05 Radiant tube excellent in high-temperature oxidation resistance, internal structure member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4003858B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554762B2 (en) * 2000-05-16 2010-09-29 日新製鋼株式会社 Radiant tube excellent in high-temperature oxidation resistance and manufacturing method

Also Published As

Publication number Publication date
JP2000291914A (en) 2000-10-20

Similar Documents

Publication Publication Date Title
US6503347B1 (en) Surface alloyed high temperature alloys
US6475647B1 (en) Protective coating system for high temperature stainless steel
US4822689A (en) High volume fraction refractory oxide, thermal shock resistant coatings
CN101878316B (en) Hearth roll for continuous annealing furnace and process for production of the same
US6132890A (en) High-temperature spray coated member and method of production thereof
US7445434B2 (en) Coating material for thermal barrier coating having excellent corrosion resistance and heat resistance and method of producing the same
JPS58167764A (en) Method for coating heat resistant alloy substrate
JP4003858B2 (en) Radiant tube excellent in high-temperature oxidation resistance, internal structure member and method for producing the same
JP4554762B2 (en) Radiant tube excellent in high-temperature oxidation resistance and manufacturing method
JP4229508B2 (en) High temperature hearth roller
EP0244458B1 (en) High volume fraction refractory oxide, thermal shock resistant coatings
JPH10306362A (en) Member for hot dip metal bath in which composite sprayed coating excellent in corrosion resistance to hot dip metal and peeling resistance is formed
JP3522590B2 (en) High hardness carbide cermet thermal spray coating member and method of manufacturing the same
JPH04116147A (en) Improvement of service life of film on member coated with sprayed deposit for galvanizing bath
JPH11351518A (en) Radiant tube having high high-temperature oxidation resistance and its manufacture
JP3576479B2 (en) Water-cooled steel structure
JP4360971B2 (en) Water-cooled steel pipe structure excellent in high-temperature corrosion resistance, high-temperature wear resistance, dew condensation corrosion resistance and film peeling resistance, and method for producing the same
US5409748A (en) Heat radiating tube for annealing furnace, with ceramic coated on the inside thereof
JP4827047B2 (en) Steel structure with corrosion resistance, wear resistance and heat crack resistance
JP4313459B2 (en) High temperature exposed member and manufacturing method thereof
JP3522588B2 (en) Chromium carbide cermet sprayed coating member excellent in high-temperature hardness and method for producing the same
KR0166099B1 (en) Al-si-cr plated steel sheet excellent in corrosion resistance and production thereof
Boudi et al. ESEM evaluation of Inconel-625 thermal spray coating (HVOF) onto stainless steel and carbon steel post brine exposure after tensile tests
JPH08136156A (en) Furnace wall cooling pipe for iron making apparatus and method for making the same
JPH07830B2 (en) Surface coating method for metallic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees