JP4003580B2 - Vibration wave determination device - Google Patents

Vibration wave determination device Download PDF

Info

Publication number
JP4003580B2
JP4003580B2 JP2002237906A JP2002237906A JP4003580B2 JP 4003580 B2 JP4003580 B2 JP 4003580B2 JP 2002237906 A JP2002237906 A JP 2002237906A JP 2002237906 A JP2002237906 A JP 2002237906A JP 4003580 B2 JP4003580 B2 JP 4003580B2
Authority
JP
Japan
Prior art keywords
time
series
series signal
frequency band
vibration wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002237906A
Other languages
Japanese (ja)
Other versions
JP2004077279A (en
Inventor
隆史 安面
隆 室崎
隆司 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002237906A priority Critical patent/JP4003580B2/en
Publication of JP2004077279A publication Critical patent/JP2004077279A/en
Application granted granted Critical
Publication of JP4003580B2 publication Critical patent/JP4003580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば組付作動など対象物の作動時に生ずる振動波に基いて、対象物の状態、例えば嵌合状態を判定する振動波判定装置に関する。
【0002】
【従来の技術】
従来、例えば特開平10−300730号公報の実施形態3には、対象物をハンマーなどで軽くたたき、そのとき発生する音または振動をウエーブレット変換演算手段により周波数分離して、周波数帯域毎の時系列信号を形成し、この時系列信号の判定に基いて、対象物の内容の判別、構造物の割れの検査などを行う技術が記載されている。なお、本明細書では、音と振動を総称して振動波という。
【0003】
【発明が解決しようとする課題】
ところで、上記公報では1つのウエーブレット変換演算手段を用いている。一般に対象物より生ずる振動波に基いてこの対象物の状態を判定する場合、振動波を精度良く捕らえようとすると連続ウエーブレット変換演算手段が必要である。しかし、この場合には非常に長い演算時間を要し、また演算用ハードウエアにも高性能が要求される。他方、演算速度の速い離散ウエーブレット変換演算手段を用いると、1/2階乗刻みの周波数帯域の情報となり、選択された周波数帯域の間となる中間周波数帯域の振動波の状態が分からないため、判定精度が低下する可能性がある。
【0004】
本発明は、上記点に鑑みてなされたものであって、離散ウエーブレット変換演算手段と連続ウエーブレット変換演算手段とを組み合せることで、判定処理の高速化と判定精度の向上の両立を図ることが可能な振動波判定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1ないし請求項5に記載の技術的手段を採用する。
請求項1記載の発明によれば、対象物の作動時に生ずる振動波を検出入力する振動波入力手段と、入力された振動波を検出情報として時系列に記憶する記憶手段と、検出情報を周波数分離して所定の周波数帯域毎の第1の時系列信号を形成する離散ウエーブレット変換演算手段と、第1の時系列信号に基いて、少なくとも対象物の所定作動状態を示す目的作動音が生じる時系列範囲を特定する領域特定手段と、検出情報のうち、この領域特定手段にて特定される時系列範囲内の検出情報を抽出し、連続的に周波数分離する連続ウエーブレット変換演算手段と、この連続ウエーブレット変換演算手段により周波数分離した第2の時系列信号および第2の閾値に基いて対象物の状態を判定する判定手段とを備えたことを特徴とする。
【0006】
それにより、離散ウエーブレット変換演算手段を用いて対象物の状態を判定するのに必要な振動波の時系列範囲(つまり発生期間)を前もって特定でき、詳細分析する連続ウエーブレット変換演算手段による演算範囲を絞り込むことができるため、演算時間を抑えることができる。その結果として判定処理の高速化と判定精度の向上の両立を図ることが可能となる。
【0007】
請求項2記載の発明によれば、領域特定手段は、第1の時系列信号のうち予め定めた周波数帯域にある特定時系列信号および第1の閾値に基いて、目的作動音が生じる時系列範囲を特定するようにしたことで、特定すべき領域とその音圧レベルを予め想定した上で時系列範囲を特定でき、効率的かつより正確に時系列範囲を抽出可能になる。
【0008】
請求項3記載の発明によれば、領域特定手段は、所定の周波数帯域毎の第1の時系列信号のレベルをそれぞれ補正する第1の補正器と、この第1の補正器に対し、予め設定した第1の補正量を与える第1のパラメータテーブルと、第1の時系列信号を第1の補正量により補正した時系列信号および第1の閾値に基いて、目的作動音が生じる時系列範囲を特定する第1の判定器とを有するようにしたことで、請求項2の効果に加えて、判定処理の高速化が可能になる。
【0009】
請求項4記載の発明によれば、第1の判定器は、目的作動音が生じる時系列範囲に加えて、目的作動音が生じる周波数帯域を特定することで、対象物の状態を判定するための領域をさらに絞り込め、後段の演算時間や判定処理の負担を軽減することが可能になる。
【0010】
請求項5記載の発明によれば、判定手段は、周波数帯域毎の第2の時系列信号のレベルをそれぞれ補正する第2の補正器と、この第2の補正器に対し、予め設定した第2の補正量を与える第2のパラメータテーブルと、第2の時系列信号を第2の補正量により補正した時系列信号および第2の閾値に基いて、対象物の状態を判定する第2の判定器とを有することで、判定処理の高速化が可能になる。
【0011】
【発明の実施の形態】
本発明の一実施形態について図を用いて説明する。
【0012】
以下の説明では、対象物として製品の組付作業時に発生する組付音(嵌合音)を検出することにより製品の組付(嵌合)不良を判定する例について説明する。しかしながら、本発明の振動波判定装置100は、この用途に限定されず、その他の用途にも適用可能である。また、音の代わりに振動の検出にも適用できる。
【0013】
図1は、本発明の一実施形態におけるシステム構成を示す。
【0014】
ここで、対象物1として本例では樹脂製品の自動組付、特に組付時に大きな音が生じる例として、図3に示すようなスナップフィット機構を用い、図示しない組付設備等により樹脂部品101の孔部102に樹脂部品103の嵌合用突部104を嵌合させて両樹脂部品101、103を組付ける作業工程からの音発生例を挙げている。図4(a)、(b)は組付時に発生する振動波の一例であり、組付良否に応じて嵌合音の音圧レベルが変化することを示している。組付時の音発生の特徴として、組付設備等の動きに伴なう機械作動音と嵌合状況を伝える嵌合音(つまり判定したい目的作動音)とが発生し、両音は部品の組付スピード等の大きさに応じた音圧レベルを有すると共に、両音の音圧レベルは互いに相関して変化することである。
【0015】
マイクロホン2は、振動波判定の対象物1に発生した振動を音波として検出して電気信号に変換する。マイクロホン2から入力された音圧の電気信号は、振動波判定装置100の増幅器3に入力されて、A/D変換器4に出力される。このA/D変換器4では音圧信号をデジタル信号に変換して、後段の記憶装置5に出力され記憶処理される。この記憶装置5は、A/D変換器4より時間経過と共に順次出力されるデジタル音圧信号を時系列に記憶しておき、後で時系列範囲として発生時刻や発生タイミング、もしくは発生期間を特定可能にすることにより、その時の音圧信号を取出し可能で、かつその信号レベルが分かる形式で記憶してある。その記憶形式として、時間情報と音圧信号情報とを対にして記憶するか、もしくは記憶するメモリ位置や順序等により時系列関係が分かるようにして記憶するなど種々の形式がありえる。
【0016】
離散ウエーブレット変換(Discrete Wavelet Transformで、以下DWTと記す)演算器6は、所定のタイミングにて記憶装置5に記憶されたデジタル音圧信号を取込み、この音圧信号を、予め設定された周波数帯域毎に分離し、第1の時系列信号S1に変換する。例えば音圧信号のサンプリング周波数が44KHzの場合、1/2(22KHz)、1/4(11KHz)、1/8(5.5KHz)のように1/2の階乗刻みの周波数帯域毎の時系列信号に変換することになる。一般にウエーブレット変換演算器は、基底関数(ウエーブレット関数)を拡大あるいは縮小することにより、音圧信号を各周波数の時系列信号に分離する演算器である。本例では、少なくとも組付音として1つ以上のスナップフィット機構より発生する目的作動音である嵌合音に合わせた周波数帯域が設定されている。なお、この周波数帯域は、対象とする嵌合音の特性に応じて1つまたは複数の周波数帯域の集合帯域からなる。
【0017】
第1の補正器7は、領域特定手段の一部を構成し、所定の周波数帯域毎の第1の時系列信号S1を入力とする通常1つ以上の補正器7a、7b、・・・の集合体である。各補正器7a、7b・・・は、後述する第1のパラメータテーブル8から所定の周波数帯域毎に設定された補正量(もしくは補正係数)であるゲインG1(G11、G12、・・・)を受けて、周波数帯域毎に第1の時系列信号S1の重み付けを行う。これは予め想定した嵌合音以外の周波数帯域の時系列信号はノイズと見なしてレベルを下げ、他方、嵌合音の中でもノイズの少ない周波数帯域を増幅してS/N比を向上させるためである。
【0018】
第1のパラメータテーブル8は、領域特定手段の一部を構成し、一例として図2(a)に示すようなテーブルを有し、周波数帯域fに応じて各補正器7a、7b、・・・に与えるゲインG1(G11、G12、・・・)を調整し、後述する第1の判定器9の判定精度を向上させる。
【0019】
第1の判定器9は、領域特定手段の一部を構成し、閾値L1等を用い、各補正器7a、7b、・・・より得られる周波数帯域毎の時系列信号のレベルと発生期間を分析して、予め想定した嵌合音の発生範囲、つまり嵌合音の周波数帯域と発生期間(時系列範囲)をおおよそ特定する。その結果、第1の判定器9は後述する信号抽出器10に両情報を出力し、信号抽出器10は判定すべき嵌合音の発生期間(時系列範囲)に生じるデジタル音圧信号を記憶手段5より読出し、後段の連続ウエーブレット変換(Continuous Wavelet Transformで、以下CWTと記す)演算器11に出力する。併せて判定すべき嵌合音の周波数帯域情報もCWT演算器11に出力する。
【0020】
ここで、CWT演算器11に与えるデジタル音圧信号の抽出要領について図5を用いて説明する。
【0021】
図5中の(a)は記憶装置5に時系列に記憶されたデジタル音圧信号である。(b)はDWT演算器6で1/2の階乗刻みの周波数帯域毎に周波数分離した第1の時系列信号S1である。音圧信号には予め想定された嵌合音の他に機械作動音や、設備周囲音等が含まれている。判定すべき嵌合音は通常は複数の周波数帯域の振動波の複合音であるため、DWT演算器6で大まかに周波数分離しても、分離した周波数帯域のいずれかにおいて振動波の一部を捕らえることができる。そこで図5(b)に示すようにDWT演算器6にて周波数分離した第1の時系列信号S1を、予め想定された嵌合音の周波数帯域情報を参考にして評価すれば、各期間に発生する音圧信号が嵌合音かまたは嵌合音以外かを識別できる。図5の例では、時間t1〜t2(時系列範囲T1)と時間t5〜t6(時系列範囲T3)の音圧信号には、予め想定された嵌合音の存在する周波数帯域に生じる時系列信号のレベルが高いため、嵌合音ありと判断できかつその嵌合音の発生範囲として、嵌合音の周波数帯域と発生期間(時系列範囲)を特定できる。他方、時間t3〜t4(時系列範囲T2)の音圧信号には、予め想定された嵌合音の存在する周波数帯域に生じる時系列信号のレベルが低く、他の周波数帯域に生じる時系列信号のレベルが高いため、これは嵌合音以外の音圧信号であることが識別できる。
【0022】
CWT演算器11は、信号抽出器10にて抽出された例えば図5中の発生期間(時系列範囲)T1、T3内のデジタル音圧信号を取込むと共に、判定すべき嵌合音の存在する周波数帯域の情報を取込む。そこで、嵌合音の発生範囲としてその周波数帯域と発生期間(時系列範囲)を特定した比較的狭い範囲においてCWT処理を行い、取込んだ音圧信号を、DWT演算器6に比べると十分に細分化された周波数帯域毎に分離し、第2の時系列信号S2に変換する。
【0023】
第2の補正器12は、周波数帯域毎の第2の時系列信号S2を入力とする複数の補正器12a、12b、・・・の集合体である。各補正器12a、12b・・・は、後述する第2のパラメータテーブル13から周波数帯域毎に設定された補正量(もしくは補正係数)であるゲインG2(G201、G202、・・・)を受けて、周波数帯域毎に第2の時系列信号S2の重み付けを行う。
【0024】
第2のパラメータテーブル13は、一例として図2(b)に示すようなテーブルを有し、周波数帯域fに応じて各補正器12a、12b、・・・に与えるゲインG2(G201、G202、・・・)を調整し、後述する第2の判定器14の判定精度を向上させる。
【0025】
第2の判定器14には、補正された嵌合音信号と閾値L2が入力され、製品の組付(嵌合)良否の判定が行われる。判定方法の一例を挙げると、区分された複数の周波数帯域毎の嵌合音信号レベルの総和を求め、閾値Lと比較し、閾値L2以上であれば合格(嵌合良好)、閾値L2より小さければ不合格(嵌合不良あり)と判定する。
【0026】
第2の判定器14は、判定結果に基き、表示器15に結果を表示させ、不合格の場合は警報器12に出力し警報を発生させる。
【0027】
次に、上記構成からなる振動波判定装置100の判定フローをまとめると、図6のとおりである。図7は振動波のCWT信号波形図である。
【0028】
装置100に判定開始が指示されると、対象物1から発生する振動波(図5(a))を、マイクロホン2〜記憶装置5によりデジタル音圧信号として録音(ステップ201)する。DWT演算器6では、このデジタル音圧信号を1/2階乗刻みの周波数帯域毎の時系列信号(図5(b))に分離、抽出(ステップ202)する。図5の例では、デジタル音圧信号のサンプリング周波数を44KHzとし、周波数帯域11が11〜22KHz、周波数帯域10が5.5〜11KHz、周波数帯域9が2.8〜5.5KHzで嵌合音が顕著に現れている。また機械作動音は2.8KHzから下の周波数帯域で現れている。
【0029】
次に第1の補正器7では第1のパラメータテーブル8からの補正量であるゲインG1を受けて、周波数帯域毎に第1の時系列信号S1の重み付けを行う。第1の判定器9により、この第1の時系列信号S1の音圧レベルとその発生期間を分析して、判定すべき嵌合音の発生範囲、つまり嵌合音の周波数帯域と発生期間(時系列範囲)をおおよそ特定する(ステップ203)。また第1の判定器9の出力に基いて、信号抽出器10は記憶装置5に時系列に記憶されたデジタル音圧信号のうち、指定された発生期間T1、T3の音圧信号を抽出する(ステップ203)。
【0030】
CWT演算器11は抽出された音圧信号を嵌合音の周波数帯域において細かく周波数分離し、図7に示すような第2の時系列信号S2を形成する(ステップ204)。第2の補正器12は、第2のパラメータテーブル13の補正量G2を受けて第2の時系列信号S2を適宜重み付け補正する(ステップ205)。この第2の時系列信号S2と閾値L2に基いて、第2の判定器14では製品の組付(嵌合)良否を判定(ステップ206)する。閾値L以上であれば合格表示(嵌合良好)、閾値Lより小であれば不合格表示(嵌合不良あり)かつ警報出力を行う(ステップ207、208)ことになる。
【図面の簡単な説明】
【図1】本発明の一実施形態のシステム構成を示す構成図である。
【図2】(a)、(b)は図1のパラメータテーブル8、13の各内容を示す図である。
【図3】図1の製品の組付工程の一部を示す図である。
【図4】図3の工程において検出される音圧波形を示す図である。
【図5】図1に示す振動波判定装置100の信号波形図である。
【図6】図1に示す振動波判定装置100の処理フローを示すフローチャートである。
【図7】図1に示すCWT演算器11の信号波形図である。
【符号の説明】
1 対象物
2 マイクロホン(振動波入力手段)
5 記憶装置(記憶手段)
6 離散ウエーブレット変換(DWT)演算器
7 第1の補正器(領域特定手段の一部)
8 第1のパラメータテーブル(領域特定手段の一部)
9 第1の判定器(領域特定手段の一部)
10 信号抽出器
11 連続ウエーブレット変換(CWT)演算器
12 第2の補正器
13 第2のパラメータテーブル
14 第2の判定器(判定手段)
15 表示器
16 警報器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration wave determination device that determines a state of an object, for example, a fitting state, based on a vibration wave generated during the operation of the object such as an assembly operation.
[0002]
[Prior art]
Conventionally, for example, in Embodiment 3 of Japanese Patent Laid-Open No. 10-300730, a target is tapped with a hammer or the like, and the sound or vibration generated at that time is frequency-separated by a wavelet transform computing means, and the time for each frequency band is determined. A technique is described in which a series signal is formed, and based on the determination of the time series signal, the contents of the object are discriminated and the structure is inspected for cracks. In this specification, sound and vibration are collectively referred to as vibration waves.
[0003]
[Problems to be solved by the invention]
By the way, in the above publication, one wavelet transformation calculation means is used. In general, when determining the state of an object based on a vibration wave generated from the object, continuous wavelet transform calculation means is required to capture the vibration wave with high accuracy. However, in this case, a very long calculation time is required, and high performance is also required for calculation hardware. On the other hand, if a discrete wavelet transform computing means with a high computing speed is used, it becomes information about the frequency band of 1/2 factorial, and the state of the vibration wave in the intermediate frequency band between the selected frequency bands is unknown. The determination accuracy may be reduced.
[0004]
The present invention has been made in view of the above points, and by combining the discrete wavelet transformation calculation means and the continuous wavelet transformation calculation means, it is possible to achieve both high speed judgment processing and improvement in judgment accuracy. An object of the present invention is to provide a vibration wave determination device capable of performing the above-described operation.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the technical means according to claims 1 to 5 are employed.
According to the first aspect of the present invention, the vibration wave input means for detecting and inputting the vibration wave generated when the object is operated, the storage means for storing the input vibration wave as detection information in time series, and the detection information as the frequency Discrete wavelet transform calculation means for separating and forming a first time-series signal for each predetermined frequency band, and a target operation sound indicating at least a predetermined operation state of an object is generated based on the first time-series signal An area specifying means for specifying a time series range, and a continuous wavelet transform calculating means for extracting the detection information within the time series range specified by the area specifying means from the detection information and continuously separating the frequency, And a determination means for determining the state of the object based on the second time-series signal frequency-separated by the continuous wavelet transform calculation means and the second threshold value.
[0006]
As a result, the time series range (that is, the generation period) of the vibration wave necessary for determining the state of the object using the discrete wavelet transform computing means can be specified in advance, and the calculation by the continuous wavelet transform computing means for detailed analysis. Since the range can be narrowed down, calculation time can be reduced. As a result, it is possible to achieve both speeding up of the determination process and improvement of the determination accuracy.
[0007]
According to the second aspect of the present invention, the region specifying unit generates a time series in which the target operation sound is generated based on the specific time series signal in the predetermined frequency band in the first time series signal and the first threshold value. By specifying the range, it is possible to specify the time-series range on the assumption of the area to be specified and the sound pressure level in advance, and it is possible to extract the time-series range efficiently and more accurately.
[0008]
According to the third aspect of the present invention, the region specifying means includes a first corrector that corrects the level of the first time-series signal for each predetermined frequency band, and the first corrector. A time series in which a target operation sound is generated based on a first parameter table that gives a set first correction amount, a time series signal obtained by correcting the first time series signal with a first correction amount, and a first threshold value. In addition to the effect of the second aspect, the determination process can be speeded up by including the first determination unit that specifies the range.
[0009]
According to the fourth aspect of the invention, the first determiner determines the state of the object by specifying the frequency band in which the target operating sound is generated in addition to the time-series range in which the target operating sound is generated. This area can be further narrowed down to reduce the subsequent calculation time and the burden of determination processing.
[0010]
According to the fifth aspect of the present invention, the determination means includes a second corrector that corrects the level of the second time-series signal for each frequency band, and a preset second value for the second corrector. A second parameter table that gives a correction amount of 2, a second time-series signal obtained by correcting the second time-series signal with the second correction amount, and a second threshold value for determining the state of the object By having the determination device, it is possible to speed up the determination processing.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0012]
In the following description, an example will be described in which a product assembly (fitting) failure is determined by detecting an assembly sound (fitting sound) generated during assembly of the product as an object. However, the vibration wave determination apparatus 100 of the present invention is not limited to this application, and can be applied to other applications. It can also be applied to detection of vibration instead of sound.
[0013]
FIG. 1 shows a system configuration in an embodiment of the present invention.
[0014]
Here, as an object 1, in this example, as an example of the automatic assembly of resin products, particularly an example in which a loud sound is generated during assembly, a snap fit mechanism as shown in FIG. An example of sound generation from a work process in which the fitting protrusion 104 of the resin component 103 is fitted in the hole portion 102 and the both resin components 101 and 103 are assembled is given. 4A and 4B are examples of vibration waves generated at the time of assembly, and show that the sound pressure level of the fitting sound changes according to the quality of the assembly. As a feature of sound generation at the time of assembly, a mechanical operation sound accompanying the movement of the assembly equipment and a fitting sound that conveys the fitting status (that is, a target operation sound to be judged) are generated. It has a sound pressure level corresponding to the magnitude of the assembly speed and the like, and the sound pressure levels of both sounds change in correlation with each other.
[0015]
The microphone 2 detects the vibration generated in the object 1 for vibration wave determination as a sound wave and converts it into an electric signal. The sound pressure electrical signal input from the microphone 2 is input to the amplifier 3 of the vibration wave determination device 100 and output to the A / D converter 4. The A / D converter 4 converts the sound pressure signal into a digital signal, which is output to the storage device 5 at the subsequent stage for storage processing. The storage device 5 stores digital sound pressure signals sequentially output from the A / D converter 4 in time series, and specifies the generation time, generation timing, or generation period as a time series range later. By making it possible, the sound pressure signal at that time can be taken out and stored in a format in which the signal level can be understood. As the storage format, there can be various formats such as storing time information and sound pressure signal information as a pair, or storing the time information so that the time series relationship can be understood according to the memory location and order of storage.
[0016]
A discrete wavelet transform (hereinafter referred to as DWT) computing unit 6 takes in a digital sound pressure signal stored in the storage device 5 at a predetermined timing, and uses this sound pressure signal as a preset frequency. Each band is separated and converted to the first time-series signal S1. For example, when the sampling frequency of the sound pressure signal is 44 kHz, the time for each frequency band of 1/2 factorial increments such as 1/2 (22 KHz), 1/4 (11 KHz), and 1/8 (5.5 KHz). It will be converted into a series signal. In general, a wavelet transform computing unit is a computing unit that separates sound pressure signals into time-series signals of each frequency by expanding or reducing a basis function (wavelet function). In this example, a frequency band is set in accordance with a fitting sound that is a target operation sound generated from one or more snap-fit mechanisms as at least an assembly sound. This frequency band is composed of a set band of one or a plurality of frequency bands according to the characteristics of the target fitting sound.
[0017]
The first corrector 7 constitutes a part of the region specifying means, and usually includes one or more correctors 7a, 7b,... That receive the first time-series signal S1 for each predetermined frequency band. It is an aggregate. Each of the correctors 7a, 7b... Has a gain G1 (G11, G12,...) That is a correction amount (or correction coefficient) set for each predetermined frequency band from a first parameter table 8 described later. In response, the first time-series signal S1 is weighted for each frequency band. This is because the time-series signal in the frequency band other than the assumed fitting sound is regarded as noise and the level is lowered, and on the other hand, the frequency band with less noise in the fitting sound is amplified to improve the S / N ratio. is there.
[0018]
The first parameter table 8 constitutes a part of the region specifying means, and has a table as shown in FIG. 2A as an example, and each corrector 7a, 7b,... According to the frequency band f. Gain G1 (G11, G12,...) Is adjusted to improve the determination accuracy of the first determiner 9 described later.
[0019]
The first determiner 9 constitutes a part of the region specifying means, and uses the threshold value L1 and the like to determine the level and generation period of the time series signal for each frequency band obtained from each corrector 7a, 7b,. Analysis is performed to roughly specify a fitting sound generation range assumed in advance, that is, a frequency band and a generation period (time series range) of the fitting sound. As a result, the first determiner 9 outputs both pieces of information to the signal extractor 10 to be described later, and the signal extractor 10 stores the digital sound pressure signal generated during the fitting sound generation period (time series range) to be determined. The data is read from the means 5 and output to the subsequent continuous wavelet transform (hereinafter referred to as CWT) computing unit 11. In addition, the frequency band information of the fitting sound to be determined is also output to the CWT calculator 11.
[0020]
Here, the extraction procedure of the digital sound pressure signal applied to the CWT calculator 11 will be described with reference to FIG.
[0021]
(A) in FIG. 5 is a digital sound pressure signal stored in the storage device 5 in time series. (B) is the first time-series signal S1 frequency-separated by the DWT calculator 6 for each frequency band of 1/2 factorial increments. The sound pressure signal includes machine operation sound, equipment ambient sound, and the like in addition to the assumed fitting sound. Since the fitting sound to be determined is usually a composite sound of vibration waves in a plurality of frequency bands, even if the frequency is roughly separated by the DWT calculator 6, a part of the vibration waves is separated in any of the separated frequency bands. Can be caught. Therefore, as shown in FIG. 5B, if the first time series signal S1 frequency-separated by the DWT calculator 6 is evaluated with reference to the frequency band information of the fitting sound assumed in advance, each period is evaluated. It can be discriminated whether the generated sound pressure signal is a fitting sound or a non-fitting sound. In the example of FIG. 5, the sound pressure signals at times t1 to t2 (time series range T1) and times t5 to t6 (time series range T3) are time series generated in a frequency band in which a fitting sound exists in advance. Since the signal level is high, it can be determined that there is a fitting sound, and the frequency band and generation period (time series range) of the fitting sound can be specified as the fitting sound generation range. On the other hand, the sound pressure signal at times t3 to t4 (time series range T2) has a low level of the time series signal generated in the frequency band in which the presumed fitting sound exists, and the time series signal generated in another frequency band. Since this level is high, it can be identified that this is a sound pressure signal other than the fitting sound.
[0022]
The CWT calculator 11 takes in the digital sound pressure signals extracted in the generation periods (time series ranges) T1 and T3 in FIG. 5, for example, extracted by the signal extractor 10, and there is a fitting sound to be determined. Import frequency band information. Therefore, CWT processing is performed in a relatively narrow range in which the frequency band and generation period (time series range) are specified as the generation range of the fitting sound, and the acquired sound pressure signal is sufficiently compared with the DWT calculator 6. Each frequency band is separated and converted into a second time series signal S2.
[0023]
The second corrector 12 is an aggregate of a plurality of correctors 12a, 12b,... That receive the second time-series signal S2 for each frequency band. Each of the correctors 12a, 12b,... Receives a gain G2 (G201, G202,...) That is a correction amount (or correction coefficient) set for each frequency band from a second parameter table 13 described later. The second time series signal S2 is weighted for each frequency band.
[0024]
The second parameter table 13 has a table as shown in FIG. 2B as an example, and a gain G2 (G201, G202,...) Given to each corrector 12a, 12b,. ..) Is adjusted to improve the determination accuracy of the second determiner 14 described later.
[0025]
The second determiner 14 receives the corrected fitting sound signal and the threshold value L2, and determines whether the product is assembled (fitted). As an example of the determination method, the sum of the fitting sound signal levels for each of a plurality of divided frequency bands is obtained and compared with a threshold value L. If the threshold value L2 is exceeded, the result is good (fitting is good) and smaller than the threshold value L2. Is determined to be rejected (with poor fitting).
[0026]
The second determiner 14 displays the result on the display 15 based on the determination result, and outputs the alarm to the alarm 12 when it fails.
[0027]
Next, the determination flow of the vibration wave determination apparatus 100 configured as described above is summarized as shown in FIG. FIG. 7 is a waveform diagram of a CWT signal of a vibration wave.
[0028]
When the apparatus 100 is instructed to start determination, the vibration wave (FIG. 5A) generated from the object 1 is recorded as a digital sound pressure signal by the microphone 2 to the storage device 5 (step 201). The DWT computing unit 6 separates and extracts (step 202) the digital sound pressure signal into time-series signals (FIG. 5B) for each frequency band of 1/2 factorial. In the example of FIG. 5, the sampling frequency of the digital sound pressure signal is 44 KHz, the frequency band 11 is 11 to 22 KHz, the frequency band 10 is 5.5 to 11 KHz, and the frequency band 9 is 2.8 to 5.5 KHz. Appears prominently. In addition, machine operating noise appears in the frequency band below 2.8 KHz.
[0029]
Next, the first corrector 7 receives the gain G1, which is the correction amount from the first parameter table 8, and weights the first time-series signal S1 for each frequency band. The first determiner 9 analyzes the sound pressure level of the first time series signal S1 and the generation period thereof, and generates the fitting sound generation range to be determined, that is, the fitting sound frequency band and the generation period ( (Time series range) is roughly specified (step 203). Based on the output of the first determiner 9, the signal extractor 10 extracts the sound pressure signals of the designated generation periods T 1 and T 3 from the digital sound pressure signals stored in time series in the storage device 5. (Step 203).
[0030]
The CWT calculator 11 finely separates the extracted sound pressure signal in the frequency band of the fitting sound to form a second time series signal S2 as shown in FIG. 7 (step 204). The second corrector 12 receives the correction amount G2 of the second parameter table 13 and appropriately weights and corrects the second time series signal S2 (step 205). Based on the second time-series signal S2 and the threshold value L2, the second determiner 14 determines whether the product is assembled (fitted) or not (step 206). If it is greater than or equal to the threshold value L, a pass display (good fitting) is obtained, and if it is less than the threshold value L, a fail display (with poor fitting) and alarm output are performed (steps 207 and 208).
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a system configuration of an embodiment of the present invention.
2A and 2B are diagrams showing contents of parameter tables 8 and 13 in FIG.
FIG. 3 is a diagram showing a part of the assembly process of the product of FIG. 1;
4 is a diagram showing a sound pressure waveform detected in the process of FIG. 3;
FIG. 5 is a signal waveform diagram of the vibration wave determination device 100 shown in FIG. 1;
6 is a flowchart showing a processing flow of the vibration wave determination apparatus 100 shown in FIG. 1;
7 is a signal waveform diagram of the CWT calculator 11 shown in FIG.
[Explanation of symbols]
1 Object 2 Microphone (vibration wave input means)
5. Storage device (storage means)
6 Discrete Wavelet Transform (DWT) Calculator 7 First corrector (part of region specifying means)
8 First parameter table (part of area specifying means)
9 First determiner (part of area specifying means)
10 signal extractor 11 continuous wavelet transform (CWT) calculator 12 second corrector 13 second parameter table 14 second determiner (determination means)
15 Display 16 Alarm

Claims (5)

対象物の作動時に生ずる振動波を検出入力する振動波入力手段と、
入力された前記振動波を検出情報として時系列に記憶する記憶手段と、
前記検出情報を周波数分離して所定の周波数帯域毎の第1の時系列信号を形成する離散ウエーブレット変換演算手段と、
前記第1の時系列信号に基いて、少なくとも前記対象物の所定作動状態を示す目的作動音が生じる時系列範囲を特定する領域特定手段と、
前記検出情報のうち、この領域特定手段にて特定される前記時系列範囲内の検出情報を抽出し、連続的に周波数分離する連続ウエーブレット変換演算手段と、
この連続ウエーブレット変換演算手段により周波数分離した第2の時系列信号および第2の閾値に基いて前記対象物の状態を判定する判定手段とを備えたことを特徴とする振動波判定装置。
Vibration wave input means for detecting and inputting vibration waves generated during operation of the object;
Storage means for storing the input vibration wave as detection information in time series;
Discrete wavelet transform computing means for frequency-separating the detection information to form a first time-series signal for each predetermined frequency band;
Based on the first time-series signal, region specifying means for specifying a time-series range in which a target operation sound indicating at least a predetermined operation state of the object is generated;
Among the detection information, continuous wavelet transform calculation means for extracting detection information within the time series range specified by the area specifying means and continuously separating the frequency,
A vibration wave determination apparatus comprising: a determination unit that determines a state of the object based on a second time-series signal frequency-separated by the continuous wavelet transform calculation unit and a second threshold value.
前記領域特定手段は、前記第1の時系列信号のうち予め定めた周波数帯域にある特定時系列信号および第1の閾値に基いて、前記目的作動音が生じる前記時系列範囲を特定することを特徴とする請求項1に記載の振動波判定装置。The region specifying means specifies the time-series range in which the target operation sound is generated based on a specific time-series signal in a predetermined frequency band of the first time-series signal and a first threshold value. The vibration wave determination apparatus according to claim 1, wherein 前記領域特定手段は、所定の周波数帯域毎の前記第1の時系列信号のレベルをそれぞれ補正する第1の補正器と、この第1の補正器に対し、予め設定した第1の補正量を与える第1のパラメータテーブルと、前記第1の時系列信号を前記第1の補正量により補正した時系列信号および前記第1の閾値に基いて、前記目的作動音が生じる前記時系列範囲を特定する第1の判定器とを有することを特徴とする請求項2に記載の振動波判定装置。The region specifying means includes a first corrector for correcting the level of the first time-series signal for each predetermined frequency band, and a first correction amount set in advance for the first corrector. The time-series range in which the target operation sound is generated is specified based on a first parameter table to be given, a time-series signal obtained by correcting the first time-series signal with the first correction amount, and the first threshold value. The vibration wave determination apparatus according to claim 2, further comprising: a first determination unit that performs the determination. 前記第1の判定器は、前記目的作動音が生じる前記時系列範囲に加えて、前記目的作動音が生じる周波数帯域を特定することを特徴とする請求項3に記載の振動波判定装置。The vibration wave determination device according to claim 3, wherein the first determination unit specifies a frequency band in which the target operation sound is generated in addition to the time-series range in which the target operation sound is generated. 前記判定手段は、周波数帯域毎の前記第2の時系列信号のレベルをそれぞれ補正する第2の補正器と、この第2の補正器に対し、予め設定した第2の補正量を与える第2のパラメータテーブルと、前記第2の時系列信号を前記第2の補正量により補正した時系列信号および第2の閾値に基いて、前記対象物の状態を判定する第2の判定器とを有することを特徴とする請求項3または4に記載の振動波判定装置。The determination means includes a second corrector that corrects the level of the second time-series signal for each frequency band, and a second correction amount that is set in advance to the second corrector. And a second determiner that determines the state of the object based on a time-series signal obtained by correcting the second time-series signal with the second correction amount and a second threshold value. The vibration wave determination apparatus according to claim 3 or 4,
JP2002237906A 2002-08-19 2002-08-19 Vibration wave determination device Expired - Fee Related JP4003580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002237906A JP4003580B2 (en) 2002-08-19 2002-08-19 Vibration wave determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002237906A JP4003580B2 (en) 2002-08-19 2002-08-19 Vibration wave determination device

Publications (2)

Publication Number Publication Date
JP2004077279A JP2004077279A (en) 2004-03-11
JP4003580B2 true JP4003580B2 (en) 2007-11-07

Family

ID=32021476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002237906A Expired - Fee Related JP4003580B2 (en) 2002-08-19 2002-08-19 Vibration wave determination device

Country Status (1)

Country Link
JP (1) JP4003580B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635967B2 (en) * 2006-06-19 2011-02-23 株式会社デンソー Goods quality judgment device and quality judgment method using time series signal
KR101129466B1 (en) 2010-10-29 2012-03-28 주식회사 우진 Method for condition monitoring of rotating machines via wavelet thresholding function and 4th-order moment
JP6433700B2 (en) * 2014-07-09 2018-12-05 佐藤工業株式会社 Post-installation anchor anchorage evaluation method
CN115859835B (en) * 2023-02-20 2023-06-20 西安华创马科智能控制系统有限公司 Incoming pressure prediction method and device based on top plate vibration wave

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288639A (en) * 1997-02-13 1998-10-27 Toshiba Corp Apparatus and method for monitoring malfunction of electric apparatus
JP3438525B2 (en) * 1997-04-24 2003-08-18 三菱電機株式会社 Hammer judgment device
JP2000214052A (en) * 1999-01-28 2000-08-04 Nichiha Corp Abnormal sound detection system and recording medium
JP3730435B2 (en) * 1999-03-26 2006-01-05 株式会社東芝 Waveform signal analyzer
JP2002022617A (en) * 2000-07-05 2002-01-23 Mitsubishi Electric Corp Apparatus for diagnosing bearing

Also Published As

Publication number Publication date
JP2004077279A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US8036888B2 (en) Collecting sound device with directionality, collecting sound method with directionality and memory product
US8680386B2 (en) Signal processing device, signal processing method, and program
JP2010019902A (en) Volume adjusting device, volume adjusting method and volume adjusting program
WO2008041730A1 (en) Method and system for detecting wind noise
JP2010021627A (en) Device, method, and program for volume control
JP2016033530A (en) Utterance section detection device, voice processing system, utterance section detection method and program
JP2005266797A (en) Method and apparatus for separating sound-source signal and method and device for detecting pitch
JP4003580B2 (en) Vibration wave determination device
JP2004012151A (en) System of estimating direction of sound source
JP4735398B2 (en) Acoustic signal analysis apparatus, acoustic signal analysis method, and acoustic signal analysis program
CN108736982A (en) Acoustic communication processing method, device and electronic equipment
JP3855890B2 (en) Vibration wave determination device
JP4045902B2 (en) Vibration wave determination device
JP3922127B2 (en) Assembly failure judgment device
JP4052110B2 (en) Vibration wave determination device
JP5958378B2 (en) Audio signal processing apparatus, control method and program for audio signal processing apparatus
JP2006121188A (en) Howling suppressing apparatus
JP2000316199A (en) Howling preventing device
JP5145733B2 (en) Audio signal processing apparatus, audio signal processing method, and program
JP2006304244A (en) Specific voice signal detection method and loudspeaker distance measurement method
WO2017090387A1 (en) Signal processing device, signal processing method and computer program
JP2008112056A (en) Audio sigmal processor
CN112349265B (en) Sound playing device and method for masking interference sound by noise masking signal
WO2024218848A1 (en) Resonant frequency identification method, program, and resonant frequency identification system
JP2003241792A (en) Device and method for speech recognition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Ref document number: 4003580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees