JP4002813B2 - Vibration generator - Google Patents

Vibration generator Download PDF

Info

Publication number
JP4002813B2
JP4002813B2 JP2002299781A JP2002299781A JP4002813B2 JP 4002813 B2 JP4002813 B2 JP 4002813B2 JP 2002299781 A JP2002299781 A JP 2002299781A JP 2002299781 A JP2002299781 A JP 2002299781A JP 4002813 B2 JP4002813 B2 JP 4002813B2
Authority
JP
Japan
Prior art keywords
vibration
electro
conversion element
mutual conversion
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002299781A
Other languages
Japanese (ja)
Other versions
JP2004130270A (en
Inventor
忠司 中沼
Original Assignee
忠司 中沼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 忠司 中沼 filed Critical 忠司 中沼
Priority to JP2002299781A priority Critical patent/JP4002813B2/en
Publication of JP2004130270A publication Critical patent/JP2004130270A/en
Application granted granted Critical
Publication of JP4002813B2 publication Critical patent/JP4002813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話の着信報知などに有用な、小型の携帯電子機器用の振動発生装置に関する。
【0002】
【従来の技術】
携帯電話では、着信音を発すると周囲に迷惑を及ぼすような場所においても着信を使用者に知らせるために、携帯電話本体や携帯電話と無線で接続された専用の装置が振動することにより、主として使用者の身体に対して機械的刺激を与える方法が採用されている。こうした携帯電話用の振動発生装置として一般的には、偏心した重錘を軸に取り付けた小型モータが利用されており、このモータを数十Hz程度の比較的低い速度で回転させることによって筐体などに振動を発生させる。
【0003】
しかしながら、こうした振動発生装置では、偏心した重錘を回転駆動するために軸や軸受に大きな負荷が掛かり、故障が発生し易いという問題がある。そのため、現行のこうした振動発生装置では3年程度の寿命しか想定していない。また、モータによる電気−機械変換はエネルギ効率があまり良好ではなく、エネルギの一部は熱等として浪費されてしまうために消費電力が大きくなる傾向にある。周知のように、携帯電話等の携帯電子機器では小型・軽量化とともに、消費電力の削減が重要な課題となっており、振動発生装置の消費電力の多さは軽視できない。
【0004】
上記のような問題に対し、圧電振動子を用いた振動発生装置が従来より提案されている。例えば特許文献1に開示されている振動発生装置の一例を図6に示す。この振動発生装置では、振動板33を両面から圧電素子32で挟み込んで形成された圧電振動板31の下面中央に振動伝達部材34の一端が固定され、その他端は例えば携帯電話の筐体35に固定されている。圧電振動板31の外周縁には弾性部材36の一端が連結され、その他端には質量負荷である重錘37が取り付けられている。圧電振動板31が振動するとき、弾性部材36を介する重錘の変位量は大きくなるので、これによって振動が増幅され、強い振動を発生できるようになっている。
【0005】
【特許文献1】
特開2000−233157号公報(段落0016〜0024、図1)
【0006】
【発明が解決しようとする課題】
こうした圧電素子を利用した振動発生装置は電気−機械的変位変換での損失が少なく、特に小型の電子機器用の振動発生装置としてはかなり有望であるように思われる。しかしながら、近年の携帯電話の急速な普及と技術の進展の中においても、現在までのところ上記のような方法による振動発生装置は未だ実用には至っていない。その理由は、省電力を図りつつ充分な大きさの振動を得ることが実用上難しい点にあると思われる。
【0007】
本発明はこのような点に鑑みて成されたものであり、その目的とするところは、消費電力を抑えつつ着信報知等のために充分な大きさの振動を発生することができる振動発生装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係る振動発生装置は、
a)電気信号を機械的振動に変換する、又は逆に機械的振動を電気信号に変換するための電気−機械的変位相互変換素子と、
b)該電気−機械的変位相互変換素子に対して一部が直接的又は間接的に連結された弾性部材と、
c)該弾性部材と前記電気−機械的変位相互変換素子との連結部から離れた位置に設けられた重錘と、
d)該重錘から離れた位置で前記弾性部材を支持し、且つ該弾性部材の振動を対象物に伝播させる支持体と、
e)前記電気−機械的変位相互変換素子の変形又は前記弾性部材若しくは前記重錘の変位に起因して該電気−機械的変位相互変換素子に発生する電気信号に基づいて振動状態を把握し、その振動が増幅されるように該電気−機械的変位相互変換素子に電力を供給する制御手段と、
を備え、前記電気−機械的変位相互変換素子は、電気信号から機械的振動への変換とその逆の変換とのいずれかを切り替えて選択的に行い得る素子であり、前記制御手段は、前記電気−機械的変位相互変換素子の変形に起因して該素子に発生する電気信号を検出する検出期間と、該電気−機械的変位相互変換素子に電力を供給して該素子に変位を生じさせる駆動期間とを時分割で設け、前記検出期間において検出した電気信号に基づいて振動状態を把握し、その振動が増幅されるように前記素子に電力を供給することを特徴としている。
【0009】
【発明の実施の形態、及び効果】
本発明に係る振動発生装置において、上記電気−機械的変位相互変換素子は、電気信号から機械的振動への変換とその逆の変換とのいずれかを切り替えて選択的に行い得る単一の素子で構成する場合と、電気信号から機械的振動への変換を行う素子と機械的振動を検知して電気信号に変換してフィードバックする素子との組み合わせによる複合的な素子で構成する場合とが考え得る。前者の素子として典型的なものは圧電素子である。
【0011】
電気−機械的変位相互変換素子として圧電素子を利用する場合の基本的な動作としては、圧電素子により発生する機械的振動を弾性部材に与え、その弾性部材の弾性と、重錘の慣性とを利用して振動を増幅させる。圧電素子では、電圧を印加すると変形を生じるという逆圧電効果と、振動による外的機械力によって変形が起こると電圧を発生するという圧電効果との両方が利用される。但し、上記のような従来の装置では圧電素子には予め定められた周波数の電圧が印加され、該周波数で振動するだけであるのに対して、本発明に係る装置では、加振された重錘の振動に合わせて、つまり重錘の振動エネルギーの方向に合わせて、更にその振動を増す(加振する)ように振動エネルギーを弾性部材を介して重錘に与える。いわば、振動状態(振動の周波数、位相、大きさなど)に応じて適応的に更なる加振を行う。
【0012】
具体的には、制御手段は、検出期間において圧電素子の変形に起因して該素子に発生する電気信号を検出し、これに基づいてその時点での振動状態を把握し、その振動を加速する方向に圧電素子が圧縮又は伸長するべく駆動期間において圧電素子に電圧を印加する。このような加振を繰り返すことにより、重錘には一度の加振では与えることができないような大きなエネルギーが蓄積され、弾性体の強度やそのほかの機械的な制約の範囲内で最大に近い振動を得ることができる。
【0013】
なお、圧電素子以外に上記電気−機械的変位相互変換素子として利用可能なものとしては、印加電圧や供給電流の変化に応じてねじれ、伸縮等の変形が自在であって、且つそのエネルギー変換効率が高いものでありさえすれば、様々なものを用いることができる。例えば、電気を通す導電性高分子は、電気化学的な酸化・還元反応により伸縮変形するから、上記目的に使用することができる。もちろん、上記条件を満たしさえすれば、電気−機械的変位の変換の原理や種類は問わない。
【0014】
このように本発明に係る振動発生装置によれば、振動源である電気−機械的変位相互変換素子の発生する複数回の振動エネルギーを、弾性部材により保持される重錘に効率よく供給して、大きな振動を得ることができる。また、本発明に係る振動発生装置によれば、検出期間には電気−機械的変位相互変換素子に駆動電力を供給しないので、全体として消費電力を抑制することができる。また、電気−機械的変位相互変換素子に電力を供給するタイミングを振動が増幅されるように適切に制御しているため、振動を確実に且つ効率的に増幅することができ、振動開始から素早い立ち上がりで大きな振動を発生させることができる。また、従来のモータを利用した振動発生装置と異なり、軸受のような摩擦力等を受ける機構部を持たないので、故障や破損が少なく、高い信頼性を達成することができる。
【0015】
なお、本発明に係る振動発生装置の一実施形態として、前記制御手段は、前記検出期間において少なくとも振動波形の半周期を認識し、それに基づいて電圧印加を行う時間幅を設定する構成とすることができる。この構成によれば、振動によって重錘の進行方向が反転する毎に上記のような加振が行われるので、振動の増幅効果が大きく、より迅速に大きな振動を得ることができる。
【0016】
更にまた、前記制御手段は、前記検出期間において振動波形のピークを認識し、該ピークが現れた後に電圧印加の開始タイミングを設定する構成とすると更に好ましい。このような構成によれば、圧電素子、弾性部材、重錘等の振動状態に影響する構造的なサイズや重量、特性などのばらつき、或いは温度や湿度の影響による変動があった場合でも、特別な調整などを行うことなく大きな振動を確実に得ることができる。
【0017】
【実施例】
以下、本発明の一実施例による振動発生装置について、図1〜図5を参照して説明する。
【0018】
図1は本実施例による振動発生装置の概略全体構成図、図2は本振動発生装置の振動原理を説明するための概念図、図3は本振動発生装置における動作制御の一例を示すフローチャート、図4及び図5は本振動発生装置の動作を説明するための概略波形図である。
【0019】
この振動発生装置では、振動発生源1として、弾性(ばね性)を有する細長い板状のアーム2の略中央部に、該アーム2を上下から挟み込むように一対の圧電素子3a、3bが設けられ、そのアーム2の両端にはそれぞれ重錘5が固着されている。下側の圧電素子3bは剛性を有する支持体4の上端に固定され、その下端は振動対象である携帯電話等の筐体6に固定されており、上記振動発生源1が縦方向に振動すると支持体4を介して筐体6に振動が伝播する。
【0020】
圧電素子3a、3bの電極部には電気回路として圧電素子駆動部10が接続されている。圧電素子駆動部10は、機能的に、所定期間中に圧電素子3a、3bに加わる圧縮力又は伸長力による変形(歪)に起因してその両端電極に発生する電圧を検出して変形量を把握する変形量検出部11と、該変形量によって振動の状態を判断し電圧の印加タイミングなどを決定する演算処理部12と、その決められたタイミングで圧電素子3a、3bに駆動電圧を印加する電圧発生部13と、上記各部に制御信号を供給する制御部14と、を含んで構成されている。演算処理部12及び制御部14は主としてCPUやメモリなどから成るマイクロコンピュータを中心に構成することができ、該マイクロコンピュータ上で所定の演算プログラムや制御プログラムを実行させることにより、後述するような所定の機能を達成することができる。
【0021】
次に、上記構成を有する振動発生装置の動作を説明する。電圧発生部13から圧電素子3a、3bに所定周期のパルス状の電圧が印加されると、それに応じて圧電素子3a、3bは上下方向に伸縮する。上下一対の圧電素子3a、3bは一方が伸長するとき他方が収縮する関係を保つように構成されており、圧電素子3a、3bに挟まれたアーム2中央部は図2中の矢印M1で示すように上下に振動する。アーム2は弾性を有しており、且つ、重錘5には慣性力が作用するから、アーム2の中央部が上述のように上下振動すると、図2中の矢印M2に示すようにアーム2の両端は大きく上下に揺動し、その力によって振動は増幅されて筐体6は大きく振動する。
【0022】
上記振動の振幅は図4(A)に示すように正弦波状となり、時間経過に伴って徐々に大きくなる。一般に、こうした機械振動系は、アーム2の弾性係数や重錘5の重量などに依存する固有周波数を有しており、従来の振動発生装置では圧電素子にこの固有周波数近傍の電圧を印加し、弾性部材を含む振動系の共振作用によって振動が増幅されるのを待つようにしている。それに対し、本実施例の装置では、重錘5の振動状態を把握して、積極的にその振動を加速させるように圧電素子3a、3bを駆動する。すなわち、実際の振動状態を把握するために圧電素子3a、3bによる圧電効果を利用するとともに、その振動がより加速されるように且つ電圧の印加時間ができるだけ短くて済むように、適応的に圧電素子3a、3bに電圧を印加する制御を行う。
【0023】
具体的に動作を説明すると、振動開始からの制御の手順としては、図3に示すように、初期加振モード、変形量検出処理、及び適応型制御モードの3段階に順次移行する。
【0024】
まず、無振動の状態から振動を起こさせるために、振動の開始当初は初期加振モードとする(ステップS1)。すなわち、電圧発生部13は予め決められている周波数を有するパルス状の電圧を圧電素子3a、3bに印加する(図4(B)参照)。これによって、圧電素子3a、3bを含む振動発生源1は振動し始める。このとき、上記周波数は例えば振動発生源1の固有周波数とするとよく、アーム2の弾性係数や長さ、重錘5の重量などに基づいて予め計算しておけばよい。
【0025】
振動開始から所定時間(通常ごく短時間でよい)が経過したとき、電圧発生部13による電圧の印加を一時的に停止し、変形量検出部11は圧電素子3a、3bから得られる電気信号に基づいて変形量を検出する(ステップS2)。図2に示すようにアーム2が撓みつつ振動していると、圧電素子3a、3bは該アーム2により圧縮力や伸長力を受け変形する。圧電素子3a、3bは圧電効果により、その変形量に応じた電圧を発生するから、変形量検出部11はこれにより変形量の時間的変化を検出し、そのデータを演算処理部12へと送る。
【0026】
変形量の時間的変化は、図5(A)に示すような振動波形の一部に対応する。従って、図5(C)に示すように、振動の半周期tの期間以上に設定された時間t1の期間中、連続的(実際には微小時間間隔毎)に変形量の時間的変化をモニタすれば、振動波形の正負のピークPa、Pbを検出することができるとともに、一方のピークから他のピーク(図5の例では負のピークPaから正のピークPb)までに要する時間tも検出することができる。
【0027】
このようにその時点での変形量が検出できた後に、適応型制御モードへと移行する(ステップS3)。上記振動振幅のピークPa、Pbは振動方向が反転する点である。従って、ピークが現れた直後からその振動を加速する方向に圧電素子3a、3bを駆動し、且つ次のピークが現れる手前でその電圧印加を停止すれば、圧電素子3a、3bの逆圧電効果による圧縮・伸長動作が、そのときのアーム2の振動方向に反することがなく、適切な振動増幅が行えることになる。
【0028】
そこで、演算処理部12は、その直前に取得された時間tに基づいて次に電圧を印加する時間幅t2を決定し、ピークが現れてから少し経過した時点からアーム2の振動を加速する方向に圧電素子3a、3bを駆動するべく上記時間幅t2を有するパルス状の電圧を印加する。これによって、アーム2の動きは加速されるが、次のピークの手前で電圧はゼロになる。それに代えて、変形量検出部11は上述したのと同様に変形量を検出し、振動波形を把握する。変形量検出開始時にはピークの手前であるから、振動波形をモニタすると、ピークを越えアーム2の振動方向が反転したことが認識できる。そこで、ピークを越えてから少し経過した時点で、変形量の検出を停止し、アーム2の振動を加速する方向に圧電素子3a、3bを駆動するべく上記時間幅t2を有するパルス状の電圧を印加する。なお、変形量検出を開始してから実際にピークが現れるまでの時間t3に応じて、次に印加する電圧の時間幅を適宜調整すると更に好ましい。
【0029】
このようにして、振動波形の正及び負のピークの前後の所定期間では圧電素子3a、3bへの電圧の印加を停止し、その代わりに変形量検出を行うことによって振動波形を把握し、ピークの位置を確実に把握する。そして、一方のピークから他方のピークへ向かう途中の、アーム2の振動を加速するのに好適な期間では、確実に圧電素子3a、3bに電圧を印加し、その振動を加速させる。
【0030】
上記のようにすることにより、重錘5の振動と同期させ、その移動の方向に合わせて移動速度を加速するように圧電素子3a、3bを駆動することができる。一般に、圧電素子はその変位量は必ずしも大きくないものの、応答性が良好であるとともに外部へ与え得る振動エネルギーは大きい。そのため、圧電素子3a、3bを駆動する毎に、大きな振動エネルギーをアーム2を介して重錘5へと供給することができる。こうした加振を繰り返すことにより、重錘5には振動エネルギーが蓄積され、例えばブランコを漕ぐように徐々にその振動を大きくしてゆき、大振幅の強い振動を得ることができる。また、この振動発生装置では、圧電素子3a、3bへ駆動電圧を印加している期間を全体の60〜80%程度に抑えることができるので、電力消費量が少なくて済む。
【0031】
なお、上記実施例は本発明の一例に過ぎず、特許請求の範囲の記載を逸脱しない範囲で、適宜に変形や修正を加えることができることが明らかである。具体的に言えば、例えば、支持体4の両側にアーム2を延伸させた構成ではなく、アーム2の一端に支持体4、他端に重錘5を設けた構成に変形が可能であることは容易に想到し得る。また、上記記載の駆動制御手順は一例であって、本発明の趣旨は、振動を効果的に増幅するために、圧電素子の逆圧電効果のみならず、圧電効果も時分割で利用する点にある。
【図面の簡単な説明】
【図1】 本発明の一実施例による振動発生装置の概略全体構成図。
【図2】 本実施例による振動発生装置の振動原理を説明するための概念図。
【図3】 本実施例による振動発生装置における動作制御の一例を示すフローチャート。
【図4】 本実施例による振動発生装置の動作を説明するための概略波形図。
【図5】 本実施例による振動発生装置の動作を説明するための概略波形図。
【図6】 従来知られている、圧電素子を用いた振動発生装置の概略構成図。
【符号の説明】
1…振動発生源
2…アーム
3a、3b…圧電素子
4…支持体
5…重錘
6…筐体
10…圧電素子駆動部
11…変形量検出部
12…演算処理部
13…電圧発生部
14…制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration generator for small portable electronic devices, which is useful for notification of incoming calls of a mobile phone.
[0002]
[Prior art]
In mobile phones, in order to notify the user of incoming calls even in places where ringing sounds cause trouble to the surroundings, the mobile phone itself or a dedicated device connected wirelessly to the mobile phone vibrates mainly. A method of applying mechanical stimulation to the user's body is employed. As such a vibration generator for a mobile phone, a small motor having an eccentric weight attached to a shaft is generally used, and a casing is obtained by rotating the motor at a relatively low speed of about several tens of Hz. Generate vibrations.
[0003]
However, in such a vibration generator, there is a problem that a large load is applied to the shaft and the bearing in order to rotationally drive the eccentric weight, and a failure is likely to occur. Therefore, the current vibration generator assumes only a life of about 3 years. In addition, the electric-mechanical conversion by the motor is not very energy efficient, and part of the energy is wasted as heat and the like, so that the power consumption tends to increase. As is well known, in portable electronic devices such as mobile phones, reduction in power consumption is an important issue as well as reduction in size and weight, and the amount of power consumed by the vibration generator cannot be neglected.
[0004]
In response to the above problems, vibration generators using piezoelectric vibrators have been proposed. For example, an example of a vibration generator disclosed in Patent Document 1 is shown in FIG. In this vibration generator, one end of a vibration transmitting member 34 is fixed to the center of the lower surface of the piezoelectric diaphragm 31 formed by sandwiching the diaphragm 33 from both sides with the piezoelectric element 32, and the other end is attached to, for example, a casing 35 of a mobile phone. It is fixed. One end of an elastic member 36 is connected to the outer peripheral edge of the piezoelectric diaphragm 31, and a weight 37, which is a mass load, is attached to the other end. When the piezoelectric diaphragm 31 vibrates, the amount of displacement of the weight via the elastic member 36 increases, so that the vibration is amplified and a strong vibration can be generated.
[0005]
[Patent Document 1]
JP 2000-233157 A (paragraphs 0016 to 0024, FIG. 1)
[0006]
[Problems to be solved by the invention]
A vibration generator using such a piezoelectric element has little loss in electro-mechanical displacement conversion, and seems to be quite promising as a vibration generator for a small electronic device. However, even in the recent rapid spread of mobile phones and technological progress, a vibration generator using the above method has not yet been put into practical use. The reason seems to be that it is practically difficult to obtain a sufficiently large vibration while saving power.
[0007]
The present invention has been made in view of these points, and an object of the present invention is to provide a vibration generator capable of generating a sufficiently large vibration for incoming call notification while suppressing power consumption. Is to provide.
[0008]
[Means for Solving the Problems]
The vibration generator according to the present invention, which has been made to solve the above problems,
a) an electro-mechanical displacement mutual conversion element for converting an electrical signal into mechanical vibration, or vice versa, and converting mechanical vibration into an electrical signal;
b) an elastic member partially or directly connected to the electro-mechanical displacement mutual conversion element;
c) a weight provided at a position away from the connecting portion between the elastic member and the electromechanical displacement mutual conversion element;
d) a support that supports the elastic member at a position away from the weight and propagates vibrations of the elastic member to an object;
e) grasping a vibration state based on an electric signal generated in the electro-mechanical displacement mutual conversion element due to deformation of the electro-mechanical displacement mutual conversion element or displacement of the elastic member or the weight; Control means for supplying power to the electro-mechanical displacement interconversion element so that the vibration is amplified;
The electro-mechanical displacement mutual conversion element is an element that can selectively perform switching between conversion from electrical signal to mechanical vibration and vice versa, and the control means includes A detection period for detecting an electric signal generated in the electro-mechanical displacement mutual conversion element due to the deformation of the electro-mechanical displacement mutual conversion element, and supplying electric power to the electro-mechanical displacement mutual conversion element to cause displacement in the element A drive period is provided in a time-sharing manner, a vibration state is grasped based on an electric signal detected in the detection period, and power is supplied to the element so that the vibration is amplified .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the vibration generating apparatus according to the present invention, the electro-mechanical displacement mutual conversion element is a single element that can be selectively switched by switching between conversion from an electric signal to mechanical vibration and vice versa. And a combination of elements that convert electrical signals into mechanical vibrations and elements that detect mechanical vibrations and convert them into electrical signals for feedback. obtain. A typical example of the former element is a piezoelectric element.
[0011]
As a basic operation when a piezoelectric element is used as an electro-mechanical displacement mutual conversion element, mechanical vibration generated by the piezoelectric element is applied to the elastic member, and the elasticity of the elastic member and the inertia of the weight are determined. Use to amplify vibration. The piezoelectric element utilizes both an inverse piezoelectric effect that causes deformation when a voltage is applied and a piezoelectric effect that generates a voltage when deformation is caused by an external mechanical force due to vibration. However, in the conventional apparatus as described above, a voltage having a predetermined frequency is applied to the piezoelectric element and only vibrates at the frequency, whereas in the apparatus according to the present invention, the excited weight is applied. In accordance with the vibration of the weight, that is, in accordance with the vibration energy direction of the weight, vibration energy is applied to the weight via the elastic member so as to further increase (vibrate) the vibration. In other words, further excitation is adaptively performed according to the vibration state (frequency, phase, magnitude, etc. of vibration).
[0012]
Specifically, the control means detects an electric signal generated in the piezoelectric element due to deformation of the piezoelectric element during the detection period, grasps the vibration state at that time based on this, and accelerates the vibration. A voltage is applied to the piezoelectric element during the driving period so that the piezoelectric element compresses or expands in the direction. By repeating such excitation, the weight accumulates a large amount of energy that cannot be applied by a single excitation, and the vibration is close to the maximum within the range of the strength of the elastic body and other mechanical constraints. Can be obtained.
[0013]
In addition to the piezoelectric element, those that can be used as the electro-mechanical displacement mutual conversion element can be freely deformed such as torsion and expansion / contraction according to changes in applied voltage and supply current, and the energy conversion efficiency thereof. Various materials can be used as long as they are high. For example, a conductive polymer that conducts electricity can be used for the above purpose because it undergoes stretching deformation by an electrochemical oxidation / reduction reaction. Of course, the principle and type of electro-mechanical displacement conversion are not limited as long as the above conditions are satisfied.
[0014]
As described above, according to the vibration generator of the present invention, the vibration energy generated by the electro-mechanical displacement mutual conversion element as the vibration source is efficiently supplied to the weight held by the elastic member. Can get a big vibration. In addition, according to the vibration generator of the present invention, since driving power is not supplied to the electro-mechanical displacement mutual conversion element during the detection period, power consumption can be suppressed as a whole. In addition, since the timing of supplying power to the electro-mechanical displacement mutual conversion element is appropriately controlled so as to amplify the vibration, the vibration can be reliably and efficiently amplified, and quick from the start of the vibration. A large vibration can be generated at the rising edge. In addition, unlike a conventional vibration generator using a motor, it does not have a mechanism that receives a frictional force or the like such as a bearing, so that there is little failure or breakage and high reliability can be achieved.
[0015]
As an embodiment of the vibration generator according to the present invention, the control means recognizes at least a half cycle of the vibration waveform in the detection period and sets a time width for applying voltage based on the recognition. Can do. According to this configuration, the above-described excitation is performed every time the traveling direction of the weight is reversed by the vibration, so that the vibration amplification effect is large and a large vibration can be obtained more quickly.
[0016]
Furthermore, it is more preferable that the control means recognizes the peak of the vibration waveform during the detection period and sets the voltage application start timing after the peak appears. According to such a configuration, even when there are variations in structural size, weight, characteristics, etc. that affect the vibration state of piezoelectric elements, elastic members, weights, etc., or even fluctuations due to the effects of temperature or humidity, Large vibrations can be reliably obtained without any adjustment.
[0017]
【Example】
Hereinafter, a vibration generator according to an embodiment of the present invention will be described with reference to FIGS.
[0018]
FIG. 1 is a schematic overall configuration diagram of a vibration generator according to the present embodiment, FIG. 2 is a conceptual diagram for explaining the vibration principle of the vibration generator, and FIG. 3 is a flowchart showing an example of operation control in the vibration generator. 4 and 5 are schematic waveform diagrams for explaining the operation of the vibration generator.
[0019]
In this vibration generator, a pair of piezoelectric elements 3a and 3b is provided as a vibration source 1 at a substantially central portion of an elongated plate-like arm 2 having elasticity (spring property) so as to sandwich the arm 2 from above and below. The weights 5 are fixed to both ends of the arm 2, respectively. The lower piezoelectric element 3b is fixed to the upper end of the support 4 having rigidity, and the lower end is fixed to a casing 6 such as a mobile phone to be vibrated. When the vibration source 1 vibrates in the vertical direction. Vibration propagates to the housing 6 via the support 4.
[0020]
A piezoelectric element driving unit 10 is connected to the electrode portions of the piezoelectric elements 3a and 3b as an electric circuit. The piezoelectric element driving unit 10 functionally detects the voltage generated at the both end electrodes due to the deformation (strain) due to the compressive force or the expansion force applied to the piezoelectric elements 3a and 3b during a predetermined period, and determines the deformation amount. A deformation amount detection unit 11 to grasp, an arithmetic processing unit 12 that determines a state of vibration based on the deformation amount and determines a voltage application timing, and the like, and applies a drive voltage to the piezoelectric elements 3a and 3b at the determined timing. The voltage generating unit 13 and the control unit 14 that supplies a control signal to each of the above units are configured. The arithmetic processing unit 12 and the control unit 14 can be mainly configured by a microcomputer composed of a CPU, a memory, etc., and by executing predetermined arithmetic programs and control programs on the microcomputer, predetermined processing as described later is performed. Function can be achieved.
[0021]
Next, the operation of the vibration generator having the above configuration will be described. When a voltage having a predetermined cycle is applied from the voltage generator 13 to the piezoelectric elements 3a and 3b, the piezoelectric elements 3a and 3b expand and contract in the vertical direction accordingly. The pair of upper and lower piezoelectric elements 3a and 3b is configured to maintain a relationship in which one of the piezoelectric elements 3a and 3b contracts when the other extends, and the central portion of the arm 2 sandwiched between the piezoelectric elements 3a and 3b is indicated by an arrow M1 in FIG. So that it vibrates up and down. Since the arm 2 has elasticity and an inertial force acts on the weight 5, when the central portion of the arm 2 vibrates up and down as described above, the arm 2 as shown by an arrow M <b> 2 in FIG. 2. Both ends of the housing 6 swing up and down greatly, and the vibration is amplified by the force, and the housing 6 vibrates greatly.
[0022]
The amplitude of the vibration becomes a sine wave as shown in FIG. 4A and gradually increases with time. In general, such a mechanical vibration system has a natural frequency that depends on the elastic coefficient of the arm 2 and the weight of the weight 5, and a conventional vibration generator applies a voltage in the vicinity of this natural frequency to the piezoelectric element. It waits for the vibration to be amplified by the resonance action of the vibration system including the elastic member. On the other hand, in the apparatus of the present embodiment, the vibration state of the weight 5 is grasped, and the piezoelectric elements 3a and 3b are driven so as to positively accelerate the vibration. That is, in order to grasp the actual vibration state, the piezoelectric effect by the piezoelectric elements 3a and 3b is used, and the piezoelectric is adaptively adjusted so that the vibration is further accelerated and the voltage application time is as short as possible. Control is performed to apply a voltage to the elements 3a and 3b.
[0023]
Specifically, as shown in FIG. 3, the control procedure from the start of vibration is sequentially shifted to three stages of an initial excitation mode, a deformation amount detection process, and an adaptive control mode.
[0024]
First, in order to cause vibration from a no-vibration state, an initial excitation mode is set at the beginning of vibration (step S1). That is, the voltage generator 13 applies a pulse voltage having a predetermined frequency to the piezoelectric elements 3a and 3b (see FIG. 4B). Thereby, the vibration generating source 1 including the piezoelectric elements 3a and 3b starts to vibrate. At this time, the frequency may be, for example, a natural frequency of the vibration generation source 1 and may be calculated in advance based on the elastic coefficient and length of the arm 2, the weight of the weight 5, and the like.
[0025]
When a predetermined time (usually very short time) has elapsed from the start of vibration, voltage application by the voltage generation unit 13 is temporarily stopped, and the deformation amount detection unit 11 applies an electrical signal obtained from the piezoelectric elements 3a and 3b. Based on this, a deformation amount is detected (step S2). As shown in FIG. 2, when the arm 2 is vibrating while being bent, the piezoelectric elements 3 a and 3 b are deformed by the compression force or the extension force by the arm 2. Since the piezoelectric elements 3a and 3b generate a voltage corresponding to the deformation amount due to the piezoelectric effect, the deformation amount detection unit 11 detects a temporal change in the deformation amount and sends the data to the arithmetic processing unit 12. .
[0026]
The temporal change in the deformation amount corresponds to a part of the vibration waveform as shown in FIG. Therefore, as shown in FIG. 5C, the temporal change of the deformation amount is monitored continuously (actually every minute time interval) during the period of time t1 set to be equal to or longer than the period of the half cycle t of vibration. Thus, the positive and negative peaks Pa and Pb of the vibration waveform can be detected, and the time t required from one peak to the other peak (in the example of FIG. 5, from the negative peak Pa to the positive peak Pb) is also detected. can do.
[0027]
After the deformation amount at that time can be detected in this way, the mode shifts to the adaptive control mode (step S3). The vibration amplitude peaks Pa and Pb are points where the vibration direction is reversed. Therefore, if the piezoelectric elements 3a and 3b are driven in the direction of accelerating the vibration immediately after the peak appears and the voltage application is stopped just before the next peak appears, the reverse piezoelectric effect of the piezoelectric elements 3a and 3b occurs. The compression / extension operation does not deviate from the vibration direction of the arm 2 at that time, and appropriate vibration amplification can be performed.
[0028]
Therefore, the arithmetic processing unit 12 determines a time width t2 for applying the voltage next based on the time t acquired immediately before the calculation processing unit 12, and accelerates the vibration of the arm 2 from a point when a little has elapsed after the peak appears. A pulse voltage having the time width t2 is applied to drive the piezoelectric elements 3a and 3b. As a result, the movement of the arm 2 is accelerated, but the voltage becomes zero before the next peak. Instead, the deformation amount detection unit 11 detects the deformation amount and grasps the vibration waveform in the same manner as described above. Since it is before the peak at the start of deformation amount detection, when the vibration waveform is monitored, it can be recognized that the vibration direction of the arm 2 has been reversed beyond the peak. Therefore, when a little has passed after exceeding the peak, the detection of the deformation amount is stopped, and a pulsed voltage having the time width t2 is applied to drive the piezoelectric elements 3a and 3b in the direction of accelerating the vibration of the arm 2. Apply. It is more preferable that the time width of the voltage to be applied next is appropriately adjusted according to the time t3 from when the deformation amount detection is started until the peak actually appears.
[0029]
In this way, during a predetermined period before and after the positive and negative peaks of the vibration waveform, the application of voltage to the piezoelectric elements 3a and 3b is stopped, and instead the deformation waveform is detected to grasp the vibration waveform, and the peak Make sure of the position of In a period suitable for accelerating the vibration of the arm 2 on the way from one peak to the other peak, a voltage is reliably applied to the piezoelectric elements 3a and 3b to accelerate the vibration.
[0030]
By doing so, the piezoelectric elements 3a and 3b can be driven so as to synchronize with the vibration of the weight 5 and accelerate the moving speed in accordance with the moving direction. In general, the displacement of a piezoelectric element is not necessarily large, but the response is good and the vibration energy that can be given to the outside is large. Therefore, large vibration energy can be supplied to the weight 5 via the arm 2 every time the piezoelectric elements 3a and 3b are driven. By repeating such excitation, vibration energy is accumulated in the weight 5, and for example, the vibration can be gradually increased so as to spread the swing, and a strong vibration with a large amplitude can be obtained. Further, in this vibration generator, the period during which the drive voltage is applied to the piezoelectric elements 3a and 3b can be suppressed to about 60 to 80% of the whole, so that the power consumption can be reduced.
[0031]
Note that the above embodiment is merely an example of the present invention, and it is obvious that modifications and corrections can be made as appropriate without departing from the scope of the claims. Specifically, for example, the arm 2 is not extended to both sides of the support 4 but can be modified to have a structure in which the support 4 is provided at one end of the arm 2 and the weight 5 is provided at the other end. Can easily be conceived. The drive control procedure described above is an example, and the gist of the present invention is that not only the inverse piezoelectric effect of the piezoelectric element but also the piezoelectric effect is used in a time-sharing manner in order to effectively amplify the vibration. is there.
[Brief description of the drawings]
FIG. 1 is a schematic overall configuration diagram of a vibration generator according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram for explaining the vibration principle of the vibration generator according to the present embodiment.
FIG. 3 is a flowchart showing an example of operation control in the vibration generator according to the present embodiment.
FIG. 4 is a schematic waveform diagram for explaining the operation of the vibration generator according to the present embodiment.
FIG. 5 is a schematic waveform diagram for explaining the operation of the vibration generator according to the present embodiment.
FIG. 6 is a schematic configuration diagram of a vibration generator using a piezoelectric element, which is conventionally known.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vibration source 2 ... Arm 3a, 3b ... Piezoelectric element 4 ... Support body 5 ... Weight 6 ... Case 10 ... Piezoelectric element drive part 11 ... Deformation amount detection part 12 ... Arithmetic processing part 13 ... Voltage generation part 14 ... Control unit

Claims (3)

a)電気信号を機械的振動に変換する、又は逆に機械的振動を電気信号に変換するための電気−機械的変位相互変換素子と、
b)該電気−機械的変位相互変換素子に対して一部が直接的又は間接的に連結された弾性部材と、
c)該弾性部材と前記電気−機械的変位相互変換素子との連結部から離れた位置に設けられた重錘と、
d)該重錘から離れた位置で前記弾性部材を支持し、且つ該弾性部材の振動を対象物に伝播させる支持体と、
e)前記電気−機械的変位相互変換素子の変形又は前記弾性部材若しくは前記重錘の変位に起因して該電気−機械的変位相互変換素子に発生する電気信号に基づいて振動状態を把握し、その振動が増幅されるように該電気−機械的変位相互変換素子に電力を供給する制御手段と、
を備え、前記電気−機械的変位相互変換素子は、電気信号から機械的振動への変換とその逆の変換とのいずれかを切り替えて選択的に行い得る素子であり、前記制御手段は、前記電気−機械的変位相互変換素子の変形に起因して該素子に発生する電気信号を検出する検出期間と、該電気−機械的変位相互変換素子に電力を供給して該素子に変位を生じさせる駆動期間とを時分割で設け、前記検出期間において検出した電気信号に基づいて振動状態を把握し、その振動が増幅されるように前記素子に電力を供給することを特徴とする振動発生装置。
a) an electro-mechanical displacement mutual conversion element for converting an electrical signal into mechanical vibration, or vice versa, and converting mechanical vibration into an electrical signal;
b) an elastic member partially or directly connected to the electro-mechanical displacement mutual conversion element;
c) a weight provided at a position away from the connecting portion between the elastic member and the electromechanical displacement mutual conversion element;
d) a support that supports the elastic member at a position away from the weight and propagates vibrations of the elastic member to an object;
e) grasping a vibration state based on an electric signal generated in the electro-mechanical displacement mutual conversion element due to deformation of the electro-mechanical displacement mutual conversion element or displacement of the elastic member or the weight; Control means for supplying power to the electro-mechanical displacement interconversion element so that the vibration is amplified;
The electro-mechanical displacement mutual conversion element is an element that can selectively perform switching between conversion from electrical signal to mechanical vibration and vice versa, and the control means includes A detection period for detecting an electric signal generated in the electro-mechanical displacement mutual conversion element due to the deformation of the electro-mechanical displacement mutual conversion element, and supplying electric power to the electro-mechanical displacement mutual conversion element to cause displacement in the element A vibration generating apparatus characterized in that a drive period is provided in a time-sharing manner, a vibration state is grasped based on an electric signal detected in the detection period, and electric power is supplied to the element so that the vibration is amplified.
前記制御手段は、前記検出期間において少なくとも振動波形の半周期を認識し、それに基づいて電圧印加を行う時間幅を設定することを特徴とする請求項に記載の振動発生装置。2. The vibration generating apparatus according to claim 1 , wherein the control unit recognizes at least a half cycle of a vibration waveform in the detection period and sets a time width for applying a voltage based on the recognition. 前記制御手段は、前記検出期間において振動波形のピークを認識し、該ピークが現れた後に電圧印加の開始タイミングを設定することを特徴とする請求項1又は2に記載の振動発生装置。Said control means, said recognizing the peak of the vibration waveform in the detection period, the vibration generator according to claim 1 or 2, characterized in that setting the start timing of the voltage application after the peak appeared.
JP2002299781A 2002-10-15 2002-10-15 Vibration generator Expired - Fee Related JP4002813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299781A JP4002813B2 (en) 2002-10-15 2002-10-15 Vibration generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299781A JP4002813B2 (en) 2002-10-15 2002-10-15 Vibration generator

Publications (2)

Publication Number Publication Date
JP2004130270A JP2004130270A (en) 2004-04-30
JP4002813B2 true JP4002813B2 (en) 2007-11-07

Family

ID=32288819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299781A Expired - Fee Related JP4002813B2 (en) 2002-10-15 2002-10-15 Vibration generator

Country Status (1)

Country Link
JP (1) JP4002813B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074826A (en) * 2005-09-07 2007-03-22 Fujifilm Corp Minute electromechanical element and minute electromechanical element array
DE102005060779B4 (en) * 2005-12-16 2008-07-10 Eads Deutschland Gmbh power generator
KR100837926B1 (en) 2006-12-06 2008-06-13 현대자동차주식회사 Power generator using piezoelectric material
US9882512B2 (en) 2012-09-25 2018-01-30 Sang-Cheol Bae Piezoelectric element for power generation and power generation device using same
KR101426145B1 (en) 2012-09-25 2014-07-31 배상철 A piezoelectric elemenet and Power generation apparatus using it
KR101562594B1 (en) * 2013-12-05 2015-10-23 국방과학연구소 Adaptive bending structure capable of selfsensing
KR101682960B1 (en) * 2015-09-09 2016-12-06 한국세라믹기술원 Piezoelectric power generator
JP2019127152A (en) * 2018-01-24 2019-08-01 Joyson Safety Systems Japan株式会社 Steering wheel and vibration device
DE102020102516B3 (en) * 2020-01-31 2021-02-18 Kyocera Corporation Tactile vibration generator

Also Published As

Publication number Publication date
JP2004130270A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP2008211925A (en) Piezoelectric power generation device
JP4002813B2 (en) Vibration generator
JP4048203B2 (en) Piezoelectric generator
JP4525943B2 (en) Driving method of ultrasonic motor
JP2013187928A (en) Oscillation power generator
JP2010233316A (en) Ultrasonic motor
JP2002060041A (en) Method and apparatus for controlling piezoelectric vibrating parts feeder
JP2018023214A (en) Vibration power generator
JP2004266033A (en) Piezoelectric apparatus
JP5760748B2 (en) Piezoelectric actuator driving method and driving unit
CN209516971U (en) A kind of elastic shelf prestressing force piezoelectric generating device
JP3614076B2 (en) Piezoelectric actuator, watch, portable device, and driving method of piezoelectric actuator
JP3719249B2 (en) Piezoelectric actuator, piezoelectric actuator drive control circuit, timepiece, portable device, piezoelectric actuator drive circuit control method, timepiece control method, and portable device control method
JP3214266U (en) Micro linear vibrator
JP2013179721A (en) Power transmission element and power transmission apparatus
JP2012161238A (en) Power generator and electronic apparatus
JP2010166736A (en) Ultrasonic motor
KR100502782B1 (en) Piezo-electro vibration device
JP2006034084A5 (en)
JP2008295275A (en) Piezoelectric power generation device
JP5893307B2 (en) Drive device for vibration actuator
JP2000135472A (en) Piezoelectric vibrator
JP2010279199A (en) Device for control of piezoelectric actuator
JP4253866B2 (en) Vibration actuator driving apparatus and vibration actuator driving method
JP2013027117A (en) Driving device and driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4002813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees