JP4002507B2 - NH3 heat pump - Google Patents

NH3 heat pump Download PDF

Info

Publication number
JP4002507B2
JP4002507B2 JP2002369881A JP2002369881A JP4002507B2 JP 4002507 B2 JP4002507 B2 JP 4002507B2 JP 2002369881 A JP2002369881 A JP 2002369881A JP 2002369881 A JP2002369881 A JP 2002369881A JP 4002507 B2 JP4002507 B2 JP 4002507B2
Authority
JP
Japan
Prior art keywords
heat exchanger
ammonia gas
heat pump
gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002369881A
Other languages
Japanese (ja)
Other versions
JP2004198071A (en
Inventor
孝典 工藤
雅隆 小谷津
剛 八反田
淳也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2002369881A priority Critical patent/JP4002507B2/en
Publication of JP2004198071A publication Critical patent/JP2004198071A/en
Application granted granted Critical
Publication of JP4002507B2 publication Critical patent/JP4002507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アンモニアガスを冷媒として使用するヒートポンプにおいて、アンモニアガスの漏洩時に、漏洩したアンモニアガスの量を最小限に抑える系統構成と、漏洩アンモニアガスに対する除害手段を備えたNHヒートポンプに関する。
【0002】
【従来の技術】
最近、地球環境保護や地球温暖化防止の観点より、オゾン層破壊係数と地球温暖化係数がともに零の値を持つアンモニアガス等の自然系冷媒を使用する冷凍機や空調用ヒートポンプが広範に使用されている。
然し、アンモニアガスは、上記環境汚染の心配のないこと以外に下記利点と欠点を持っている。則ち、
利点としては、低価格、COPが高い、熱伝導率が良い、高い冷却効率、漏洩時の検知が容易である。
欠点としては、毒性、可燃性(但し難燃性である)、腐食性、銅系統の材料の使用が不可等の問題がある。
則ち、アンモニアガスの漏洩に際しては、上記欠点により安全面や健康面から漏洩量を低く抑え、雰囲気空気を引火下限濃度に抑える必要がある。
【0003】
上記冷媒ガスの回収等に関して、「ヒートポンプシステムの冷媒ガスの制御装置」に係わる提案がされている。(例えば特許文献1参照。)
上記提案は、NH、その他の水溶性冷媒を使用したヒートポンプシステムにおいて、機械室内に漏洩した冷媒ガスをガスの状態で回収し、機器類の作動不良、錆や腐食の発生を防止し、稼働効率の向上、稼働コストの削減を図ったものである。
【0004】
その構成は図3に見るように、本制御装置は、圧縮機53、凝縮器54、膨張弁55を含む機械室56と、機械室より高圧冷媒を送出する蒸発器52を内蔵する氷蓄熱室57とよりなる。前記機械室56及び氷蓄熱室57の気相部から氷蓄熱室液相部内に連通して蒸発器を形成するガス吸入管路を設けるとともに、機械室側ガス吸入管路58と氷蓄熱室側ガス吸入管路59を設け、機械室内のNH冷媒ガスの漏洩を検知管60で検知して制御装置61に入力し、該制御装置により風量分配器62を制御して、機械室56におけるNHガスの漏洩量に応じて、機械室56と氷蓄熱室57とよりのガス吸入割合を制御してブロワ63を介して噴出管64より噴出させ、漏洩ガスを氷蓄熱室57の液相に取り込むようにしたものである。
【0005】
また、前記提案の改善案として、例えば「蒸発凝縮式アンモニア冷凍ユニット」に係わる提案がされている。(例えば特許文献2参照。)
この提案では、アンモニアガスの水に対する高い溶解性を利用してアンモニアガスの回収を行うようにしたもので、その溶解用水は蒸発凝縮器の冷却水を使用することにより冷凍ユニットのCOPの向上にも寄与する漏洩ガスの回収可能の冷凍ユニットの提供を目的としたものである。
【0006】
その構成は、図4に示すように、冷凍ユニットを上部収納室72aと下部収納室73aとで一体構造のパッケージで形成させ、上下の境界は気密状に構成する。上部収納室72aの左下側に押し込みファン71を設け、該押し込みファンの下部に凹部を設けて冷水タンク74を形成させるとともに、該冷水タンクより冷水を組み上げ冷却水散布ノズル72bより凝縮器72に散布して蒸発凝縮器を形成させている。
なお、前記上部収納室72aには、アンモニアガス凝縮用の凝縮器72、冷却水散布ノズル72b、及び前記押し込みファン71を設ける構成とし、
下部収納室73aには、アンモニアガス圧縮用の圧縮機70、油分離器70aと関連付属機器を設けて機械室を形成するとともに、機外に負荷を形成するダイナミック製造器75を設ける構成にしてある。
前記押し込みファン71の吸い込み側と下部収納室73aとの前記気密状境界を上下に貫通して機械室である下部収納室73aの雰囲気空気を回収する誘導流路76を設け、該誘導流路を介して下部収納室内部の雰囲気空気を一点鎖線で示すように吸引し、その後、押し込みファン71を介して二点鎖線で示すように凝縮器72へ押し込み、前記機械室である下部収納室内の雰囲気空気にアンモニアガスの漏洩がある場合は、前記冷却水散布ノズル72bの散布冷却水に回収させ、冷水タンク74に貯留除害する構成にしてある。
【0007】
また、前記冷凍サイクルにおいて冷媒漏洩が起きたときに対処する冷媒回収装置において、例えば、一旦回収した冷媒の冷凍サイクルへの逆流の防止手段に係わる提案がある。(例えば特許文献3参照。)
上記提案は、冷凍サイクルより漏洩した炭化水素やアンモニア等の回収に吸着材や吸収材を使用した場合、一旦回収した冷媒が冷凍サイクル中の圧力低下と吸着材充填部の吸着剤発熱による温度上昇によって脱着が起き、漏洩が持続する問題があるが、この問題の解決のためになされたもので、冷媒回収容器に冷媒逆流防止手段を施し密閉するようにすべく、吸着開始よりタイマにより一定時間後前記回収容器を密閉遮断する構成にしたものである。
【0008】
また、冷凍サイクルにおけるアンモニア除害システムとして、例えば下記に記載する提案がある。(例えば特許文献4参照。)
上記提案は、冷凍機ユニットより漏洩したアンモニアガスに対し、大気中への放出の手前でスクラバ等の閉鎖空間に導入し、これに炭酸ガス及び水とを反応させ、炭酸アンモニウムまたは炭酸水素アンモニウム等の塩を生成し、除害処理を行うようにしたものである。
【0009】
【特許文献1】
特開平8−136096号公報
【特許文献2】
特開平11−30460号公報
【特許文献3】
特開2001−174108公報
【特許文献4】
特開2001−347127公報
【0010】
【発明が解決しようとする課題】
ところで、前記従来技術に見るように、従来のアンモニアガス漏洩対策としては、漏洩したアンモニアガスの除害のみに限定され、漏洩を停止させることに対しては圧縮機の停止以外は何ら対策が採られて来なかった。本発明は、前記漏洩されたアンモニアガスの除害はもとより、漏洩部位の積極的切り離しと、冷媒量の多い受液部を系統的に独立させたNHヒートポンプの提供を目的とするものである。
【0011】
【課題を解決するための手段】
そこで、本発明のNHヒートポンプは、
圧縮機と凝縮器と蒸発器と受液器と減圧装置と関連付属機器を含む構成よりなり、アンモニアガスを冷媒として使用するとともに漏洩アンモニアガスの除害手段を備えたヒートポンプにおいて、
前記圧縮機の吸入側に接続する、前記蒸発器用として作動する空気熱交換器よりの戻り冷媒ガスの導入路と、同じく前記蒸発器用として作動する水熱交換器よりの戻り冷媒ガスの導入路のそれぞれに遮断弁を設け、アンモニアガスの漏洩が起きた前記空気熱交換器又は水熱交換器の何れかを当該ヒートポンプサイクル系より切り離す構成とするとともに、
前記圧縮機の吐出側に三方弁を設け、前記アンモニアガスの漏洩の起きていない熱交換器側へ圧縮ガスを送出する構成として、発生漏洩量を最小に抑える構成としたことを特徴とする。
【0012】
上記本発明は、アンモニアガスの漏洩が懸念される空気熱交換器と水熱交換器について、漏洩事故の発生している熱交換器をヒートポンプサイクル系より切り離すべく、圧縮機吸入側より遮断弁で切り離すとともに、圧縮機の吐出側を前記切り離していない熱交換器への切り替え送出を行い、漏洩熱交換器を当該サイクル系より分離切り離しをして、アンモニア漏洩量を最小に抑えるようにしたものである。
【0013】
例えば、図2(A)に見るように、圧縮機80、空気熱交換器81、水熱交換器82、受液器83、ガス側四方弁84、液側四方弁85、膨張弁86等を含む従来の空気熱源ヒートポンプにおいて、前記水熱交換器82より温水を取り出す暖房運転時には、空気熱交換器81で蒸発した冷媒蒸気はガス側四方弁84により圧縮機80の吸入側への導入路を形成している。
上記回路構成において、前記空気熱交換器81でアンモニアガスの漏洩事故が発生した場合、前記膨張弁86は直ちに断の状態に移行するが、前記空気熱交換器81と圧縮機80の吸入側に接続する回路には遮断弁が設けられていないため、漏洩事故の発生した空気熱交換器81を当該サイクル系より切り離し除外することはできない。そのためアンモニアガスの漏洩は継続され、被害は増大する。本発明では、前記ガス側四方弁を介しての圧縮機への導入路に遮断弁を設け、漏洩事故を起こした空気熱交換器を分離し切り離す構成にしたものである。
【0014】
また、図2(B)に見るように、前記図2(A)と同様に、圧縮機80、空気熱交換器81、水熱交換器82、受液器83、ガス側四方弁84、液側四方弁85、膨張弁86等を含む従来の空気熱源ヒートポンプにおいて、前記水熱交換器82より冷水を取り出す冷房運転時には、水熱交換器82で蒸発した冷媒蒸気はガス側四方弁84により圧縮機80の吸入側への導入路を形成している。
上記回路構成において、前記水熱交換器82でアンモニアガスの漏洩事故が発生した場合、前記膨張弁86は直ちに断の状態に移行するが、前記水熱交換器82と圧縮機80の吸入側に接続する回路には遮断弁が設けられていないため、漏洩事故の発生した水熱交換器82を当該サイクル系より切り離し除外することはできない。そのため漏洩は継続されることになる。本発明では、前記ガス側四方弁を介しての圧縮機への導入路に遮断弁を設け、漏洩事故を起こした水熱交換器を分離し切り離す構成にしたものである。
【0015】
また、上記本発明のNHヒートポンプにおいて、
前記受液器は、該受液器への空気熱交換器と水熱交換器よりの導入側入り口に遮断弁を設け、アンモニアガスの漏洩時に前記受液器を当該ヒートポンプサイクル系より独立させる構成が好ましい。
【0016】
上記発明は、アンモニアガスの漏洩発生時に、冷媒系統において大半の冷媒を保有する受液器の入り口に逆止弁または遮断弁を設け、当該サイクル系より切り離し独立させるようにしたものである。
【0017】
そしてまた、上記本発明のNHヒートポンプにおいて、
前記除害手段は、散水除害による構成が好ましい。
【0018】
上記発明は、漏洩ガスに対する除害手段について記載したもので基本的に必要な散水除害手段を設ける構成が好ましい。
【0019】
そしてまた、上記本発明のNHヒートポンプにおいて、
前記除害手段は、除害水槽を設け、漏洩ガスの吹き込みまたは溶解アンモニア水の貯留を行う構成が好ましい。
【0020】
上記発明は、前記除害手段について、好ましくは除害水槽を設け、該水槽に漏洩ガスの吹き込みを行うか、またはアンモニアガス溶解水の貯留を行う構成が良い。
【0021】
【発明の実施の形態】
以下、本発明の実施例の形態を、図示例と共に説明する。ただし、この実施例に記載されている構成部品の寸法、形状、その相対的位置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。以下図面に基づいて本発明の詳細を説明する。
図1は本発明のNHヒートポンプの概略構成を示す図である。
【0022】
図1に見るように、本発明のNHヒートポンプは、上部収納室20bと下部収納室20aとよりなる一体構造のパッケージで形成する構成とし、
下部収納室20aには圧縮機30と水熱交換器32と受液器33と膨張弁36と関連付属機器を内蔵して機械室を形成する構造とし、
上部収納室20bには吸入ファン31aを付設した空気熱交換器31と、外気取り入れ口20dを設ける構造とし、
上部収納室20bと下部収納室20aの間には、気密性部材よりなる境界20cを設けるとともに、該境界20cには前記上部収納室へ通ずる貫通部を設け、該貫通部に電動シャッター15aと換気ファン15とを設けて、下部収納室20aの電動シャッター16を介して取り入れた外気を矢印Aに沿い上部収納室20bに誘導し、上部収納室20bにおいて外気取り入れ口20dより取り入れた外気Bとともに吸入ファン31aを介して換気する構成にしてある。
【0023】
そして、アンモニアガス漏洩検知器14a、14bを上部収納室20bと下部収納室20aのそれぞれの上部空間に設け、各空間のガス漏洩を検知するる構成とするとともに、前記吸入ファン31aの上流側及び換気ファン15の吸込み口に図示していない除害用散水ノズルを設けて散水による漏洩アンモニアガスの溶解除去をさせ、アンモニアガスを溶解して滴下する溶解水の貯留タンクを上下収納室の下部にそれぞれ設け回収する構成にしてある。
【0024】
本発明は、上記アンモニアガスの除害構成に加え、図に示す従来型の四方弁使用による切り替え回路の代りに二方弁10aと10bを設け、空気熱交換器31又は水熱交換器32より圧縮機30の吸入側へ戻るアンモニアガスの導入を遮断するとともに、前記二方弁に並列に圧縮機30の吐出側より逆止弁13を経由して空気熱交換器31又は水熱交換器32の何れかへ送出する三方弁11を設ける構成にしてある。
また、前記受液器33の冷媒液導入側に逆止弁12を設け、多量の冷媒液を貯留する受液器を当該ヒートポンプサイクル系より切り離し分離する構成にしてある。
【0025】
則ち、前記水熱交換器32より温水を取り出す暖房運転時におけるアンモニアガスの漏洩発生時には、空気熱交換器31を二方弁10aと膨張弁36と三方弁11の水熱交換器32側への切り換えとにより回路系より切り離すとともに、前記受液器33を逆止弁12と給液電磁弁と膨張弁36により回路系より切り離し分離する。
【0026】
また、水熱交換器32より冷水を取り出す冷房運転時におけるアンモニアガスの漏洩発生時には、水熱交換器32を二方弁10bと膨張弁36と三方弁11の空気熱交換器31側への切り換えにより当該ヒートポンプサイクル系より切り離すとともに、前記受液器33を逆止弁12と給液電磁弁と膨張弁36により同じく当該ヒートポンプサイクル系より切り離し分離する。
【0027】
なお、アンモニアガスの漏洩を上部収納室20bに設けたアンモニアガス検知器14aが検知したときは、空気熱交換器に設けた散水除害装置を作動させ、下部収納室に設けたアンモニアガス検知器14bにより下部収納室20aでのガス漏洩を検知したときは、電動シャッター15a、16を閉鎖させるとともに散水除害装置を作動させる。
なお、漏洩発生を検知したときは、圧縮機30は直ちに運転を停止する。
【0028】
【発明の効果】
上記構成により、本発明は下記効果を奏する。
漏洩されたアンモニアガスの除害はもとより、漏洩部位の積極的切り離しと、冷媒量の多い受液部も当該ヒートポンプ系より独立させ、アンモニアガスの漏洩を最小限に抑えることができる。
【図面の簡単な説明】
【図1】 本発明のNHヒートポンプの概略構成を示す図である。
【図2】 (A)は従来の空気熱源ヒートポンプの暖房運転時の回路構成を示す図で、(B)は(A)に示す空気熱源ヒートポンプの冷房運転時の回路構成を示す図である。
【図3】 従来のヒートポンプシステムの冷媒ガスの制御装置の構成を示す図である。
【図4】 従来の蒸発凝縮式アンモニア冷凍ユニットの概略構成示す図である。
【符号の説明】
10a、10b 二方弁
11 三方弁
12、13 逆止弁
14a、14b アンモニアガス漏洩検知器
15 換気ファン
15a、16 電動シャッター
20a 下部収納室
20b 上部収納室
20c 境界
20d 外気取り入れ口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump that uses ammonia gas as a refrigerant, and relates to a system configuration that minimizes the amount of ammonia gas that leaks when the ammonia gas leaks, and to an NH 3 heat pump that includes a means for eliminating leaked ammonia gas.
[0002]
[Prior art]
Recently, from the viewpoint of protecting the global environment and preventing global warming, refrigerators and air conditioning heat pumps that use natural refrigerants such as ammonia gas that have both zero ozone depletion potential and global warming potential are widely used. Has been.
However, ammonia gas has the following advantages and disadvantages in addition to the fact that there is no concern about environmental pollution. That is,
Advantages include low cost, high COP, good thermal conductivity, high cooling efficiency, and easy detection at the time of leakage.
Disadvantages include toxicity, flammability (but flame retardant), corrosivity, and the inability to use copper-based materials.
In other words, when ammonia gas leaks, it is necessary to keep the amount of air leaked low from the viewpoint of safety and health due to the above-mentioned drawbacks, and to keep the atmosphere air at the lower limit of ignition.
[0003]
With regard to the recovery of the refrigerant gas and the like, proposals relating to “refrigerant gas control device of heat pump system” have been made. (For example, refer to Patent Document 1.)
In the heat pump system using NH 3 and other water-soluble refrigerants, the above proposal collects the refrigerant gas leaked into the machine room in the state of gas to prevent malfunction of equipment, occurrence of rust and corrosion, and operation It is intended to improve efficiency and reduce operating costs.
[0004]
As shown in FIG. 3, the control apparatus includes an ice storage room that includes a machine room 56 including a compressor 53, a condenser 54, and an expansion valve 55, and an evaporator 52 that sends out high-pressure refrigerant from the machine room. 57. A gas suction line is formed which communicates from the gas phase portion of the machine chamber 56 and the ice heat storage chamber 57 to the liquid phase portion of the ice heat storage chamber to form an evaporator, and the machine chamber side gas suction pipe 58 and the ice heat storage chamber side are provided. A gas suction line 59 is provided, and the leakage of NH 3 refrigerant gas in the machine room is detected by the detection pipe 60 and input to the control device 61. The air flow distributor 62 is controlled by the control device, and the NH in the machine room 56 is controlled. According to the amount of leakage of the three gases, the gas suction ratio from the machine chamber 56 and the ice heat storage chamber 57 is controlled to be ejected from the ejection pipe 64 through the blower 63, and the leaked gas is made into the liquid phase of the ice heat storage chamber 57. It is intended to capture.
[0005]
Further, as an improvement plan of the above proposal, for example, a proposal related to an “evaporation condensation type ammonia refrigeration unit” has been proposed. (For example, refer to Patent Document 2.)
In this proposal, ammonia gas is recovered using the high solubility of ammonia gas in water, and the water for dissolution is used to improve the COP of the refrigeration unit by using the cooling water of the evaporative condenser. The purpose is to provide a refrigeration unit capable of collecting the leaked gas that also contributes.
[0006]
As shown in FIG. 4, the refrigeration unit is formed as an integrated package of an upper storage chamber 72 a and a lower storage chamber 73 a, and the upper and lower boundaries are hermetically sealed. A push-in fan 71 is provided on the lower left side of the upper storage chamber 72a, a recess is provided in the lower portion of the push-in fan to form a cold water tank 74, and cold water is assembled from the cold water tank and sprayed to the condenser 72 from the coolant spray nozzle 72b. Thus, an evaporative condenser is formed.
The upper storage chamber 72a is provided with a condenser 72 for condensing ammonia gas, a cooling water spray nozzle 72b, and the pushing fan 71.
The lower storage chamber 73a is provided with a compressor 70 for compressing ammonia gas, an oil separator 70a and related accessories to form a machine room, and a dynamic manufacturing device 75 for forming a load outside the machine. is there.
There is provided a guide channel 76 that vertically passes through the airtight boundary between the suction side of the push-in fan 71 and the lower storage chamber 73a and collects ambient air in the lower storage chamber 73a, which is a machine room, The atmospheric air in the lower storage chamber is sucked in as shown by a one-dot chain line, and then pushed into the condenser 72 as shown by a two-dot chain line through the pushing fan 71, and the atmosphere in the lower storage chamber which is the machine room When there is leakage of ammonia gas in the air, the sprayed cooling water of the cooling water spray nozzle 72b is collected and stored in the cold water tank 74 for detoxification.
[0007]
Moreover, in the refrigerant | coolant collection | recovery apparatus coped with when the refrigerant | coolant leakage occurs in the said refrigerating cycle, there exists a proposal regarding the prevention means of the backflow to the refrigerating cycle of the refrigerant | coolant once collect | recovered, for example. (For example, refer to Patent Document 3.)
The above proposal suggests that if an adsorbent or absorbent is used to recover hydrocarbons or ammonia leaked from the refrigeration cycle, the temperature of the recovered refrigerant will rise due to the pressure drop in the refrigeration cycle and the adsorbent heat generation in the adsorbent filling section. However, this problem was made in order to solve this problem. Thereafter, the collection container is hermetically shut off.
[0008]
Moreover, as an ammonia removal system in the refrigeration cycle, for example, there are proposals described below. (For example, refer to Patent Document 4.)
The above proposal introduces ammonia gas leaked from the refrigerator unit into a closed space such as a scrubber before release into the atmosphere, and reacts it with carbon dioxide and water to produce ammonium carbonate or ammonium hydrogen carbonate, etc. This salt is produced and detoxified.
[0009]
[Patent Document 1]
JP-A-8-136096 [Patent Document 2]
JP 11-30460 A [Patent Document 3]
JP 2001-174108 A [Patent Document 4]
JP 2001-347127 A
[Problems to be solved by the invention]
By the way, as seen in the prior art, the conventional ammonia gas leakage countermeasures are limited only to the removal of the leaked ammonia gas, and any countermeasures other than stopping the compressor are taken to stop the leakage. I didn't come. An object of the present invention is to provide an NH 3 heat pump that not only removes the leaked ammonia gas, but also actively separates the leaked part and systematically separates the liquid receiving part having a large amount of refrigerant. .
[0011]
[Means for Solving the Problems]
Therefore, the NH 3 heat pump of the present invention is
In a heat pump comprising a compressor, a condenser, an evaporator, a receiver, a pressure reducing device, and related accessories, and using ammonia gas as a refrigerant and having a means for eliminating leaked ammonia gas,
A return refrigerant gas introduction path from an air heat exchanger that operates for the evaporator and a return refrigerant gas introduction path from a water heat exchanger that also operates for the evaporator are connected to the suction side of the compressor. Each is provided with a shut-off valve, and either the air heat exchanger or the water heat exchanger where ammonia gas has leaked is separated from the heat pump cycle system,
A configuration in which a three-way valve is provided on the discharge side of the compressor and the compressed gas is sent out to the heat exchanger side where the ammonia gas does not leak is configured to minimize the amount of generated leakage.
[0012]
In the present invention described above, an air heat exchanger and a water heat exchanger, which are concerned about leakage of ammonia gas, are provided with a shut-off valve from the compressor suction side in order to separate the heat exchanger in which a leakage accident has occurred from the heat pump cycle system. In addition to disconnecting, the discharge side of the compressor is switched and sent to the heat exchanger that is not disconnected, and the leakage heat exchanger is separated and disconnected from the cycle system to minimize the amount of ammonia leakage. is there.
[0013]
For example, as shown in FIG. 2A, a compressor 80, an air heat exchanger 81, a water heat exchanger 82, a liquid receiver 83, a gas side four-way valve 84, a liquid side four-way valve 85, an expansion valve 86, etc. In the conventional air heat source heat pump including the refrigerant, the refrigerant vapor evaporated in the air heat exchanger 81 is routed to the intake side of the compressor 80 by the gas side four-way valve 84 during the heating operation in which hot water is taken out from the water heat exchanger 82. Forming.
In the above circuit configuration, when an ammonia gas leakage accident occurs in the air heat exchanger 81, the expansion valve 86 immediately shifts to a disconnected state, but on the suction side of the air heat exchanger 81 and the compressor 80, Since the circuit to be connected is not provided with a shutoff valve, the air heat exchanger 81 in which a leakage accident has occurred cannot be separated from the cycle system and excluded. Therefore, ammonia gas leakage continues and damage increases. In the present invention, a shut-off valve is provided in the introduction path to the compressor via the gas side four-way valve, and the air heat exchanger that has caused the leakage accident is separated and separated.
[0014]
As shown in FIG. 2B, as in FIG. 2A, the compressor 80, the air heat exchanger 81, the water heat exchanger 82, the liquid receiver 83, the gas side four-way valve 84, the liquid In a conventional air heat source heat pump including a side four-way valve 85, an expansion valve 86, etc., the refrigerant vapor evaporated in the water heat exchanger 82 is compressed by the gas side four-way valve 84 during the cooling operation in which the cold water is taken out from the water heat exchanger 82. An introduction path to the suction side of the machine 80 is formed.
In the above circuit configuration, when an ammonia gas leakage accident occurs in the water heat exchanger 82, the expansion valve 86 immediately shifts to a disconnected state, but on the suction side of the water heat exchanger 82 and the compressor 80, Since the circuit to be connected is not provided with a shut-off valve, the water heat exchanger 82 in which a leakage accident has occurred cannot be separated from the cycle system and excluded. As a result, leakage continues. In the present invention, a shut-off valve is provided in the introduction path to the compressor via the gas side four-way valve, and the water heat exchanger that has caused the leakage accident is separated and separated.
[0015]
In the NH 3 heat pump of the present invention,
The liquid receiver is provided with a shut-off valve at the inlet side inlet from the air heat exchanger and the water heat exchanger to the liquid receiver, and makes the liquid receiver independent of the heat pump cycle system when ammonia gas leaks Is preferred.
[0016]
In the above invention, when ammonia gas leaks, a check valve or a shut-off valve is provided at the inlet of a liquid receiver that holds most of the refrigerant in the refrigerant system, and is separated from the cycle system to be independent.
[0017]
And also in the NH 3 heat pump of the present invention,
The abatement means is preferably configured by water spray abatement.
[0018]
The invention described above describes the means for eliminating leaked gas, and is preferably provided with the necessary water spray removing means.
[0019]
And also in the NH 3 heat pump of the present invention,
The detoxification means preferably has a detoxification water tank and is configured to inject leaked gas or store dissolved ammonia water.
[0020]
In the invention described above, the abatement means is preferably provided with a detoxification water tank, and leakage gas is blown into the water tank or ammonia gas-dissolved water is stored.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the form of the Example of this invention is demonstrated with the example of illustration. However, unless otherwise specified, the dimensions, shapes, relative positions, and the like of the components described in this embodiment are merely illustrative examples, and are not intended to limit the scope of the present invention. Absent. The details of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of an NH 3 heat pump according to the present invention.
[0022]
As shown in FIG. 1, the NH 3 heat pump of the present invention has a structure formed by an integrated package composed of an upper storage chamber 20b and a lower storage chamber 20a.
The lower storage chamber 20a has a structure in which a compressor 30, a water heat exchanger 32, a liquid receiver 33, an expansion valve 36 and related accessories are built in to form a machine room,
The upper storage chamber 20b has a structure in which an air heat exchanger 31 provided with a suction fan 31a and an outside air intake port 20d are provided.
A boundary 20c made of an airtight member is provided between the upper storage chamber 20b and the lower storage chamber 20a, and a penetration portion that leads to the upper storage chamber is provided in the boundary 20c, and the electric shutter 15a and the ventilation are provided in the penetration portion. A fan 15 is provided to guide outside air taken in through the electric shutter 16 of the lower storage chamber 20a to the upper storage chamber 20b along the arrow A, and is sucked together with outside air B taken in from the outside air intake port 20d in the upper storage chamber 20b. It is configured to ventilate through the fan 31a.
[0023]
The ammonia gas leak detectors 14a and 14b are provided in the upper spaces of the upper storage chamber 20b and the lower storage chamber 20a, respectively, and are configured to detect gas leakage in each space, and upstream of the suction fan 31a and A non-illustrated water spray nozzle (not shown) is provided at the suction port of the ventilation fan 15 to dissolve and remove the leaked ammonia gas by water spray. Each is provided and collected.
[0024]
The present invention is provided with two-way valves 10a and 10b in place of the above-described conventional four-way valve switching circuit, in addition to the above-described ammonia gas detoxifying structure, and is provided with an air heat exchanger 31 or a water heat exchanger 32. The introduction of ammonia gas returning to the suction side of the compressor 30 is shut off, and the air heat exchanger 31 or the water heat exchanger 32 is connected in parallel to the two-way valve from the discharge side of the compressor 30 via the check valve 13. It is set as the structure which provides the three-way valve 11 sent out to either of these.
Further, the check valve 12 is provided on the refrigerant liquid introduction side of the liquid receiver 33, and the liquid receiver that stores a large amount of refrigerant liquid is separated from the heat pump cycle system and separated.
[0025]
That is, when ammonia gas leaks during the heating operation in which hot water is taken out from the water heat exchanger 32, the air heat exchanger 31 is moved to the water heat exchanger 32 side of the two-way valve 10a, the expansion valve 36, and the three-way valve 11. The liquid receiver 33 is separated from the circuit system by the check valve 12, the liquid supply electromagnetic valve, and the expansion valve 36.
[0026]
When ammonia gas leaks during cooling operation in which cold water is taken out from the water heat exchanger 32, the water heat exchanger 32 is switched to the air heat exchanger 31 side of the two-way valve 10b, the expansion valve 36, and the three-way valve 11. Thus, the liquid receiver 33 is separated from the heat pump cycle system by the check valve 12, the liquid supply electromagnetic valve, and the expansion valve 36.
[0027]
In addition, when the ammonia gas detector 14a provided in the upper storage chamber 20b detects leakage of ammonia gas, the ammonia gas detector provided in the lower storage chamber is activated by operating the water spray abatement device provided in the air heat exchanger. When the gas leakage in the lower storage chamber 20a is detected by 14b, the electric shutters 15a and 16 are closed and the water spray abatement device is operated.
When the occurrence of leakage is detected, the compressor 30 immediately stops operation.
[0028]
【The invention's effect】
With the above configuration, the present invention has the following effects.
In addition to detoxifying the leaked ammonia gas, it is possible to actively separate the leaked part and make the liquid receiving part having a large amount of refrigerant independent from the heat pump system, thereby minimizing the leakage of ammonia gas.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an NH 3 heat pump according to the present invention.
2A is a diagram showing a circuit configuration during heating operation of a conventional air heat source heat pump, and FIG. 2B is a diagram showing a circuit configuration during cooling operation of the air heat source heat pump shown in FIG.
FIG. 3 is a diagram showing a configuration of a refrigerant gas control device of a conventional heat pump system.
FIG. 4 is a diagram showing a schematic configuration of a conventional evaporative condensation type ammonia refrigeration unit.
[Explanation of symbols]
10a, 10b Two-way valve 11 Three-way valve 12, 13 Check valve 14a, 14b Ammonia gas leak detector 15 Ventilation fan 15a, 16 Electric shutter 20a Lower storage chamber 20b Upper storage chamber 20c Boundary 20d Outside air intake

Claims (3)

圧縮機と凝縮器と蒸発器と受液器と減圧装置と関連付属機器を含む構成よりなり、アンモニアガスを冷媒として使用するとともに漏洩アンモニアガスの除害手段を備えたヒートポンプにおいて、
前記圧縮機の吸入側に接続する、前記蒸発器用として作動する空気熱交換器よりの戻り冷媒ガスの導入路と、同じく前記蒸発器用として作動する水熱交換器よりの戻り冷媒ガスの導入路のそれぞれに遮断弁を設け、アンモニアガスの漏洩が起きた前記空気熱交換器又は水熱交換器の何れかを当該ヒートポンプサイクル系より切り離す構成とするとともに、
前記圧縮機の吐出側に三方弁を設け、前記アンモニアガスの漏洩の起きていない熱交換器側へ圧縮ガスを送出する構成として、発生漏洩量を最小に抑える構成としたことを特徴とするNHヒートポンプ。
In a heat pump comprising a compressor, a condenser, an evaporator, a receiver, a pressure reducing device, and related accessories, and using ammonia gas as a refrigerant and having a means for eliminating leaked ammonia gas,
A return refrigerant gas introduction path from an air heat exchanger that operates for the evaporator and a return refrigerant gas introduction path from a water heat exchanger that also operates for the evaporator are connected to the suction side of the compressor. Each is provided with a shut-off valve, and is configured to separate either the air heat exchanger or the water heat exchanger where ammonia gas leaked from the heat pump cycle system,
The NH is characterized in that a three-way valve is provided on the discharge side of the compressor, and the compressed gas is sent to the heat exchanger side where the ammonia gas does not leak, so that the amount of generated leakage is minimized. 3 heat pump.
前記受液器は、該受液器への空気熱交換器と水熱交換器よりの導入側入り口に遮断弁を設け、アンモニアガスの漏洩時に前記受液器を当該ヒートポンプサイクル系より独立させる構成としたことを特徴とする請求項1記載のNHヒートポンプ。The liquid receiver is provided with a shut-off valve at the inlet side inlet from the air heat exchanger and the water heat exchanger to the liquid receiver, and makes the liquid receiver independent of the heat pump cycle system when ammonia gas leaks The NH 3 heat pump according to claim 1, wherein 前記除害手段は、散水除害により構成したことを特徴とする請求項1記載のNHヒートポンプ。The NH 3 heat pump according to claim 1, wherein the abatement means is constituted by water spray abatement.
JP2002369881A 2002-12-20 2002-12-20 NH3 heat pump Expired - Fee Related JP4002507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369881A JP4002507B2 (en) 2002-12-20 2002-12-20 NH3 heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369881A JP4002507B2 (en) 2002-12-20 2002-12-20 NH3 heat pump

Publications (2)

Publication Number Publication Date
JP2004198071A JP2004198071A (en) 2004-07-15
JP4002507B2 true JP4002507B2 (en) 2007-11-07

Family

ID=32765977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369881A Expired - Fee Related JP4002507B2 (en) 2002-12-20 2002-12-20 NH3 heat pump

Country Status (1)

Country Link
JP (1) JP4002507B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162353A1 (en) * 2022-02-25 2023-08-31 三菱重工業株式会社 Floating structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210129A (en) * 2009-03-09 2010-09-24 Toyo Eng Works Ltd Cooling system
EP3394528B1 (en) * 2015-12-22 2023-08-09 Carrier Corporation Safety system for a container having a refrigeration system and method of providing safety

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162353A1 (en) * 2022-02-25 2023-08-31 三菱重工業株式会社 Floating structure

Also Published As

Publication number Publication date
JP2004198071A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4188971B2 (en) Ammonia / CO2 refrigeration system, CO2 brine generator used in the system, and ammonia cooling unit incorporating the generator
JP3109500B2 (en) Refrigeration equipment
JP4356939B2 (en) Leaky ammonia removal method and apparatus
CN101910758B (en) Mounting of pressure relief devices in a high pressure refrigeration system
KR20080114560A (en) Exhaust emission control system and engine-driven air conditioning system
JP4002507B2 (en) NH3 heat pump
JP4906792B2 (en) Vapor compression heat pump equipment
JP2010210129A (en) Cooling system
KR102158196B1 (en) Refrigerant recovery equipment that can be used continuously
JPH08121911A (en) Absorption refrigerating machine utilizing engine exhaust heat
KR20170117501A (en) Heat pump
JP4523907B2 (en) Combustion refrigerant recovery method and combustible refrigerant recovery apparatus
JP3932111B2 (en) Ammonia compression refrigeration system leakage ammonia detection method, harm spread prevention method and its device
JP7145679B2 (en) Hybrid heat pump device
JP4301747B2 (en) Absorption refrigerator vacuum holding device
JP4165763B2 (en) Refrigerator and air-cooled separate refrigerator
JP4071200B2 (en) Ammonia refrigeration equipment
JPH03204569A (en) Refrigerating method using oil injection type screw compressor and heat pump method
JP4159409B2 (en) Air conditioner
KR0156396B1 (en) Ammonia gas removing apparatus and method of ammonia absorptive type airconditioner
JP2024057434A (en) Cooling system
KR200371465Y1 (en) Recovering apparatus for refrigerant
JP3587216B2 (en) Bleeding device
JP4342194B2 (en) Connecting the condensing unit
JP2009148666A (en) Exhaust gas treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees