JP4000721B2 - Process for producing 2,2,6,6-tetramethyl-4-oxopiperidine - Google Patents

Process for producing 2,2,6,6-tetramethyl-4-oxopiperidine Download PDF

Info

Publication number
JP4000721B2
JP4000721B2 JP20163399A JP20163399A JP4000721B2 JP 4000721 B2 JP4000721 B2 JP 4000721B2 JP 20163399 A JP20163399 A JP 20163399A JP 20163399 A JP20163399 A JP 20163399A JP 4000721 B2 JP4000721 B2 JP 4000721B2
Authority
JP
Japan
Prior art keywords
taa
aqueous solution
oil layer
alkaline aqueous
tetramethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20163399A
Other languages
Japanese (ja)
Other versions
JP2001031651A (en
Inventor
陽一 門田
健夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP20163399A priority Critical patent/JP4000721B2/en
Publication of JP2001031651A publication Critical patent/JP2001031651A/en
Application granted granted Critical
Publication of JP4000721B2 publication Critical patent/JP4000721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、2,2,6,6−テトラメチル−4−オキソピペリジン(以下TAAと略称する。)の製造方法に関する。詳細には、高純度な2,2,6,6−テトラメチル−4−オキソピペリジンを高い収率で得ることができるTAAの簡易な製造方法に関する。
【0002】
【従来の技術】
TAAは、高分子光安定剤、医薬品等の原料として有用な化合物であり、TAAの製造方法として、触媒の存在下にアセトン、アセトンの縮合物から選ばれる少なくとも1種とアンモニア、2,2,4,4,6−ペンタメチル-2,3,4,5−テトラヒドロピリミジン(以下ACNと略称する。)から選ばれる少なくとも1種とを反応させて得られる反応粗液を用いる方法が知られている。
【0003】
前記方法で得られた反応粗液よりTAAを製造する方法としては、▲1▼水酸化ナトリウム、水酸化カリウムなどの強アルカリ水溶液を加えた後、水層を除去し油層を蒸留する方法、または▲2▼アルカリ水溶液を加えた後、有機溶媒を加え生成物を抽出分離し、得られた抽出液を蒸留により粗製品とした後、晶析させ、得られた粗結晶を有機溶媒で洗浄する方法(特開平4-154763号公報)等が知られている。
【0004】
しかしながら、▲1▼の方法においては、油層の蒸留中にTAAが熱分解し易くなり、収率が低下することがあった。また、▲2▼の方法は晶析、それに伴う固液分離が必要であって製造工程が複雑であり、操作が煩雑になるという問題があった。
【0005】
【発明が解決しようとする課題】
本発明の課題は、触媒の存在下にアセトン、アセトンの縮合物から選ばれる少なくとも1種とアンモニアとを反応させて得られる反応粗液、または2,2,4,4,6−ペンタメチル-2,3,4,5−テトラヒドロピリミジンを水存在下反応させて得られる反応粗液を用いる2,2,6,6−テトラメチル−4−オキソピペリジンの製造方法であって、高純度なTAAを高い収率で製造し得る簡易な方法を提供するにある。
【0006】
本発明者らはかかる課題を解決すべく鋭意検討を重ねた結果、反応粗液にアルカリ水溶液を加えて油層から触媒を抽出除去し、油層に特定の水溶液を加えて油層を洗浄し、蒸留するという工程を含む簡易な方法によれば、蒸留時にTAAの熱分解を抑制することができ、高い収率でTAAを製造し得ることを見出し、本発明を完成するに至った。
【0007】
【課題を解決するための手段】
すなわち、本発明は、触媒の存在下にアセトン、アセトンの縮合物から選ばれる少なくとも1種とアンモニアとを反応させて得られる反応粗液、または2,2,4,4,6−ペンタメチル-2,3,4,5−テトラヒドロピリミジンを水存在下反応させて得られる反応粗液を用いる2,2,6,6−テトラメチル−4−オキソピペリジンの製造方法であって、
(1)反応粗液にアルカリ水溶液を添加して油層から触媒を抽出除去し、
(2)次いで、油層に弱アルカリ水溶液を添加して油層を洗浄し、
(3)次いで、油層を蒸留して、2,2,6,6−テトラメチル−4−オキソピペリジンを得る工程を含むことを特徴とする2,2,6,6−テトラメチル−4−オキソピペリジンの製造方法である。
【発明の実施の形態】
【0008】
以下、本発明を詳細に説明する。
本発明は、(1)反応粗液にアルカリ水溶液を添加して油層から触媒を抽出除去し、(2)次いで、油層に弱アルカリ水溶液を添加してて油層を洗浄し、(3)次いで、油層を蒸留して、2,2,6,6−テトラメチル−4−オキソピペリジンを得る工程を含むことを特徴とする。
【0009】
本発明に用いる反応粗液は、触媒の存在下にアセトン、アセトンの縮合物から選ばれる少なくとも1種とアンモニアとを反応させて得られる。前記触媒としては、例えば無機酸、カルボン酸、スルホン酸、これらのアンモニウム塩(特開昭63-222157号公報)、チオシアン酸アンモニウム(特開昭63-10761号公報)、ヒドラジンの塩酸塩(特開昭54-112873号公報)、塩化クミル(特開平1-233272号公報)、硫酸水素アンモニウム(特開平2-145570号公報)、テトラフルオロホウ酸アンモニウム(特開平5-86030号公報)等が挙げられる。前記のアセトンの縮合物としては、例えば、ジアセトンアルコール、メシチルオキシド、ホロン、イソホロン、トリアセトンジアルコール等が挙げられる。
【0010】
また、反応粗液は、2,2,4,4,6−ペンタメチル-2,3,4,5−テトラヒドロピリミジン(ACN)を水存在下反応させて得ることもできる。前記ACNはアセトンとアンモニアの縮合反応によって得られるものである。縮合反応により得られた反応液から単離して用いることもできるし、該反応液のまま用いることもできる。前記反応においては、反応時間を短縮できることから、前述した触媒の存在下で行うことが好ましい。
【0011】
工程(1)に用いるアルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等の強アルカリ水溶液または炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等の弱アルカリ水溶液が挙げられる。油層から触媒を抽出除去するためには、その塩析効果を高くできることから、強アルカリ水溶液を用いることが好ましい。前記アルカリ水溶液のアルカリ濃度は抽出温度における飽和溶解度に近いものが望ましく、例えば水酸化ナトリウム水溶液では40〜50%程度が好ましい。飽和溶解度より高い場合には、結晶が析出して、分液性が低下する場合があり、一方、あまり低くなると塩析効果が低下し触媒抽出除去効率が低下する場合がある。前記アルカリ水溶液の添加量は、通常、反応粗液に含まれる触媒と等モル以上となる量であり、1〜3モル倍程度になる量であることが好ましい。3モル倍を超える量を添加しても、添加量に見合う効果が得られないばかりか、設備が大型化し、排水処理負荷が増加する等の問題が生じる。
【0012】
工程(1)の抽出除去処理は、通常、縮合反応の温度と同等の温度で行えばよい。抽出効率、TAAの分解抑制の面から、10〜90℃程度が好ましく、より好ましくは10〜70℃である。
【0013】
本発明の工程(1)を行うに際しては、反応粗液を攪拌翼付き容器に入れ、攪拌しながらアルカリ水溶液を添加して油層から触媒を水層へ抽出した後、静置して分液し、容器の下層から水層を除去すればよい。
【0014】
工程(2)に用いる弱アルカリ水溶液としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等の弱アルカリ水溶液が挙げられる。前記弱アルカリ水溶液のアルカリ濃度は抽出温度における飽和溶解度に近いものが望ましく、例えば炭酸カリウム水溶液では45〜55%程度が好ましい。飽和溶解度より高い場合には、結晶が析出して分液性が低下する場合がある。工程(1)において強アルカリ水溶液を用いた場合は、工程(2)の弱アルカリ水溶液濃度があまり低くなると油層中の強アルカリ成分の除去効率が低下することがある。
【0015】
前記弱アルカリ水溶液の添加量は、工程(1)において添加したアルカリ水溶液の添加量の1重量倍以下、好ましくは0.2〜1重量倍である。1重量倍を超える量を添加しても、添加量に見合う効果が得られないばかりか、設備が大型化し、排水処理負荷が増加する等の問題が生じる。工程(1)において強アルカリ水溶液を用いた場合は、工程(2)の弱アルカリ水溶液の添加量が0.2倍量未満である時、抽出後の油層に強アルカリ成分が残存する可能性がある。
【0016】
工程(2)の抽出除去処理は、通常、縮合反応の温度と同等の温度で行えばよい。抽出効率、TAAの分解抑制の面から、10〜90℃程度が好ましく、より好ましくは10〜70℃である。
【0017】
本発明の工程(2)を行うに際しては、工程(1)で得られた油層に攪拌しながら弱アルカリ水溶液を添加して油層を洗浄した後、静置して分液し、容器の下層から水層を除去すればよい。また、工程(2)の操作は必要に応じ繰り返し行ってもよい。
【0018】
工程(3)の蒸留は、公知の蒸留装置を用いて行えばよく、通常、蒸留効率を向上させ、かつTAAの熱分解を抑制できることより、減圧で行うことが好ましい。前記蒸留装置はバッチ式、連続式のいずれであってもよい。
【0019】
本発明の工程(3)を行うに際しては、通常、工程(2)で得られた油層(以下、洗浄後油層と略称する。)を冷却管を付けた容器に入れ、減圧下で蒸留すればよい。留分は未反応アセトンおよび水等の混合留分、アセトン縮合物、ACN並びにTAA等の混合留分に分けて留出させる。未反応アセトンおよび水等の混合留分は、反応粗液の原料としてリサイクル使用する。また、必要に応じて再蒸留や晶析等の公知の方法を用い、さらに精製してもよい。
【0020】
【実施例】
以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。尚、収率は下記にて算出した。
未反応アセトンおよび水等の混合留分回収中TAA単蒸留収率X(%)=(B中TAA含量+C中TAA含量)/(A中TAA含量)×100
アセトン縮合物、ACNおよびTAA等の混合留分回収中TAA単蒸留収率Y(%)=(D中TAA含量+E中TAA含量)/(C中TAA含量)×100
単蒸留全体TAA収率(%)=X×Y/100
〔式中、Aは洗浄後油層、Bは洗浄後油層蒸留後の未反応アセトンおよび水等の混合留分、Cは洗浄後油層蒸留後の単蒸留釜液、DはCの蒸留後のアセトン縮合物、ACNおよびTAA等の混合留分、EはCの蒸留後の単蒸留釜液を表す。〕
【0021】
実施例1
反応粗液の調製:
1000mlオートクレーブに、アセトン650.0g、塩化アンモニウム触媒14.3g、水20.0gを仕込み、反応温度60℃にてアンモニアガス38.8gを2.5時間かけ添加し、60℃で1.0時間熟成後、オートクレーブ内アンモニアガスを抜き出し、さらに60℃で1.5時間熟成し、冷却後708.9gの反応粗液を得た。
【0022】
実施例2
実施例1と同様な方法で調整した反応粗液401.0gを攪拌翼付きセパラブルフラスコに入れ、48%水酸化ナトリウム水溶液35.3gを入れ、60℃にて攪拌10分間、静置10分間後分液し、下層より洗浄水層67.9gを回収した。
【0023】
次いで、残油層に49%炭酸カリウム水溶液55.1gを入れ、60℃にて攪拌10分間、静置10分間後分液し、下層より洗浄水層60.0gを回収した。次いで、残油層に49%炭酸カリウム水溶液55.0gを入れ、60℃にて攪拌10分間静置10分間後分液し、下層より洗浄水層56.8gを回収し、洗浄後油層を344.26gを得た。この洗浄後油層をガスクマトグラフィーにより分析し、TAA107.6gの生成を確認した。
【0024】
この洗浄後油層299.5g(TAA含量93.6g)を冷却管を取り付けた500mlフラスコに入れ、オイルバスにて100℃とし、真空度760Torr、1.5時間にて蒸留し、未反応アセトンおよび水等の混合留分143.2g(TAA含量0.8g)と単蒸留釜液156.2g(TAA含量92.6g)を得た。次いで、この未反応アセトンおよび水等の混合留分回収後の単蒸留釜液142.8g(TAA含量84.6g)をオイルバスにて170℃まで加温し、760から120Torrへと徐々に真空度をあげていき、4.5時間にてアセトン縮合物、ACNおよびTAA等の混合留分121.3g(TAA含量79.6g)を得た。この際、フラスコより単蒸留釜液として18.8g(TAA含量4.7g)を回収した。未反応アセトンおよび水等の混合留分回収中TAA単蒸留収支は99.9%であり、アセトン縮合物、ACNおよびTAA等の混合留分回収中TAA単蒸留収支は99.6%であり、単蒸留全体TAA収支は99.5%であった。
【0025】
実施例3
実施例1と同様な方法で調製した反応粗液400.6gを攪拌翼付きセパラブルフラスコに入れ、49%炭酸カリウム水溶液35.3gを入れ、60℃にて攪拌10分間静置10分間後分液し、下層より洗浄水層56.3gを回収した。
【0026】
次いで、残油層に49%炭酸カリウム水溶液55.2gを入れ、60℃にて攪拌10分間静置10分間後分液し、下層より洗浄水層63.7gを回収した。さらに、残油層に49%炭酸カリウム水溶液55.1gを入れ、60℃にて攪拌10分間静置10分間後分液し、下層より洗浄水層60.4gを回収し、洗浄後油層を351.4gを得た。この洗浄後油層をガスクマトグラフィーにより分析し、TAA104.6gの生成を確認した。
【0027】
この洗浄後油層298.0g(TAA含量88.7g)を冷却管を取り付けた500mlフラスコに入れ、オイルバスにて100℃とし、真空度760Torr、1.5時間にて未反応アセトンおよび水等の混合留分138.7g(TAA含量0.7g)を得た。次いで、オイルバス温度を170℃まで上昇させ、760から180Torrへと徐々に真空度をあげていき、4時間にてアセトン縮合物、ACN、TAA等混合留分130.9g(TAA含量74.5g)を得た。この際、フラスコより単蒸留釜液として27.1g(TAA含量12.9g)を回収した。これら三留分中のTAA含量は88.0gであった。単蒸留全体TAA収率は99.3%であった。
【0028】
比較例1
実施例1と同様な方法で調製した反応粗液400.0gを攪拌翼付きセパラブルフラスコに入れ、48%水酸化ナトリウム水溶液34.4gを入れ、62℃にて攪拌10分間静置10分間後分液し、下層より洗浄水層60.6gを回収した。
【0029】
次いで、残油層に48%水酸化ナトリウム水溶液55.4gを入れ、62℃にて攪拌10分間静置10分間後分液し、下層より洗浄水層85.1gを回収した。さらに、残油層に48%水酸化ナトリウム水溶液55.2gを入れ、62℃にて攪拌10分間静置10分間後分液し、下層より洗浄水層61.1gを回収し、洗浄後油層を319.9gを得た。この洗浄後油層をガスクマトグラフィーにより分析し、TAA97.9gの生成を確認した。
【0030】
この洗浄後油層296.6g(TAA含量90.8g)を冷却管を取り付けた500mlフラスコに入れ、オイルバスにて100℃とし、760から300Torrへと徐々に真空度をあげていき、1.5時間にて未反応アセトンおよび水等の混合留分126.1g(TAA含量0.4g)を得た。次いで、このオイルバス温度を170℃まで上昇させ、760から80Torrへと徐々に真空度をあげていき、4.5時間にてアセトン縮合物、ACN、TAA等混合留分135.8g(TAA含量75.2g)を得た。この際、フラスコより単蒸留釜液として30.4g(TAA含量3.0g)を回収した。これら三留分中のTAA含量は78.6gであった。単蒸留全体TAA収率は86.5%であった。
【0031】
【発明の効果】
以上詳述した様に、本発明は、触媒の存在下にアセトン、アセトンの縮合物から選ばれる少なくとも1種とアンモニアとを反応させて得られる反応粗液、または2,2,4,4,6−ペンタメチル-2,3,4,5−テトラヒドロピリミジンを水存在下反応させて得られる反応粗液にアルカリ水溶液を加えて油層から触媒を抽出除去し、油層に特定の水溶液を加えて油層を洗浄し、次いで蒸留するという工程を含む簡易な製造方法であって、蒸留時にTAAの熱分解を抑制することができ、高純度な2,2,6,6−テトラメチル−4−オキソピペリジン(TAA)を高い収率で製造し得る方法であり、その産業上の利用価値は大である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing 2,2,6,6-tetramethyl-4-oxopiperidine (hereinafter abbreviated as TAA). In detail, it is related with the simple manufacturing method of TAA which can obtain a highly purified 2,2,6,6-tetramethyl-4-oxopiperidine with a high yield.
[0002]
[Prior art]
TAA is a compound useful as a raw material for polymer light stabilizers, pharmaceuticals and the like. As a method for producing TAA, in the presence of a catalyst, at least one selected from acetone and acetone condensates and ammonia, 2, 2, A method using a reaction crude liquid obtained by reacting at least one selected from 4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine (hereinafter abbreviated as ACN) is known. .
[0003]
As a method for producing TAA from the reaction crude liquid obtained by the above method, (1) a method of adding a strong alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, then removing the aqueous layer and distilling the oil layer, or (2) After adding an aqueous alkali solution, an organic solvent is added to extract and separate the product, and the resulting extract is made into a crude product by distillation, followed by crystallization, and the resulting crude crystal is washed with an organic solvent. A method (Japanese Patent Laid-Open No. 4-154663) and the like are known.
[0004]
However, in the method (1), TAA tends to be thermally decomposed during distillation of the oil layer, and the yield may be lowered. Further, the method (2) has a problem that crystallization and accompanying solid-liquid separation are necessary, and the manufacturing process is complicated and the operation becomes complicated.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a reaction crude liquid obtained by reacting at least one selected from acetone and acetone condensate with ammonia in the presence of a catalyst, or 2,2,4,4,6-pentamethyl-2. 2,2,6,6-tetramethyl-4-oxopiperidine using a crude reaction solution obtained by reacting 1,3,4,5-tetrahydropyrimidine in the presence of water, comprising high-purity TAA An object of the present invention is to provide a simple method that can be produced in a high yield.
[0006]
As a result of intensive studies to solve such problems, the present inventors have added an alkaline aqueous solution to the reaction crude liquid to extract and remove the catalyst from the oil layer, added a specific aqueous solution to the oil layer, washed the oil layer, and distilled. According to a simple method including the steps, it was found that the thermal decomposition of TAA during distillation can be suppressed and TAA can be produced in a high yield, and the present invention has been completed.
[0007]
[Means for Solving the Problems]
That is, the present invention provides a reaction crude liquid obtained by reacting at least one selected from acetone and acetone condensate with ammonia in the presence of a catalyst, or 2,2,4,4,6-pentamethyl-2. 2,2,6,6-tetramethyl-4-oxopiperidine using a reaction crude liquid obtained by reacting 3,4,5-tetrahydropyrimidine in the presence of water,
(1) An alkaline aqueous solution is added to the reaction crude liquid to extract and remove the catalyst from the oil layer,
(2) Next, a weak alkaline aqueous solution is added to the oil layer to wash the oil layer,
(3) Next, the step of distilling the oil layer to obtain 2,2,6,6-tetramethyl-4-oxopiperidine gives 2,2,6,6-tetramethyl-4-oxo This is a method for producing piperidine.
DETAILED DESCRIPTION OF THE INVENTION
[0008]
Hereinafter, the present invention will be described in detail.
The present invention includes (1) adding an alkaline aqueous solution to the reaction crude liquid to extract and remove the catalyst from the oil layer, (2) then adding a weak alkaline aqueous solution to the oil layer to wash the oil layer, (3) The method includes the step of distilling the oil layer to obtain 2,2,6,6-tetramethyl-4-oxopiperidine.
[0009]
The reaction crude liquid used in the present invention is obtained by reacting at least one selected from acetone and acetone condensate with ammonia in the presence of a catalyst. Examples of the catalyst include inorganic acids, carboxylic acids, sulfonic acids, ammonium salts thereof (JP-A 63-222157), ammonium thiocyanate (JP-A 63-10761), and hydrazine hydrochloride (special No. 54-112873), cumyl chloride (JP-A-1-233272), ammonium hydrogen sulfate (JP-A-2-145570), ammonium tetrafluoroborate (JP-A-5-86030), etc. Can be mentioned. Examples of the condensate of acetone include diacetone alcohol, mesityl oxide, phorone, isophorone, and triacetone dialcohol.
[0010]
The reaction crude liquid can also be obtained by reacting 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine (ACN) in the presence of water. The ACN is obtained by a condensation reaction of acetone and ammonia. The reaction solution obtained by the condensation reaction can be isolated and used, or the reaction solution can be used as it is. The reaction is preferably performed in the presence of the above-described catalyst because the reaction time can be shortened.
[0011]
Examples of the alkaline aqueous solution used in the step (1) include a strong alkaline aqueous solution such as a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution, or a weak alkaline aqueous solution such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate. In order to extract and remove the catalyst from the oil layer, it is preferable to use a strong alkaline aqueous solution because the salting-out effect can be enhanced. The alkali concentration of the aqueous alkali solution is preferably close to the saturation solubility at the extraction temperature. For example, it is preferably about 40 to 50% for an aqueous sodium hydroxide solution. If the solubility is higher than the saturation solubility, crystals may precipitate and the liquid separation property may decrease. On the other hand, if the solubility is too low, the salting-out effect may decrease and the catalyst extraction and removal efficiency may decrease. The addition amount of the alkaline aqueous solution is usually an amount that is equimolar or more to the catalyst contained in the reaction crude liquid, and is preferably an amount that is about 1 to 3 mol times. Even if an amount exceeding 3 mol times is added, not only an effect commensurate with the added amount cannot be obtained, but also problems such as an increase in the size of the equipment and an increase in wastewater treatment load occur.
[0012]
The extraction removal process in the step (1) may be usually performed at a temperature equivalent to the temperature of the condensation reaction. From the standpoint of extraction efficiency and suppression of TAA decomposition, the temperature is preferably about 10 to 90 ° C, more preferably 10 to 70 ° C.
[0013]
In carrying out the step (1) of the present invention, the reaction crude liquid is put into a vessel equipped with a stirring blade, an aqueous alkali solution is added while stirring to extract the catalyst from the oil layer to the water layer, and then left to stand for liquid separation. The aqueous layer may be removed from the lower layer of the container.
[0014]
Examples of the weak alkaline aqueous solution used in the step (2) include weak alkaline aqueous solutions such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate. The alkali concentration of the weak alkaline aqueous solution is preferably close to the saturation solubility at the extraction temperature. For example, it is preferably about 45 to 55% for a potassium carbonate aqueous solution. When the solubility is higher than the saturation solubility, crystals may precipitate and the liquid separation property may be lowered. When the strong alkaline aqueous solution is used in the step (1), the removal efficiency of the strong alkaline component in the oil layer may be lowered if the weak alkaline aqueous solution concentration in the step (2) is too low.
[0015]
The addition amount of the weak alkaline aqueous solution is 1 weight or less, preferably 0.2 to 1 weight times the addition amount of the alkaline aqueous solution added in the step (1). Even if an amount exceeding 1 times the weight is added, not only the effect corresponding to the added amount is not obtained, but also problems such as an increase in the size of the facility and an increase in wastewater treatment load occur. When a strong alkaline aqueous solution is used in the step (1), when the amount of the weak alkaline aqueous solution added in the step (2) is less than 0.2 times, a strong alkaline component may remain in the oil layer after extraction. is there.
[0016]
The extraction and removal treatment in the step (2) may be usually performed at a temperature equivalent to the temperature of the condensation reaction. From the standpoint of extraction efficiency and suppression of TAA decomposition, the temperature is preferably about 10 to 90 ° C, more preferably 10 to 70 ° C.
[0017]
In carrying out the step (2) of the present invention, a weak alkaline aqueous solution is added to the oil layer obtained in the step (1) while stirring to wash the oil layer, and then allowed to stand for liquid separation. What is necessary is just to remove an aqueous layer. Moreover, you may repeat operation of a process (2) as needed.
[0018]
The distillation in the step (3) may be performed using a known distillation apparatus, and is usually preferably performed under reduced pressure because the distillation efficiency can be improved and the thermal decomposition of TAA can be suppressed. The distillation apparatus may be either a batch type or a continuous type.
[0019]
When performing step (3) of the present invention, the oil layer obtained in step (2) (hereinafter abbreviated as oil layer after washing) is usually placed in a vessel equipped with a cooling tube and distilled under reduced pressure. Good. The fraction is divided into mixed fractions such as unreacted acetone and water, and mixed fractions such as acetone condensate, ACN and TAA. A mixed fraction such as unreacted acetone and water is recycled as a raw material for the reaction crude liquid. Moreover, you may refine | purify further using well-known methods, such as redistillation and crystallization, as needed.
[0020]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples. The yield was calculated as follows.
TAA simple distillation yield X (%) during recovery of mixed fractions such as unreacted acetone and water = (TAA content in B + TAA content in C) / (TAA content in A) × 100
TAA simple distillation yield Y (%) during recovery of mixed fraction such as acetone condensate, ACN and TAA = (TAA content in D + TAA content in E) / (TAA content in C) × 100
Simple distillation overall TAA yield (%) = X × Y / 100
[In the formula, A is an oil layer after washing, B is a mixed fraction such as unreacted acetone and water after washing and oil layer distillation, C is a simple distillation pot solution after oil layer distillation after washing, and D is acetone after distillation of C. Condensate, mixed fraction such as ACN and TAA, E represents a simple distillation still liquid after distillation of C. ]
[0021]
Example 1
Preparation of reaction crude:
A 1000 ml autoclave was charged with 650.0 g of acetone, 14.3 g of ammonium chloride catalyst, and 20.0 g of water, and 38.8 g of ammonia gas was added over 2.5 hours at a reaction temperature of 60 ° C., and 1.0 hour at 60 ° C. After aging, the ammonia gas in the autoclave was extracted, and further aged at 60 ° C. for 1.5 hours. After cooling, 708.9 g of a crude reaction liquid was obtained.
[0022]
Example 2
401.0 g of the crude reaction solution prepared in the same manner as in Example 1 was placed in a separable flask equipped with a stirring blade, 35.3 g of 48% aqueous sodium hydroxide solution was added, and the mixture was stirred at 60 ° C. for 10 minutes and allowed to stand for 10 minutes. After liquid separation, 67.9 g of a washing water layer was recovered from the lower layer.
[0023]
Next, 55.1 g of a 49% aqueous potassium carbonate solution was added to the residual oil layer, followed by liquid separation at 60 ° C. for 10 minutes with stirring and 10 minutes after standing, and 60.0 g of a washing water layer was recovered from the lower layer. Next, 55.0 g of a 49% aqueous potassium carbonate solution was added to the residual oil layer, and the mixture was allowed to stand for 10 minutes with stirring at 60 ° C., followed by liquid separation for 10 minutes. 26 g was obtained. After this washing, the oil layer was analyzed by gas chromatography, and production of 107.6 g of TAA was confirmed.
[0024]
After this washing, 299.5 g of oil layer (TAA content 93.6 g) was placed in a 500 ml flask equipped with a condenser, and was distilled at 100 ° C. in an oil bath at a vacuum of 760 Torr for 1.5 hours. 143.2 g (TAA content 0.8 g) of a mixed fraction such as water and 156.2 g (TAA content 92.6 g) of a simple distillation kettle liquid were obtained. Next, 142.8 g (TAA content 84.6 g) of the simple distillation kettle liquid after recovering the mixed fraction such as unreacted acetone and water is heated to 170 ° C. in an oil bath, and gradually vacuumed from 760 to 120 Torr. By increasing the temperature, 121.3 g of a mixed fraction such as acetone condensate, ACN and TAA (TAA content 79.6 g) was obtained in 4.5 hours. At this time, 18.8 g (TAA content 4.7 g) was recovered from the flask as a single distillation pot liquid. TAA simple distillation balance during recovery of mixed fractions such as unreacted acetone and water is 99.9%, and TAA single distillation balance during recovery of mixed fractions such as acetone condensate, ACN and TAA is 99.6%, The simple distillation overall TAA balance was 99.5%.
[0025]
Example 3
400.6 g of the crude reaction solution prepared in the same manner as in Example 1 was placed in a separable flask equipped with a stirring blade, 35.3 g of a 49% potassium carbonate aqueous solution was added, and the mixture was allowed to stand at 60 ° C. for 10 minutes and left for 10 minutes. Then, 56.3 g of a washing water layer was recovered from the lower layer.
[0026]
Next, 55.2 g of a 49% potassium carbonate aqueous solution was added to the residual oil layer, and the mixture was allowed to stand for 10 minutes with stirring at 60 ° C. for 10 minutes, followed by liquid separation. Further, 55.1 g of a 49% potassium carbonate aqueous solution was added to the residual oil layer, and the mixture was allowed to stand for 10 minutes with stirring at 60 ° C. for 10 minutes, followed by liquid separation. 4 g was obtained. After this washing, the oil layer was analyzed by gas chromatography to confirm the production of 104.6 g of TAA.
[0027]
After this washing, 298.0 g (TAA content 88.7 g) of the oil layer was put into a 500 ml flask equipped with a condenser, and the temperature was set to 100 ° C. in an oil bath, and unreacted acetone, water, and the like at a vacuum degree of 760 Torr and 1.5 hours. The mixed fraction 138.7g (TAA content 0.7g) was obtained. Next, the oil bath temperature was raised to 170 ° C., and the degree of vacuum was gradually increased from 760 to 180 Torr, and 130.9 g of a mixed fraction of acetone condensate, ACN, TAA, etc. in 4 hours (TAA content: 74.5 g) ) At this time, 27.1 g (TAA content: 12.9 g) was recovered from the flask as a single distillation pot liquid. The TAA content in these three fractions was 88.0 g. The single distillation overall TAA yield was 99.3%.
[0028]
Comparative Example 1
400.0 g of the crude reaction solution prepared in the same manner as in Example 1 was placed in a separable flask equipped with a stirring blade, 34.4 g of a 48% aqueous sodium hydroxide solution was added, and the mixture was stirred at 62 ° C. for 10 minutes and left for 10 minutes. Liquid separation was performed, and 60.6 g of a washing water layer was recovered from the lower layer.
[0029]
Next, 55.4 g of a 48% sodium hydroxide aqueous solution was added to the residual oil layer, and the mixture was allowed to stand for 10 minutes with stirring at 62 ° C. for 10 minutes, followed by liquid separation. Further, 55.2 g of 48% sodium hydroxide aqueous solution was added to the residual oil layer, and the mixture was allowed to stand for 10 minutes with stirring at 62 ° C. for 10 minutes, followed by liquid separation, and 61.1 g of the washing water layer was recovered from the lower layer. .9 g was obtained. After washing, the oil layer was analyzed by gas chromatography to confirm the formation of 97.9 g of TAA.
[0030]
After this washing, 296.6 g of oil layer (TAA content 90.8 g) was put into a 500 ml flask equipped with a condenser, and the temperature was raised to 100 ° C. in an oil bath, and the degree of vacuum was gradually increased from 760 to 300 Torr. As a result, 126.1 g of a mixed fraction such as unreacted acetone and water (TAA content 0.4 g) was obtained. Next, the oil bath temperature was raised to 170 ° C., and the degree of vacuum was gradually increased from 760 to 80 Torr. A mixture fraction of acetone condensate, ACN, TAA and the like 135.8 g (TAA content) in 4.5 hours. 75.2 g) was obtained. At this time, 30.4 g (TAA content: 3.0 g) was recovered from the flask as a single distillation pot liquid. The TAA content in these three fractions was 78.6 g. The single distillation overall TAA yield was 86.5%.
[0031]
【The invention's effect】
As described in detail above, the present invention is a reaction crude liquid obtained by reacting ammonia with at least one selected from acetone and a condensate of acetone in the presence of a catalyst, or 2, 2, 4, 4, An alkaline aqueous solution is added to the reaction crude liquid obtained by reacting 6-pentamethyl-2,3,4,5-tetrahydropyrimidine in the presence of water to extract and remove the catalyst from the oil layer, and a specific aqueous solution is added to the oil layer to remove the oil layer. This is a simple production method including the steps of washing and then distilling, which can suppress the thermal decomposition of TAA during the distillation, and is highly pure 2,2,6,6-tetramethyl-4-oxopiperidine ( TAA) can be produced in a high yield, and its industrial utility value is great.

Claims (3)

触媒の存在下にアセトン、アセトンの縮合物から選ばれる少なくとも1種とアンモニアとを反応させて得られる反応粗液、または2,2,4,4,6−ペンタメチル-2,3,4,5−テトラヒドロピリミジンを水存在下反応させて得られる反応粗液を用いる2,2,6,6−テトラメチル−4−オキソピペリジンの製造方法であって、
(1)反応粗液にアルカリ水溶液を添加して油層から触媒を抽出除去し、
(2)次いで、油層に弱アルカリ水溶液を添加して油層を洗浄し、
(3)次いで、油層を蒸留して、2,2,6,6−テトラメチル−4−オキソピペリジンを得る工程を含むことを特徴とする2,2,6,6−テトラメチル−4−オキソピペリジンの製造方法。
Reaction crude liquid obtained by reacting ammonia with at least one selected from acetone and acetone condensate in the presence of a catalyst, or 2,2,4,4,6-pentamethyl-2,3,4,5 A process for producing 2,2,6,6-tetramethyl-4-oxopiperidine using a crude reaction solution obtained by reacting tetrahydropyrimidine in the presence of water,
(1) An alkaline aqueous solution is added to the reaction crude liquid to extract and remove the catalyst from the oil layer,
(2) Next, a weak alkaline aqueous solution is added to the oil layer to wash the oil layer,
(3) Next, the step of distilling the oil layer to obtain 2,2,6,6-tetramethyl-4-oxopiperidine gives 2,2,6,6-tetramethyl-4-oxo A method for producing piperidine.
前記(2)に用いる弱アルカリ水溶液が炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウムからなる群より選ばれた少なくとも1種であることを特徴とする請求項1記載の2,2,6,6−テトラメチル−4−オキソピペリジンの製造方法。2. The 2, 2, 6 according to claim 1, wherein the weak alkaline aqueous solution used in (2) is at least one selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate. , 6-tetramethyl-4-oxopiperidine. 前記(1)に用いるアルカリ水溶液が強アルカリ水溶液であることを特徴とする請求項1または2記載の2,2,6,6−テトラメチル−4−オキソピペリジンの製造方法。The method for producing 2,2,6,6-tetramethyl-4-oxopiperidine according to claim 1 or 2, wherein the alkaline aqueous solution used in (1) is a strong alkaline aqueous solution.
JP20163399A 1999-07-15 1999-07-15 Process for producing 2,2,6,6-tetramethyl-4-oxopiperidine Expired - Fee Related JP4000721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20163399A JP4000721B2 (en) 1999-07-15 1999-07-15 Process for producing 2,2,6,6-tetramethyl-4-oxopiperidine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20163399A JP4000721B2 (en) 1999-07-15 1999-07-15 Process for producing 2,2,6,6-tetramethyl-4-oxopiperidine

Publications (2)

Publication Number Publication Date
JP2001031651A JP2001031651A (en) 2001-02-06
JP4000721B2 true JP4000721B2 (en) 2007-10-31

Family

ID=16444321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20163399A Expired - Fee Related JP4000721B2 (en) 1999-07-15 1999-07-15 Process for producing 2,2,6,6-tetramethyl-4-oxopiperidine

Country Status (1)

Country Link
JP (1) JP4000721B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012215903A1 (en) 2012-09-07 2014-03-13 Evonik Industries Ag Process for the treatment of a wastewater stream, which results from the workup of a triacetonamine-containing reaction mixture
DE102012215900A1 (en) 2012-09-07 2014-05-15 Evonik Industries Ag Process for the preparation and processing of a triacetonamine-containing reaction mixture
CN103664745B (en) * 2012-09-07 2017-06-09 赢创德固赛有限公司 The method for preparing and processing the reactant mixture containing triacetonamine
EP3663284B1 (en) 2018-12-07 2021-02-03 Evonik Operations GmbH Improved method for the preparation of triacetonamine
EP3750876A1 (en) 2019-06-13 2020-12-16 Evonik Operations GmbH Method for preparing triacetone amine, 2,2,4,6-tetramethylpiperidine and/or the salts of 2,2,4,6-tetramethylpiperidine
US11731940B2 (en) 2020-05-07 2023-08-22 Evonik Operations Gmbh Process for preparing triacetonamine
EP4279484A1 (en) 2022-05-17 2023-11-22 Sabo GmbH Improved method for the preparation of triacetonamine

Also Published As

Publication number Publication date
JP2001031651A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
US7456322B2 (en) Process for preparing 1,3-dibromoacetone, 1-3-dichloroacetone and epichlorohydrin
JP4000721B2 (en) Process for producing 2,2,6,6-tetramethyl-4-oxopiperidine
TWI343370B (en) Method for producing ditrimethylolpropane
JP5246516B2 (en) Method for isolating methyl-4-formylbenzoate and dimethyl terephthalate
CN111170846B (en) Method for preparing 3,3-dimethyl-2-oxo-butyric acid
NO340888B1 (en) Process for the preparation of iohexole
JP2003206277A (en) Method for producing 2,2,6,6-tetramethyl-4-piperidone
JPH0236174A (en) Production of 2, 2, 4-trimethyl-1, 2- dihydroquinoline oligomer
CN113735764A (en) Method for recovering 2-cyano-3-chloro-5-trifluoromethylpyridine rectifying still residue
US4352941A (en) Process for purification of phenylhydrazine
JP3570760B2 (en) Method for producing 2-t-butylhydroquinone
US3658905A (en) Process for the purification of p-aminophenol
CN110606801A (en) Method for continuously preparing vanillin and syringaldehyde
JP2003160561A (en) Method for producing 2,2,6,6-tetramethyl-4-piperidone
JP3780703B2 (en) Method for producing 2-butyloctanedioic acid
JP3831021B2 (en) 2-Production method of indanones
US2818411A (en) Separation of gamma picoline
CN112390746A (en) Method for inhibiting generation of 2-cyano-3-chloro-5-trifluoromethylpyridine precursor impurity
JP4320942B2 (en) Method for producing 2-butyloctanedioic acid
JP2874281B2 (en) Method for separating and purifying biphenyl-4,4'-diol
KR100340637B1 (en) Improved propylene oxide and styrene monomer co-production procedure
CA2307989C (en) An improved process for purifying alpha-keto acids
JP3564179B2 (en) Method for producing 1,2-indanediol
JPS62116534A (en) Production of 1,1-butoxybutane
JPS59137431A (en) Production of trimethylolheptane

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees