JP4000019B2 - Functional composite fiber nonwoven fabric and composite composition using the same - Google Patents

Functional composite fiber nonwoven fabric and composite composition using the same Download PDF

Info

Publication number
JP4000019B2
JP4000019B2 JP2002196039A JP2002196039A JP4000019B2 JP 4000019 B2 JP4000019 B2 JP 4000019B2 JP 2002196039 A JP2002196039 A JP 2002196039A JP 2002196039 A JP2002196039 A JP 2002196039A JP 4000019 B2 JP4000019 B2 JP 4000019B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
composite
melt
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002196039A
Other languages
Japanese (ja)
Other versions
JP2004036047A (en
Inventor
庸輔 高井
健二 地本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DaiwaboPolytecCo.,Ltd.
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Original Assignee
DaiwaboPolytecCo.,Ltd.
Daiwabo Co Ltd
Daiwabo Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaiwaboPolytecCo.,Ltd., Daiwabo Co Ltd, Daiwabo Holdings Co Ltd filed Critical DaiwaboPolytecCo.,Ltd.
Priority to JP2002196039A priority Critical patent/JP4000019B2/en
Publication of JP2004036047A publication Critical patent/JP2004036047A/en
Application granted granted Critical
Publication of JP4000019B2 publication Critical patent/JP4000019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、メルトブロー複合繊維不織布及びこれを用いた複合組成物に関する。一般的にステープル複合繊維を製造する溶融粘度の熱可塑性樹脂を用いて、繊維の腰など繊維物性がステープル複合繊維と同等で、かつ、より微細な複合繊維またはより太い複合繊維を製造し、ステープル複合繊維を用いて不織布化するに制限を生じるローラーカードなどを使用せず、少なくとも直接開繊した繊維ウエッブなどの繊維集合体または融着接着して一体化した不織布とする、複合繊維が作れるメルトブロー法の設備を用いて繊維化と不織布化を同時に行なった、従来はローラーカードなどの開繊手法が不可能もしくは、極めて困難であった複合繊維不織布とこれらを応用した複合組成物に関するものである。
【0002】
本発明は、特に、従来からステープル繊維を作る上で、紡糸時に紡出繊維間で融着接着することが問題であった、低融点や粘着性および表面硬度が軟質の樹脂、また、低応力で伸びるため引取に耐えなかった樹脂を用いた複合繊維を自由に直接不織布化でき、そして、曳糸性が劣つて単独では繊維化できない樹脂を用いた複合繊維の不織布を容易に作ることができ、出来たこれらの複合繊維不織布とこれらを応用した複合不織布、複合組成物に関するものである。
【0003】
これらは、伸縮性に富み、伸縮性が必要な救急ばんそうこう等の衛生材、あるものは、滑り止め効果を有するので、日用雑貨や家具などのノンスリップ材として、そして、ノンスリップ性の要求のあるものに直接接着してノンスリップ化を達成するノンスリップ機能材に関するものである。
【0004】
【従来の技術】
従来、メルトブロー法の繊維は、その一本の繊維は一つの種類の熱可塑性樹脂でなり、繊維径が一般的に5μm以下の繊維を求めるため、その溶融流動性メルトフローレート(MFR:g/10分)が300以上である樹脂を一般的に使用している。
【0005】
近年、複数の熱可塑性樹脂を用いたメルトブロー手法の繊維集合物の特許が公開されており、その1つは、幅方向に整然と並んだノズルより、2つの樹脂が交互に吐出され、2種類の繊維が混綿された不織布であり、もう1つは、詳細の例示はないが、鞘芯型複合繊維や背腹型複合繊維などの複合繊維の記載があり、その内、背腹型複合繊維には特公平6−53987号や特許第3134959号公報で詳細例示があるが、実用的な鞘芯型複合繊維もしくは繊維表面の大半が1つの成分によって覆われている複合繊維をメルトブロー法で作った不織布などの繊維集合物の開示はなかった。
【0006】
【発明が解決しょうとする課題】
現状のメルトブロー不織布は、その構成繊維が単一成分でなるため、ほとんどの該不織布が自己融着接着していないもので、リントフリー性に問題があり、かつ、嵩が低くてペーパーライクで薄くてペラペラな不織布でしかなかった。前記した様に、メルトブロー手法によって作った繊維で構成した本発明の不織布およびその応用品は、複合繊維であるため、融着接着や溶融接着が可能であり、繊維集積時または熱加工で少なくとも該複合繊維の繊維表面の過半を占めている熱可塑性樹脂成分で接着、一体化し、リントフリー性はもとより、不織布全体で接着しているため、不織布強力もかなり向上したものになっている。
【0007】
市販のメルトブロー不織布を調査したが、本出願人による特開2001−98453号エレクトレット不織布と同様に、メルトブローの噴出気流に添って各構成繊維がかなり整然と揃って集積されていることが判った。すなわち、不織布を構成する繊維を細くすればするほど、繊維の配列方向が揃った不織布となるのは自明で、この方法では縦横方向に自在に伸縮させることが困難であり、ある程度の繊維方向のランダム性が必要となる。ノンスリップ不織布も同様である。
【0008】
本発明者は、複合ステープル繊維へ熱可塑性ゴム、熱可塑性軟質樹脂や熱可塑性エラストマーを組み込む開発を行なっており、いずれも、不織布化するための繊維開繊工程で多大な努力と工夫を要して発明に至っていた。特開昭59−157362号公報に見られるポリウレタン樹脂をメルトブロー手法で不織布化がこれら柔軟性や軟質樹脂の繊維化と不織布化には最適であるが、当時本発明者には開発手段がなく、複合ステープル繊維での該柔軟性や軟質樹脂の繊維化と不織布化を試みた。いずれも繊維開繊手段であるローラーカードを通すため、芯成分に比較的しっかりした熱可塑性樹脂を用い、機能を発揮するための鞘成分に当該樹脂を用いたのである。特許2587706号では、熱可塑性ゴムであるシンジオタクチックー1・2ーポリブタジェンを用い、ノンスリップ繊維と不織布には、特許2662466号、特許3159653号および特許2571155号では低融点の軟質樹脂や熱可塑性エラストマーを用い、伸縮性繊維と不織布には、エラストマー繊維はカードを通すことができないので、極めて微細な捲縮(2次捲縮)を熱加工によって生じさせ、その微細な捲縮をコイルの伸縮の様にして伸び縮みさせることで伸縮性を持たせる、特許2759331号や特許2772532号の捲縮弾性繊維と不織布で提案したのである。これらの繊維は、複合繊維に起因して、前記した特開昭59−157362号公報に見られるポリウレタン繊維の不織布より、日用雑貨ではゴムやエラストマーの欠点である粘着感やベチャ着き感が著しく低いものであった。
【0009】
本発明は、これら粘着感やベチャ着き感があるエラストマーなどを用い、これらゴムやエラストマーの特徴であるゴム弾性の伸縮性やノンスリップ性の特徴はそのままに、日用雑貨ではより好ましい、粘着感やベチャ着き感が低減または解消された不織布などを提案するものであり、前記したステープル複合繊維やその不織布より、より機能性の向上と、工程簡略による生産性や生産の容易性などの経済性のより向上をめざしたものである。
【0010】
また、前記した様に、フィルムと異なり不織布は厚みと通気性があるのが特徴であり、不織布はその厚みによるクッション性も期待されているから、前記したステープル複合繊維の不織布の様にするため、現状より少しでも嵩高とする必要る必要がある。
【0011】
さらに、伸縮性の不織布においては、伸び縮みする部分としっかり接着している部分に分ける方が、より伸度の高いゴム弾性不織布としうるので、不織布の全体的な接着と部分的な強接着が必要である。本発明は、上記したような問題点を解決し機能性を付与することを目的とする。
【0012】
【課題を解決するための手段】
本発明者は、前記特開2001−98453号のエレクトレット不織布では、従来のメルトブロー不織布と同様に、各単繊維を簾状に整然と噴出させ、繊維を集積させる時に融着接着させることを基本としていたが、無論整然と噴出させるのではあるが、少なくとも数%の隣り合う繊維同士を噴出中に部分的に接触させて、部分的、局所的に偏在させた凝集し絡み合い融着接着させた塊をむしろ積極的に発生させることで、伸縮性(ゴム弾性)不織布用途には、部分的な強接着部分を生じせしめ、滑り止め性(ノンスリップ)不織布用途には、複合繊維を集積している集積平面を凹凸化させ、その上からさらに複合繊維を集積することで、厚み方向に立体的な集積条件を作つて、繊維密度を下げる繊維集積を積極的に行い、結果として、不織布の嵩高化を達成し、共に繊維間間隙と繊維交差間隙を広げて通気性の向上をも達成したのである。また、局所的に偏在させた凝集し絡み合い融着接着させた塊を作る時に、繊維の配向方向のランダム化も達成したのである。
【0013】
本発明は、ステープル繊維を作る上で、紡糸時に紡出繊維間で融着接着することが問題である低融点や粘着性および表面硬度が軟質の樹脂や、粘着感やベチャ着き感があり、低応力で伸びるため引取に耐えなかったエラストマーを用いた複合繊維であって、その粘着感やベチャ着き感を大幅に改善した繊維からなるものである。すなわち、本発明は、メルトブロー法で作られた繊維表面の過半がASTM−D2240法によるショアーA硬度(A)が50以上の熱可塑性エラストマーで構成された複合繊維からなる機能性複合繊維不織布であって、伸縮性能又は滑り止め性能といった機能性に優れた不織布である。
【0014】
本発明の一つの機能は、伸縮性に富んだ機能性複合繊維メルトブロー不織布で、繊維径(d:μm)が100>d>3の実質的に連続した熱可塑性エラストマーからなる、鞘芯型、偏芯した鞘芯型、猫目型あるいは3層型複合繊維などの、繊維表面の大半が1つの成分によって覆われている複合繊維であって、ショアーA硬度(A)が70以上で、流動開始温度または融点が芯成分より低い温度の成分で繊維表面の過半が覆われており、構成する複数の各成分が、流動開始温度または融点(Tm:℃)を60<Tm<210、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は230℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200、ショアーA硬度が50以上である熱可塑性エラストマー樹脂であり、紡糸口金より熱風で吹き飛ばして繊維化するメルトブロウン手法で作って、該複合繊維が部分的に凝集し絡み合い融着接着した塊が存在する平面状の繊維集積物とされ、繊維表面の過半を覆つている成分で少なくとも融着接着および/または溶融接着されて接着一体化した伸縮性能を有する機能性複合繊維不織布であり、熱可塑性エラストマーのうち、繊維表面の過半を覆つている成分が、エチレンおよびαオレフィンから選ばれた複数種のモノマーの共重合体、特に好ましくは、オクテン−1を少なくとも20質量%含む低融点で軟質なエチレン共重合体、であるポリオレフィンエラストマーを少なくとも過半含むエラストマーからなるものが好ましい。
【0015】
もう一つの機能は滑り止め効果に優れた、いわゆるノンスリップ性能を有する機能性複合繊維メルトブロー不織布で、流動開始温度または融点(Tm:℃)を60<Tm<210、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は230℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200、ショアーA硬度が50以上である熱可塑性エラストマー樹脂で繊維表面の過半が覆われ、繊維中心部を占める樹脂が、該エラストマーより融点を少なくとも20℃高く、もしくは流動開始温度より高く、その融点(TM:℃)を90<TM<270とし、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は、TM≦200℃の時230℃、TM≧200℃の時290℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200である融熱可塑性樹脂であり、鞘芯型、偏芯した鞘芯型、あるいは猫目型複合繊維などであり、繊維径(d:μm)が100>d>3で、実質的に連続した、紡糸口金より熱風で吹き飛ばして繊維化するメルトブロー手法で作って、該複合繊維が部分的に凝集し絡み合い融着接着した塊が存在する平面状の繊維集積物とされ、繊維表面の過半を覆つている成分で少なくとも融着接着および/または溶融接着されて接着一体化し、滑り止め効果の高い機能性複合繊維不織布である。
【0016】
また、作為的に、隣り合う繊維同士を噴出中に部分的に接触させて、部分的、局所的に偏在させた凝集し絡み合い融着接着させた塊を発生させるにおいて、設備的な対応も極めて効果があった。前記特開2001−98453号のエレクトレット不織布で提案した当所のノズルは、吐出孔の間隔を3mmとしており、隣り合う繊維同士を作為的に、接触させるに無理があった。その後、当該の問題解決と生産性の向上およびよりメルトブロー繊維を細くするため、吐出孔の間隔を縮め、吐出孔数の多いノズルを考案し、現在は吐出孔間隔を1mm未満とすることで、作為的に、凝集し絡み合い融着接着させた塊を発生させることに成功した。すなわち、凝集し絡み合い融着接着させた塊が多いの不織布を作る時は、吐出量を多くし、わずかな熱風流速の低下とすると良く、凝集し絡み合い融着接着させた塊が少ない不織布を作る時は、吐出量を絞り、熱風流速を上げることで達成できる。これは樹脂のバラス効果を利用している。
【0017】
本発明では、ハイフロー(低粘度)の熱可塑性樹脂よりも、高粘度の樹脂を使用するのが都合が良く、使用する樹脂のMFRを200g/10分未満とするのが都合良い。5g/10分未満ではこの点では良い方向だが、本発明の繊維径5μm以下の繊維が作りにくいから除外したのである。使用する熱可塑性樹脂の内、繊維表面の過半を覆っている樹脂の流動開始温度または融点(Tm:℃)は、60<Tm<210の範囲が都合が良い。融点が60℃未満では融着接着しすぎて接着の制御が困難なため請求範囲から除外した。210℃以上では、融着接着しにくいため請求範囲から除外したのであり、融着接着の都合上、繊維の中心部を占める樹脂(芯成分)の流動開始温度または融点は、前記繊維表面の樹脂より少なくとも20℃高いことが好ましく、本発明のノンスリップ不織布を構成する繊維では、その融点を90〜270℃とするのが好ましい。該芯成分熱可塑性樹脂は、使用したメルトブロー設備の温度的制約を受け、実施例を得ることができなかったので、使用樹脂の融点の請求範囲を270℃未満とし、270℃以上を除外したのであって、270℃以上でも不都合はないと考える。なお、前記した繊維表面の過半を覆っている樹脂(その融点をTms:℃)と芯成分樹脂の融点の(Tmc)関係については、Tms+20≦Tmcが好ましいが、繊維間融着接着しやすい繊維表面の過半を覆っている樹脂を使用する場合は、これら両成分またはその組合せ物が、繊維の成形性を有しているなら、Tms>Tmcであって不都合がなく、後で熱風接着処理を予定している繊維のTms+20≦Tmcの用件が必要なのであるため、請求項からこの条件は除外した。ショアーA硬度は、熱可塑性エラストマーの硬度の指標であり、繊維化する上で、30以上で問題はないが、ゴムやエラストマーの粘着感やベチャ着き感を押さえるため、繊維表面を構成している樹脂にのみ該硬度の制限を行なっており、一般にショアーA硬度は50以上で良いが、伸縮性能を有したゴム弾性不織布では、不織布全体が柔らかいので、さらに厳しく70以上が好ましい。
【0018】
本発明に用いる熱可塑性エラストマーは、スチレンーブタジェンースチレン、スチレンー水添ブタジェンースチレン、スチレンーイソプレンースチレン、スチレンー水添ブタジェンに代表されるスチレン系熱可塑性エラストマー、エチレンープロピレン共重合体のプロピレン系ゴムやエチレン・オクテン共重合体などの軟質ポリオレフィンエラストマー、商品名ライトフレックスに代表されるPBT系エラストマー、ポリアミド−エーテルなどのポリアミド系エラストマー、ポリウレタン熱可塑性エラストマー、トランス−1・4ポリイソプレンやシンジオタクチックー1・2ーポリブタジェンに代表される熱可塑性ゴム、そして、エチレンーアクリル酸エステル共重合体や、メタロセン触媒によるエチレンやプロピレンの共重合体や低密度ポリエチレンなどの軟質樹脂などが好ましく、これらの混合物も都合良い。
【0019】
また、ノンスリップ不織布用の繊維の芯成分に用いる、熱可塑性エラストマー以外の樹脂は、融点が前記の範囲の、繊維成形性が良好で繊維の素材として、通常使用されている熱可塑性樹脂が都合良く、たとえば、ポリプロピレンやプロピレンの共重合体およびポリエチレンテレフタレートが価格的な経済面で特に好ましい。
【0020】
本発明では繊維が部分的に凝集し絡み合って融着接着することで、不織布に嵩高さを持たせるため、そして本発明の伸縮性に富んだ不織布にゴム弾性をさらに発揮させ併せて強力も向上させるため、また、本発明のノンスリップ不織布に、クッション性を持たせるために繊維を融着接着させ、さらに塊とさせている。
【0021】
また、不織布がフィルムと異なる点、すなわち、通気性と嵩高性を本発明の不織布に持たせるため、特に本発明のノンスリップ不織布では、嵩をつけてクッション性を付与させてノンスリップ性を助長させるため、本発明の不織布では、本不織布のみの商品では中層部に、他の繊維組成物との張り合わせではその接着面に、少なくとも繊維径が50〜10μmの太繊維を用いることで、融着接着させて塊を多く発生させて繊維密度を下げ、凹凸状の見かけ嵩を出すのが好ましく、特に前記の張り合わせの場合、熱接着成分として本発明の不織布の一部を用いる場合には、その部分の繊維径は前記した50〜10μmの範囲が最も都合が良く、その部分の目付けは5〜15g/m2が都合が良い。この範囲の繊維径では、目付けが5g/m2未満では、基布との接着性が弱く、15g/m2を超えると相手の繊維組成物の繊維素材にもよるが、特にポリプロピレン繊維では、溶融またはフィルム化する問題が発生しやすい。また、該太繊維の繊維径も50μmを超えると相手の素材にもよるが相手繊維の部分溶融を生じやすく、10μm未満であると相手表面への繊維集積効果が大きくて、相手への浸入または食い込みが少なくて物理的交絡効果が減じられて接着強力が低下しあまり好ましくない。なお、前記した50μmを超える太繊維ても相手を選べば十分適応でき、概ね200μmφ程度でも都合の良い場合があるので請求項には制限を加えなかった。さらに太い繊維でも可能と考える。
【0022】
本発明は、概ね繊維径が200〜1μmφ、より好ましくは100〜3μmφの、少なくとも熱可塑性エラストマーが繊維表面の過半を覆つている複合繊維がメルトブロー手法で、実質的に連続した状態で吹き飛ばされて集積された不織布であり、ノズルからの吐出以降で繊維間が融着接着して繊維配向方向のランダム性と凹凸状の嵩高化を達成しており、中層の繊維径の規定はするが、繊維径は、特にノンスリップ不織布では、用途により著しく異なるので、その他の部分の繊維径は制限を設けないが、伸縮性の不織布については繊維径と設備の関係が深いので制限したのである。
【0023】
なお本来、太繊維ほど凹凸状の嵩高化に良いのであって、必要に応じて、繊維径は決定すべきである。本発明でいう繊維径は、数平均の繊維径をいい、本発明の不織布は、熱接着性複合繊維を使用している、そして、恣意的に部分的に融着接着させているため、繊維径のばらつきや分布が広く、顕微鏡観察によって繊維径を割り出したため、数平均で記載した。融着接着した塊や繊維束は1本として計測した。
【0024】
本発明のノンスリップ不織布を接着する繊維組成物は、直接メルトブロー工程で熱接着させる場合は、熱風の抜けを考えると目の粗いものが都合がよく、本発明のメルトブロー不織布がポリオレフィン系樹脂でなる場合は、その接着性を考慮し、ポリオレフィン樹脂でなる組成物が好ましく、ポリエステルエラストマーを表面とする場合は、ポリエステル系の組成物が好ましいのは言うまでもない。
【0025】
該繊維組成物についてはそれを構成している繊維の種類、すなわち、繊維の融点を考慮して本発明に用いる樹脂を選べば良く、融点のないもしくは分解温度が高いアクリル繊維や羊毛、ビニロン繊維も極めて使用するに都合良い。
【0026】
【発明の実施の形態】
本発明の繊維に用いる熱可塑性樹脂が、従来の様なメルトブロー法で用いられるハイフローの専用樹脂でなく、ステープル繊維と同じ溶融粘度の樹脂である特徴を持った複合繊維のメルトブロー不織布に関し、本発明の不織布の繊維が、繊維表面の大半をエラストマーなどの軟質樹脂成分によって覆われている複合繊維であり、該繊維が部分的に凝集し絡み合って融着接着することで機能的特徴を発現している複合不織布である。
【0027】
本発明の実施の形態について実施例の図示に基づいて以下に説明する。図1は繊維が部分的に凝集し絡み合って融着接着した状態が散見される伸縮性能に優れた本発明の複合繊維不織布の平面拡大写真の例であり、図2は繊維が部分的に凝集し絡み合って融着接着した塊により、不織布表面が凹凸状態にあり、見かけの厚みが増えている滑り止め性能に優れた本発明の複合繊維の平面拡大写真の例である。
【0028】
本発明に使用される複合繊維の繊維断面は、図3のA〜Cにに例示される通りで、Aの繊維が猫目と称している繊維断面の1例である。
【0029】
本発明の1つ形態は、繊維径(d:μm)が100>d>3の実質的に連続した熱可塑性エラストマーからなる、鞘芯型、偏芯した鞘芯型、猫目型あるいは3層型複合繊維などの、繊維表面の過半が1つの成分によって覆われている部分(鞘部2)とそれ以外の中心部分(芯部1)とから構成される複合繊維であって、ショアーA硬度(A)が70以上で、流動開始温度または融点が芯成分より低い温度の成分で繊維表面の過半が覆われており、構成する複数の各成分が、流動開始温度または融点(Tm:℃)を60<Tm<210、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は230℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200、ショアーA硬度が50以上である熱可塑性エラストマー樹脂であり、紡糸口金より熱風で吹き飛ばして繊維化するメルトブロー法で作って、該複合繊維が部分的に凝集し絡み合い融着接着した塊が存在する平面状の繊維集積物とされ、繊維表面の過半を覆つている成分で少なくとも融着接着および/または溶融接着されて接着一体化した、伸縮性に富んだ機能性複合繊維不織布である。
【0030】
さらに、繊維表面の過半を覆っている成分である熱可塑性エラストマーが、オクテン−1を少なくとも20質量%含むエチレン共重合体であり、繊維の中心部を占める熱可塑性エラストマーが、スチレンーブタジェンースチレン、スチレンー水添ブタジェンースチレンおよびスチレンー水添ブタジェンに代表されるスチレン系熱可塑性エラストマーである、伸縮性に富んだ複合繊維不織布であることが好ましい。
【0031】
なお、前記両成分は必ずしも100%の樹脂である必要はなく、少なくとも過半含めば良い。希釈熱可塑性樹脂は軟質のエチレンープロピレン共重合体やエチレンープロピレンーブテン−1共重合体などの軟質樹脂が都合良い。
【0032】
また、前記したスチレン系熱可塑性エラストマーだけでなく、ハードセグメントをポリエステル、ソフトセグメントをポリエーテルとする共重合ポリエステルエラストマーなども都合良いのは言うまでもない。
【0033】
また、不織布強力をさらに向上させるため、メルトブロー不織布製造設備の吸引ネットの網目がその一面に付形され、その網目の凸部が少なくとも圧迫されて強く接着されている伸縮性に富んだ複合繊維不織布であってもよい。なお、この代わりにポイントボンド熱接着などで部分的に強接着されていても当然都合が良いが、生産性を考慮すると前者の方がもっと都合が良いのである。
【0034】
さらに、実用上、粘着剤加工や不織布の部分張り合わせ加工などの複合化の後加工をする場合が多く、これらの用途には、離型機能が期待されている不織布の上に本発明の伸縮性に富んだ不織布を配し、少なくとも他素材との複合化加工時に、伸び縮みなく加工できる様に積層不織布とすることが好ましい。
【0035】
本発明のもう1つの形態は、流動開始温度または融点(Tm:℃)を60<Tm<210、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は230℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200、ショアーA硬度が50以上である熱可塑性エラストマー樹脂で繊維表面の大半が覆われ、繊維中心部を占める樹脂が、該エラストマーより融点を少なくとも20℃高く、もしくは流動開始温度より高く、その融点(TM:℃)を90<TM<270とし、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は、TM≦200℃の時230℃、TM≧200℃の時290℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200である融熱可塑性樹脂であり、鞘芯型、偏芯した鞘芯型、あるいは猫目型複合繊維などであり、繊維径(d:μm)が100>d>3で、実質的に連続した、紡糸口金より熱風で吹き飛ばして繊維化するメルトブロー法で作って、該複合繊維が部分的に凝集し絡み合い融着接着した塊が存在する平面状の繊維集積物とされ、繊維表面の過半を覆つている成分で少なくとも融着接着および/または溶融接着されて接着一体化し滑り止め効果の高い複合繊維不織布である。
【0036】
なお、前記した不織布を他の繊維組成物に直接熱接着することも容易であり、この場合は、当該繊維組成物に本発明中で比較的太い繊維をまず接着を目的として噴出して積層させ、その後、所望の繊維径の本発明の繊維を積層させるのが極めて都合良い。
【0037】
本発明のメルトブロー法で作られた不織布を構成する複合繊維は、鞘芯型、偏芯した鞘芯型、図3−Aに例示する様な芯成分が楕円または猫目型などの芯が異型の芯異型型、多芯型、および図3−Cに例示する様な3層型や1成分が少なくとも複数に区分され他の成分で区分けされた繊維断面が蜜柑型や風車型などの分割繊維型である繊維であり、繊維形状は円や楕円などの円型を基本とするが、角の取れた異型である場合も有り得る。また本発明の繊維の特徴は多数の繊維が、その繊維表面の過半を占めている成分によって部分的に融着接着して、束状の状態で偏在して、ある場合は塊となって存在している不織布であり、この融着接着している部分は、少なくとも他の部分を構成している繊維より繊維径が太く結果としてなっており、より融着接着現象を増幅している場合も多い。
【0038】
本発明のもう1つの特徴は、前記した様に、用いる熱可塑性樹脂の溶融粘度がステープル繊維を製造している樹脂の粘度に一致している点にある。これは、本発明が、ローラーカードなどの不織布化工程での各種制限を回避して、より細い繊維、より太い繊維、滑りが悪くてカードに掛からない繊維や融着し易い繊維を不織布化することを主要な目的としていることにある。特にステープル繊維やマルチフィラメントなどでは繊維の融着が致命的であるが、この欠点を長所に用いて、特に繊維製造で融着接着し易い樹脂を鞘成分とする複合繊維を直接不織布化することをも主要な目的としている。したがって、従来のメルトブロー不織布の様に、低粘度の樹脂を用いてひたすら細繊度化を狙うのではなく、ステープル繊維の腰や繊維断面構造である特徴を持った繊維からなる不織布を作ることにあるため、本発明に用いる樹脂は、従来のステープルと同様の溶融粘度となっているのであり、使用する樹脂の融点だけは、現状の単一繊維のメルトブロー不織布製造設備の部品転用であるためと、経済的な理由で、使用する熱風の温度を無闇に上げることは好ましくなく、270℃という限定を設けたのであるが、理論的には350℃でも可能である。
【0039】
本発明に用いる樹脂の溶融流動性は、メルトフローレートで表現すると、5〜200g/10分の範囲にあり、その測定温度は、230℃で十分溶けているか否かで区分けしたのであり、実際の溶融紡糸時の溶融温度での溶融流動性とは一致していない場合もある。樹脂によって、溶融紡糸に好ましい溶融流動性は異なり、ポリエチレンテレフタレートやポリメチルペンテンの最も好ましい溶融流動状態は、100g/10分前後であり、ポリプロピレンは、これより低い。以上の理由で、本発明に用いる熱可塑性樹脂は、従来のステープル繊維に用いられている樹脂を工夫すれば概ね都合良く用いることができるので、詳細は個々には言及しない。また前記したエラストマーなどの軟質樹脂以外の、特に、請求項9以降の項で記載するノンスリップ不織布の芯成分に都合の良い樹脂の一例を示すと、融点が90〜270℃の、ポリオレフィン樹脂、低融点エステル共重合体や脂肪属ポリエステルを含むポリエステル樹脂、ポリアミドやポリイミドなどのポリアミド樹脂、ポリカーボネート樹脂が便利に使用でき、これらの混合物、ポリマーアロイやグラフト重合や低温プラズマ処理などによる改質樹脂が例示できる。
【0040】
本発明の複合繊維の繊維径は、融着部分と非融着部分で繊維径が変化しており、太い部分は概ね200μm未満であり、実質的に連続したとは、なんらかの個別の理由で繊維が千切れない限り、製造条件としては千切れを意図していないことを言う。
【0041】
なお、本発明での複合メルトブロー繊維は、特に凝集し融着接着した塊を散在させる方が凹凸方式による嵩高化には有利であり、太繊維を使用する場合は、複数回に分けて繊維集積するのも好ましく、細繊維層にあっても、目付けむらを回避するため、前記と同様に複数回に分けて繊維集積するのも好ましい。
【0042】
また、これらの繊維集積において、メルトブロー法では繊維が一定方向へ揃い易いので、各層毎にできるだけ交差する様に積層するのが好ましく、本発明では、設備にこの点が配慮してある。
【0043】
上記した様に個々の層の必要目付けを考慮した上で、本発明の不織布の目付けは用途によるが、30〜400g/m2が好ましく、400g/m2を超えると熱風の貫通状況が悪くて、30g/m2未満では、目付けむら解消が確保できないので都合が良くない。
【0044】
本発明の請求項10以降に記載している繊維組成物は、スパンボンド不織布、メルトブロー不織布、スパンレース不織布、熱接着不織布、ニードルパンチ不織布、樹脂含浸接着不織布などの不織布が都合良く、これらとの複合されたものを複合組成物という。
【0045】
また、本発明の複合繊維不織布を難燃化するには、例えば樹脂に、チバ・スペシャリティ・ケミカルズ社の難燃効果剤フレムスタブCGL−116を少なくとも0.5重量%添加して不織布とすればよい。このような難燃化処理を行うことにより、難燃評価法JIS.L1091、A−1法で難燃3級を得ることができる様になる。前記した難燃効果剤CGL−116は、通常の耐候安定剤であるハルス系安定剤の誘導体であり、該ハルス系安定剤や他の安定剤との併用でも、環境ホルモンや有害物質を含まないので大変環境に優しい。また本発明の複合繊維不織布の少なくとも片面に、チバ・スペシャリティ・ケミカルズ社の難燃効果剤フレムスタブCGL−116を少なくとも0.5重量%添加されたスパンボンド不織布を張り合わせ一体化し、本発明の難燃化した複合組成物としてもよい。
【0046】
次に本発明の効果を実施例と比較例で具体的に説明する。なお、本発明の実施の1形態である鞘成分をオクテン−1を少なくとも20質量%含むエチレン共重合体であるポリオレフィン系エラストマーとし、芯成分をスチレンー水添ブタジェンースチレンであるスチレン系熱可塑性エラストマーとする複合繊維の伸縮性に富んだメルトブロー不織布と、エチレンーアクリル酸メチルエステル共重合体およびPBTエラストマーをそれぞれ鞘成分とし、芯成分をポリプロピレンとするノンスリップ不織布で主に説明するが、他の形態の複合繊維不織布および複合不織布も実施例を参考にすれば、同様に容易に作ることができることは、言うまでもない。
【0047】
【実施例】
本発明のメルトブロー法によって繊維化された複合繊維は、2台の押出機より個々の熱可塑性樹脂を押出し、ギャーポンプによって定量供給して、複合繊維を形成できる70cm弱の幅の850ホールの複合ノズルを用いて、オリフィスの列から高速加熱気流中に吐出すると同時に、該気流で細長化して基本的に連続している繊維とし、吸引設備が具備されたネットコンベアー上に集積して本発明の複合繊維不織布を得た。
【0048】
また該コンベアー上に140℃で予め熱処理させたポリプロピレンスパンボンド不織布を位置させ、該不織布上に、平均繊度が6〜10dTex(23〜38μmφ)の太複合繊維を15g/m2の目付けで集積し、集積角度を振りながら所望の目付けの太繊維または細繊維を積層しても、本発明の複合繊維不織布を試作した。なお、各層は少なくとも30゜の角度で交差させて集積したものである。
【0049】
本発明に用いた樹脂は、以下の通りで、PPはポリプロピレン、EOはオクテン−1を20質量%含むダウ社のEG8200エチレンーオクテン−1共重合体、SEはスチレンー水添ブタジェンースチレンのクレイトンポリマー社のG1657スチレン系エラストマー、PBはセラニーズ社のPBTエラストマー・ライトフレックス640、PTはポリエチレンテレフタレート(常法の限界粘度IV値が0.64の樹脂を使用)、EPはプロピレン過多のエチレン・プロピレン共重合体およびDYはJSR社のダイナロン1320Pを使用した。ただしEPとDYは45/55の比で混合したものを使用した。また鞘と芯成分の複合比は1:1で、溶融流動性のMFRは、測定温度がPTは290℃で他は230℃での値で、単位はg/10分である。表1で商品名を記載していない樹脂を中心に記載する。エラストマーにおいては融点を流動開始温度と読み替える。
【0050】
【表1】

Figure 0004000019
【0051】
(実施例1〜7、比較例1〜2) 本発明の伸縮性複合繊維メルトブロー不織布は、表1の樹脂を用い、前記の工程で表2の条件で不織布化した。なお紡糸温度とはノズル温度のことであり、同温度の高圧熱風を用いて噴出させ、これを噴出熱風量の5倍以上の吸引量で吸引して、コンベアー上に集積し、実施例と比較例の複合繊維不織布を得た。実施例1および2で得られた複合繊維不織布の引張試験結果(S−S曲線)を図4〜7に示す。
(尚、このS−S曲線はオリエンテック社製のテンシロンUCT−1Tを使用し、ロードセル定格:10kgf、試験速度:300mm/min、チャック間距離:10cmの条件による。)
【0052】
また、実施例1の伸張繰り返し試験の結果を表2に例示する。表中の繊度は、数平均の繊維径μmで、融着繊維は除外しており、各繊維層は少なくとも2回の集積回数のもので、その総目付けg/m2で表示し、厚みは通常の不織布厚み計で常法通り測定し、単位は百μmである。但し、PBはハードポリマーのためD硬度で表示した。D硬度はA硬度同様にASTM−D2240法による。
【0053】
【表2】
Figure 0004000019
【0054】
比較例1は、実施例1のEOエラストマーの代わりに、ショアーA硬度が39のDY樹脂を用いたもので、繊維間の融着が酷く不織布とは言えず、フィルム状のものになった。また、比較例2は、後記する実施例8であるが、伸縮性はなかった。
【0055】
実施例7は実施例1の繊維を、コンベアー上に15g目付けで約7dTexのPPスパンボンド不織布を配し、その上からメルトブローして積層した不織布で、積層した不織布としては、スパンボンド不織布の抗張力でスパンボンド不織布の強伸度を示し、これらは簡単に剥離できた。
【0056】
(実施例8〜10、比較例3)本発明のノンスリップ性メルトブロー不織布は、表1の樹脂と、軟質のメチルアクリレートが21質量%で融点が90℃のエチレンーアクリル酸エステル共重合体EMを用い、実施例1と同様にして、前記の工程で表2の条件で不織布化し実施例と比較例の複合繊維不織布を得た。いずれもノンスリップ性(滑り止め性)の高い不織布で、当然のことながら伸縮性はなかった。
【0057】
(実施例11)実施例8の不織布を、ポリエチレンテレフタレートの3dTex繊維のアクリル樹脂含浸した、目付け60g/m2のケミカルボンド不織布の上に直接メルトブローして接着した複合不織布を作成した。該不織布は実施例8の不織布を床面に接する様にして置いて、ケミカルボンド不織布を蹴る様にして歩いても、床面からずれたり滑ったりはしなかった。
【0058】
【発明の効果】
本発明は、従来からステープル繊維で使用されてきた熱可塑性樹脂を用いた複合繊維をメルトブロー繊維化手法を用いて、直接不織布化した点にあり、ステープル繊維やマルチフィラメント繊維などの従来の繊維化手法では、極めて深刻な問題となっていた、融着し易い熱可塑性樹脂を積極的に利用できる点にあり、特に好ましいのは前記した融着し易い樹脂を繊維表面に用いた複合繊維であるが、この融着現象を積極的に利用して、繊維の噴出中に繊維の部分融着を起こさせ、凝集して絡み合い融着接着した、エラストマー成分が繊維表面の過半を占めさせたことを特徴とするメルトブロー複合繊維不織布である。
本発明は上記のような構成を採用することにより、伸縮性に富んだ、またはノンスリップ性に富んだ、メルトブロー機能性複合繊維不織布およびこれを複合化した複合組成物が得られ、多用途な商品展開が可能な不織布材となり得る。
【図面の簡単な説明】
【図1】 伸縮性能に優れた本発明の機能性複合繊維不織布の平面拡大写真である。
【図2】 滑り止め性能に優れた本発明の機能性複合繊維不織布の平面拡大写真である。
【図3】 A:猫目型複合繊維の繊維断面図である。
B:鞘芯型複合繊維の繊維断面図である。
C:3層型複合繊維の繊維断面図である。
【図4】 実施例1の伸縮性不織布の縦方向S−S曲線である。
【図5】 実施例1の伸縮性不織布の横方向S−S曲線である。
【図6】 実施例2の伸縮性不織布の縦方向S−S曲線である。
【図7】 実施例2の伸縮性不織布の横方向S−S曲線である。
【符号の説明】
1 芯成分
2 鞘成分
3 複合繊維が部分的に凝集し絡み合い溶融接着した塊部分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a melt blown composite fiber nonwoven fabric and a composite composition using the same. Generally, by using a melt viscosity thermoplastic resin for producing staple composite fibers, fiber properties such as the waist of the fibers are the same as staple composite fibers, and finer composite fibers or thicker composite fibers are manufactured. Melt blow that can make composite fibers by using a fiber aggregate such as a fiber web that has been directly opened or a non-woven fabric integrated by fusion bonding without using a roller card or the like that restricts the use of composite fibers to make non-woven fabrics. The present invention relates to a composite fiber nonwoven fabric in which fiberization and non-woven fabric are simultaneously performed using the equipment of the method, and the conventional fiber technique such as roller card is impossible or extremely difficult, and a composite composition to which these are applied. .
[0002]
In particular, the present invention has a problem in that a staple fiber is conventionally produced by fusion bonding between the spun fibers at the time of spinning, a resin having a low melting point, a softness and a surface hardness, and a low stress. It is possible to make a composite fiber using a resin that could not withstand taking-up because it stretched easily, and to easily make a nonwoven fabric of a composite fiber using a resin that has poor spinnability and cannot be made alone. The present invention relates to these composite fiber nonwoven fabrics, composite nonwoven fabrics and composite compositions to which these are applied.
[0003]
These are highly stretchable and have hygienic materials such as emergency clothes that require stretch, and some have anti-slip effects, so they are used as non-slip materials for daily goods and furniture, and there is a demand for non-slip properties. The present invention relates to a non-slip functional material that achieves non-slip by directly bonding to a material.
[0004]
[Prior art]
Conventionally, a melt blown fiber has a single fiber made of one kind of thermoplastic resin, and a fiber having a fiber diameter of generally 5 μm or less is required. Therefore, its melt flowable melt flow rate (MFR: g / Generally, a resin having 10 minutes) is 300 or more.
[0005]
In recent years, a patent for a fiber assembly of a melt-blow technique using a plurality of thermoplastic resins has been published, and one of them is that two resins are discharged alternately from nozzles arranged in an orderly manner in the width direction. It is a non-woven fabric in which fibers are mixed, and the other is not described in detail, but there is a description of a composite fiber such as a sheath core type composite fiber or a dorsal belly type composite fiber. Is described in detail in Japanese Patent Publication No. 6-53987 and Japanese Patent No. 3134959, but a practical sheath-core type composite fiber or a composite fiber in which most of the fiber surface is covered with one component is made by a melt blow method. There was no disclosure of fiber assemblies such as nonwoven fabrics.
[0006]
[Problems to be solved by the invention]
The current melt-blown nonwoven fabric is composed of a single component, so most of the nonwoven fabric is not self-bonding, has a problem with lint-free properties, and is low in volume and thin like paper. It was only a non-woven fabric. As described above, the non-woven fabric of the present invention composed of fibers made by a melt-blow technique and its application products are composite fibers, and thus can be fused and fused, and at least during fiber accumulation or thermal processing. The thermoplastic resin component occupying the majority of the fiber surface of the composite fiber is bonded and integrated, and the lint-free property as well as the entire nonwoven fabric is adhered, so the strength of the nonwoven fabric is considerably improved.
[0007]
The commercially available melt blown nonwoven fabric was investigated, and it was found that each constituent fiber was accumulated in a fairly ordered manner along the jet blown air flow of the melt blow as in the case of Japanese Patent Application Laid-Open No. 2001-98453 electret nonwoven fabric by the present applicant. That is, as the fibers constituting the nonwoven fabric become thinner, it is obvious that the nonwoven fabric has a uniform arrangement direction of fibers, and it is difficult to expand and contract freely in the vertical and horizontal directions by this method. Randomness is required. The same applies to non-slip nonwoven fabrics.
[0008]
The present inventor has been developing a thermoplastic rubber, a thermoplastic soft resin, and a thermoplastic elastomer into a composite staple fiber, all of which require great efforts and devices in the fiber opening process for making a nonwoven fabric. Has led to an invention. Polyurethane resin found in JP-A-59-157362 is made into a nonwoven fabric by a melt-blow technique, and is optimal for making these flexible and soft resins into a non-woven fabric. However, the present inventor has no development means, An attempt was made to fabricate the softness and nonwoven fabric of the composite staple fiber and the soft resin. In either case, a roller card, which is a fiber opening means, is passed, so that a thermoplastic resin that is relatively solid is used for the core component, and the resin is used for the sheath component for exhibiting the function. Patent 2587706 uses a thermoplastic rubber, syndiotactic 1 · 2-polybutadiene, and non-slip fibers and non-woven fabrics are made of a soft resin or thermoplastic elastomer having a low melting point in Patents 2664466, 3159653 and 2571155. The elastomer fiber cannot be passed through the elastic fiber and non-woven fabric, so that very fine crimps (secondary crimps) are generated by thermal processing. Thus, it has been proposed with the crimped elastic fiber and the non-woven fabric of Patent No. 2759331 and Patent No. 2772532. Due to the composite fibers, these fibers are significantly more sticky and sticky, which are disadvantages of rubbers and elastomers in daily goods than the polyurethane fiber nonwoven fabrics disclosed in JP-A-59-157362. It was low.
[0009]
The present invention uses these sticky feelings and sticky feeling elastomers, etc., while maintaining the elasticity and non-slip characteristics of rubber elasticity, which are the characteristics of these rubbers and elastomers, are more preferable for daily goods. It proposes non-woven fabrics with reduced or eliminated feelings of stickiness, and has improved functionality and improved economics, such as productivity and ease of production by simplifying the process, compared to the staple composite fibers and non-woven fabrics mentioned above. It aims for further improvement.
[0010]
Further, as described above, unlike a film, a non-woven fabric is characterized by its thickness and air permeability, and the non-woven fabric is also expected to have a cushioning property due to its thickness. It is necessary to be a little bulky than the present situation.
[0011]
Furthermore, in a stretchable nonwoven fabric, it is possible to make a rubber elastic nonwoven fabric with a higher degree of elongation by dividing it into a stretched and contracted portion, so that the overall nonwoven fabric and partial strong adhesion can be achieved. is necessary. An object of the present invention is to solve the above-described problems and to provide functionality.
[0012]
[Means for Solving the Problems]
The inventor of the present invention basically uses the electret nonwoven fabric disclosed in Japanese Patent Application Laid-Open No. 2001-98453, in the same manner as a conventional melt-blown nonwoven fabric, that each single fiber is neatly ejected in a cage shape and fused and adhered when the fibers are accumulated. However, although it is of course ejected orderly, at least a few percent of adjacent fibers are partially brought into contact with each other during ejection, and the aggregated, entangled, fused and bonded mass that is partially and locally unevenly distributed is rather By actively generating, for stretch (rubber elastic) non-woven fabric applications, a partial strong adhesion part is generated, and for anti-slip (non-slip) non-woven fabric applications, an integrated plane on which composite fibers are accumulated is provided. By forming unevenness and further accumulating composite fibers from above, we create three-dimensional accumulation conditions in the thickness direction and actively carry out fiber accumulation to lower fiber density, and as a result, non-woven To achieve bulking of is to that achieved an improvement in breathability spread together interfiber gaps and fiber intersection gap. In addition, when the agglomerated, entangled, and fusion-bonded lumps that are locally distributed are made, randomization of the fiber orientation direction was also achieved.
[0013]
The present invention has a low melting point, tackiness, and softness of the surface hardness, which is a problem of fusion bonding between the spun fibers at the time of spinning, and has a sticky feeling and a sticky feeling when making staple fibers. It is a composite fiber using an elastomer that cannot withstand take-up because it stretches at a low stress, and is made of a fiber that has greatly improved its stickiness and stickiness. That is, the present invention is a functional composite fiber nonwoven fabric comprising a composite fiber composed of a thermoplastic elastomer having a Shore A hardness (A) of 50 or more according to ASTM-D2240 method, the majority of the fiber surface made by the melt blow method. Thus, the nonwoven fabric has excellent functionality such as stretchability or anti-slip performance.
[0014]
One of the functions of the present invention is a functional composite fiber meltblown nonwoven fabric rich in stretch, and a sheath core type comprising a substantially continuous thermoplastic elastomer having a fiber diameter (d: μm) of 100>d> 3. A composite fiber in which most of the fiber surface is covered with a single component, such as an eccentric sheath-core type, cat-eye type, or three-layer type composite fiber, and has a Shore A hardness (A) of 70 or more and a fluid The majority of the fiber surface is covered with a component whose starting temperature or melting point is lower than that of the core component, and each of the constituent components has a flow starting temperature or melting point (Tm: ° C) of 60 <Tm <210, its melting Fluidity melt flow rate (MFR: g / 10 min; measurement temperature is 230 ° C., weight is 2.169 Kg, according to JIS-K-6760) is 5 <MFR <200, Shore A hardness is 50 or more Plastic elastomer -It is a resin and is made by a melt blown technique in which fibers are blown off from the spinneret with hot air, and the composite fiber is formed into a flat fiber aggregate in which there are lumps in which the composite fibers are partially agglomerated and entangled and fused. It is a functional composite fiber nonwoven fabric having a stretchability that is at least fusion bonded and / or melt bonded and bonded and integrated with a component covering the majority of the surface, and covers the majority of the fiber surface of the thermoplastic elastomer. At least a majority of a polyolefin elastomer whose component is a copolymer of a plurality of types of monomers selected from ethylene and α-olefin, particularly preferably a low melting point soft ethylene copolymer containing at least 20% by mass of octene-1. What consists of the elastomer which contains is preferable.
[0015]
Another function is a functional composite fiber melt blown nonwoven fabric having a so-called non-slip performance that has an excellent anti-slip effect. The flow start temperature or melting point (Tm: ° C.) is 60 <Tm <210, and its melt flowable melt flow rate ( MFR: g / 10 min; measurement temperature is 230 ° C., weight is 2.169 Kg, according to JIS-K-6760), but 5 <MFR <200, Shore A hardness is 50 or more, thermoplastic elastomer resin with fiber surface The resin occupying the majority of the fiber has a melting point at least 20 ° C. higher than the elastomer or higher than the flow start temperature, and its melting point (TM: ° C.) is 90 <TM <270. Melt flow rate (MFR: g / 10 min; measurement temperature is 230 ° C. when TM ≦ 200 ° C., 290 ° C. when TM ≧ 200 ° C., weight is 169 Kg, conforming to JIS-K-6760) is a thermoplastic resin with 5 <MFR <200, such as a sheath core type, an eccentric sheath core type, or a cat-eye type composite fiber, and the fiber diameter (D: μm) 100>d> 3, a substantially continuous mass produced by a melt blow technique in which fibers are blown off with hot air from a spinneret, and the composite fibers are partially agglomerated and entangled and fused and bonded. Is a functional composite fiber nonwoven fabric having a high anti-slipping effect, at least fusion-bonded and / or melt-bonded with a component covering a majority of the fiber surface, and united and integrated.
[0016]
In addition, in order to generate an agglomerated, entangled, fused, and bonded lump that is partially and locally contacted between adjacent fibers during ejection, and is partially and locally unevenly distributed, the facility response is extremely high. There was an effect. The nozzle of this place proposed with the electret nonwoven fabric of the said Unexamined-Japanese-Patent No. 2001-98453 made the space | interval of a discharge hole 3 mm, and was impossible to make adjacent fibers contact intentionally. After that, in order to solve the problem and improve productivity and make the melt blown fiber thinner, the interval between the discharge holes was reduced, and a nozzle with a large number of discharge holes was devised, and the interval between the discharge holes is now less than 1 mm. Artificially, we succeeded in generating agglomerated, entangled and fused bonded masses. That is, when making a non-woven fabric with many lumps that have been flocculated and entangled and fused, it is better to increase the discharge rate and slightly reduce the flow rate of hot air. Time can be achieved by reducing the discharge amount and increasing the hot air flow velocity. This utilizes the ballast effect of the resin.
[0017]
In the present invention, it is convenient to use a high-viscosity resin rather than a high-flow (low-viscosity) thermoplastic resin, and it is convenient to set the MFR of the resin to be used to be less than 200 g / 10 minutes. If it is less than 5 g / 10 minutes, this is a good direction, but it is excluded because it is difficult to produce fibers with a fiber diameter of 5 μm or less according to the present invention. Of the thermoplastic resins used, the flow starting temperature or melting point (Tm: ° C.) of the resin covering the majority of the fiber surface is advantageously in the range of 60 <Tm <210. If the melting point was less than 60 ° C., it was excluded from the claims because it was difficult to control the adhesion due to the excessive adhesion. At 210 ° C. or higher, it was excluded from the scope of claims because it was difficult to fuse and bond, and for the purpose of fusion bonding, the flow start temperature or melting point of the resin (core component) occupying the center of the fiber was the resin on the fiber surface. It is preferably at least 20 ° C higher, and the fiber constituting the non-slip nonwoven fabric of the present invention preferably has a melting point of 90 to 270 ° C. Since the core component thermoplastic resin could not be obtained due to temperature restrictions of the melt blow equipment used, the claim for the melting point of the resin used was less than 270 ° C., and 270 ° C. or higher was excluded. Therefore, it is considered that there is no inconvenience even at 270 ° C. or higher. The relationship between the resin covering the majority of the fiber surface described above (melting point: Tms: ° C.) and the melting point of the core component resin (Tmc) is preferably Tms + 20 ≦ Tmc. When using a resin covering the majority of the surface, if both of these components or a combination thereof have fiber moldability, Tms> Tmc and there is no inconvenience. Since the requirement of Tms + 20 ≦ Tmc of the planned fiber is necessary, this condition is excluded from the claims. The Shore A hardness is an index of the hardness of the thermoplastic elastomer, and there is no problem at 30 or more when it is made into a fiber, but the fiber surface is formed in order to suppress the stickiness and stickiness of rubber and elastomer. The hardness is limited only to the resin. Generally, the Shore A hardness may be 50 or more. However, in the case of a rubber elastic nonwoven fabric having stretchability, the entire nonwoven fabric is soft, and more preferably 70 or more is preferable.
[0018]
The thermoplastic elastomer used in the present invention is a styrene-based thermoplastic elastomer represented by styrene-butadiene-styrene, styrene-hydrogenated butadiene-styrene, styrene-isoprene-styrene, styrene-hydrogenated butadiene, or an ethylene-propylene copolymer. Flexible polyolefin elastomers such as propylene rubber and ethylene / octene copolymer, PBT elastomer represented by trade name Lightflex, polyamide elastomers such as polyamide-ether, polyurethane thermoplastic elastomer, trans-1 / 4 polyisoprene And thermoplastic rubbers typified by syndiotactic-1,2-polybutadiene, ethylene-acrylate copolymers, copolymers of ethylene and propylene with metallocene catalysts, and low density Such as soft resin is preferably such Riechiren, mixtures thereof also convenient.
[0019]
Further, the resin other than the thermoplastic elastomer used for the fiber core component for the non-slip nonwoven fabric is preferably a thermoplastic resin having a melting point in the above range, a good fiber moldability and a fiber material that is usually used. For example, a copolymer of polypropylene or propylene and polyethylene terephthalate are particularly preferable in view of cost.
[0020]
In the present invention, the fibers are partially agglomerated and intertwined so that the nonwoven fabric is bulky, and the elastic nonwoven fabric of the present invention further exhibits rubber elasticity to improve strength. In order to make the non-slip nonwoven fabric of the present invention have a cushioning property, the fibers are fused and bonded to form a lump.
[0021]
Further, in order to give the nonwoven fabric different from the film, that is, the breathable and bulky properties of the nonwoven fabric of the present invention, in particular, the non-slip nonwoven fabric of the present invention is bulky and imparts cushioning properties to promote non-slip properties. In the nonwoven fabric of the present invention, at least a thick fiber having a fiber diameter of 50 to 10 μm is used for fusion bonding by using a thick fiber having a fiber diameter of 50 to 10 μm for the middle layer portion of the product only of the nonwoven fabric, and for bonding with other fiber composition. It is preferable to generate a large amount of lumps to lower the fiber density and produce an irregular appearance, especially in the case of the above-mentioned lamination, when using a part of the nonwoven fabric of the present invention as a thermal bonding component, The fiber diameter is most convenient within the range of 50 to 10 μm, and the basis weight of the portion is conveniently 5 to 15 g / m 2. When the fiber diameter is within this range, if the basis weight is less than 5 g / m 2, the adhesion to the base fabric is weak, and if it exceeds 15 g / m 2, it depends on the fiber material of the partner fiber composition. Problems with film formation are likely to occur. Further, when the fiber diameter of the thick fiber exceeds 50 μm, although it depends on the material of the partner, partial melting of the partner fiber is liable to occur, and if it is less than 10 μm, the fiber accumulation effect on the partner surface is great, Less bite and physical entanglement effect is reduced and adhesive strength is lowered, which is not preferable. Even if the above-mentioned thick fiber exceeding 50 μm can be adequately selected if the other party is selected, there are cases where it is convenient even at about 200 μmφ, so the claims are not limited. I think that even thicker fibers are possible.
[0022]
In the present invention, a composite fiber having a fiber diameter of 200 to 1 μmφ, more preferably 100 to 3 μmφ, and at least a thermoplastic elastomer covering a majority of the fiber surface is blown off in a substantially continuous state by a melt blow technique. It is an integrated non-woven fabric, and the fibers are fused and bonded after ejection from the nozzle to achieve randomness in the fiber orientation direction and increase in unevenness, and the fiber diameter of the middle layer is specified, but the fiber The diameter of the non-slip non-woven fabric is remarkably different depending on the use. Therefore, the fiber diameter of other portions is not limited, but the stretchable non-woven fabric is limited because the relationship between the fiber diameter and equipment is deep.
[0023]
Originally, thicker fibers are better for increasing the unevenness, and the fiber diameter should be determined as necessary. The fiber diameter referred to in the present invention refers to the number average fiber diameter, and the nonwoven fabric of the present invention uses a heat-adhesive conjugate fiber and is arbitrarily partially fused and bonded. Since the dispersion and distribution of the diameter were wide and the fiber diameter was determined by microscopic observation, it was described as a number average. A lump or fiber bundle that was fused and bonded was counted as one.
[0024]
The fiber composition for bonding the non-slip nonwoven fabric of the present invention, when directly heat-bonded in the melt-blowing process, it is convenient to have a coarse mesh considering the escape of hot air, the melt-blown nonwoven fabric of the present invention is made of polyolefin resin In view of its adhesiveness, a composition made of a polyolefin resin is preferable. Needless to say, a polyester-based composition is preferable when a polyester elastomer is used as the surface.
[0025]
For the fiber composition, the resin used in the present invention may be selected in consideration of the type of fiber constituting the fiber, that is, the melting point of the fiber, and acrylic fiber, wool, or vinylon fiber having no melting point or high decomposition temperature. Is also very convenient to use.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The thermoplastic resin used in the fiber of the present invention is not a high-flow dedicated resin used in the conventional melt-blowing method, but relates to a melt-blown nonwoven fabric of composite fiber having the characteristics that it is a resin having the same melt viscosity as the staple fiber. The non-woven fabric fiber is a composite fiber in which most of the fiber surface is covered with a soft resin component such as an elastomer, and the fibers are partially agglomerated and entangled to form a functional characteristic. It is a composite nonwoven fabric.
[0027]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples. FIG. 1 is an example of a magnified plan view of a composite fiber nonwoven fabric of the present invention having excellent stretch performance in which fibers are partially agglomerated, intertwined and fused, and FIG. 2 is a partially agglomerated fiber. It is an example of the magnified plane view of the composite fiber of the present invention having excellent anti-slip performance in which the nonwoven fabric surface is in an uneven state and the apparent thickness is increased due to the intertwined and fused lump.
[0028]
The fiber cross section of the composite fiber used in the present invention is an example of a fiber cross section in which the fibers of A are referred to as cat eyes, as illustrated in FIGS.
[0029]
One embodiment of the present invention is a sheath-core type, an eccentric sheath-core type, a cat-eye type, or a three-layer structure, which is made of a substantially continuous thermoplastic elastomer having a fiber diameter (d: μm) of 100>d> 3. A composite fiber composed of a part (sheath part 2) in which a majority of the fiber surface is covered with one component and a center part (core part 1) other than that, such as a type composite fiber, and having a Shore A hardness (A) is 70 or more, the majority of the fiber surface is covered with a component having a flow initiation temperature or melting point lower than that of the core component, and each of a plurality of constituent components has a flow initiation temperature or melting point (Tm: ° C.). 60 <Tm <210, its melt fluidity melt flow rate (MFR: g / 10 min; measurement temperature is 230 ° C., weight is 2.169 Kg, according to JIS-K-6760) is 5 <MFR <200, Thermoplastic with Shore A hardness of 50 or more It is a laster resin, and is made by a melt blow method in which fiber is blown off from a spinneret with a hot air, and the composite fiber is partially agglomerated and formed into a flat fiber aggregate in which there are entangled fusion-bonded lumps, and the fiber surface It is a functional composite fiber nonwoven fabric rich in stretch, which is at least fused and / or fused and bonded and integrated with the components covering the majority of the above.
[0030]
Furthermore, the thermoplastic elastomer which is a component covering the majority of the fiber surface is an ethylene copolymer containing at least 20% by mass of octene-1, and the thermoplastic elastomer occupying the center of the fiber is styrene-butadiene. It is preferably a composite fiber nonwoven fabric rich in stretch, which is a styrene thermoplastic elastomer represented by styrene, styrene-hydrogenated butadiene-styrene, and styrene-hydrogenated butadiene.
[0031]
It should be noted that the two components do not necessarily need to be 100% resin, and at least the majority may be included. The diluted thermoplastic resin is preferably a soft resin such as a soft ethylene-propylene copolymer or an ethylene-propylene-butene-1 copolymer.
[0032]
Needless to say, not only the above-mentioned styrenic thermoplastic elastomer but also a copolyester elastomer having a hard segment made of polyester and a soft segment made of polyether, etc. are convenient.
[0033]
In addition, in order to further improve the strength of the nonwoven fabric, the mesh of the suction net of the melt blown nonwoven fabric production facility is shaped on one side, and the convex portion of the mesh is at least pressed and strongly bonded, and the composite fiber nonwoven fabric rich in elasticity It may be. Instead of this, it is naturally convenient to be partly strongly bonded by point bond thermal bonding or the like, but the former is more convenient in consideration of productivity.
[0034]
Furthermore, in practice, there are many cases where composite post-processing such as pressure-sensitive adhesive processing and partial bonding of non-woven fabrics is carried out, and for these applications, the stretchability of the present invention is applied to non-woven fabrics for which a release function is expected. It is preferable to provide a laminated nonwoven fabric so that it can be processed without stretching or shrinking at least when it is combined with other materials.
[0035]
Another embodiment of the present invention has a flow initiation temperature or melting point (Tm: ° C.) of 60 <Tm <210, its melt flowable melt flow rate (MFR: g / 10 min; measurement temperature is 230 ° C., weight is 2 169 Kg, in accordance with JIS-K-6760), 5 <MFR <200, and the thermoplastic elastomer resin having a Shore A hardness of 50 or more covers most of the fiber surface, and the resin occupying the center of the fiber is the elastomer. The melting point is at least 20 ° C. or higher than the flow start temperature, the melting point (TM: ° C.) is 90 <TM <270, the melt flowable melt flow rate (MFR: g / 10 minutes; the measurement temperature is TM ≦ 200 ° C. 230 ° C., TM ≧ 200 ° C. 290 ° C., weight 2.169 kg, according to JIS-K-6760) 5 <MFR <200 Resin, sheath-core type, eccentric sheath-core type, cat-eye type composite fiber, etc., fiber diameter (d: μm) 100>d> 3, substantially continuous, hot air from spinneret It is made by a melt-blowing method in which fibers are blown away in order to form a flat fiber aggregate in which the composite fibers are partially agglomerated, entangled and fused, and at least a component covering the majority of the fiber surface. It is a composite fiber nonwoven fabric having a high anti-slip effect by being fused and / or fused and integrated.
[0036]
In addition, it is easy to directly heat-bond the above-mentioned nonwoven fabric to another fiber composition. In this case, relatively thick fibers in the present invention are first ejected and laminated on the fiber composition for the purpose of bonding. Thereafter, it is very convenient to laminate the fibers of the present invention having a desired fiber diameter.
[0037]
The composite fiber constituting the nonwoven fabric made by the melt-blowing method of the present invention is a sheath-core type, an eccentric sheath-core type, and a core component such as an ellipse or a cat-eye shape as illustrated in FIG. 3-core type as shown in Fig. 3-C and the fiber cross-section in which one component is divided into at least a plurality of components and other components are divided into mandarin orange type, windmill type, etc. It is a fiber that is a mold, and the fiber shape is basically a circular shape such as a circle or an ellipse, but it may be an irregular shape with a rounded corner. Also, the fiber of the present invention is characterized in that a large number of fibers are partially fused and bonded by the components that occupy the majority of the fiber surface, and are unevenly distributed in a bundled state. This is a non-woven fabric, and this fusion-bonded part is a result of the fiber diameter being thicker than the fibers constituting at least other parts, and the case where the fusion-bonding phenomenon is further amplified Many.
[0038]
Another feature of the present invention is that, as described above, the melt viscosity of the thermoplastic resin used matches the viscosity of the resin producing the staple fibers. This is because the present invention avoids various limitations in the process of making a nonwoven fabric such as a roller card, and makes a thinner fiber, a thicker fiber, a fiber that slips badly and does not stick to the card, or a fiber that is easily fused. The main purpose is that. Especially for staple fibers and multifilaments, fiber fusion is fatal. However, this disadvantage is used as an advantage, and composite fibers with a sheath component made of resin that is easy to fuse and bond in fiber production can be directly made into a nonwoven fabric. Is also the main purpose. Therefore, rather than aiming to make the fineness finer by using a low-viscosity resin like conventional melt-blown nonwoven fabrics, it is to create a nonwoven fabric consisting of fibers with the characteristics of staple fiber waist and fiber cross-sectional structure. Therefore, the resin used in the present invention has a melt viscosity similar to that of conventional staples, and only the melting point of the resin used is part conversion of the current single-fiber melt blown nonwoven fabric production equipment, For economic reasons, it is not preferable to raise the temperature of the hot air used unnecessarily, and a limitation of 270 ° C. is provided, but theoretically it is possible even at 350 ° C.
[0039]
The melt fluidity of the resin used in the present invention is in the range of 5 to 200 g / 10 minutes when expressed in terms of the melt flow rate, and the measurement temperature is divided according to whether or not it is sufficiently melted at 230 ° C. The melt fluidity at the melt temperature at the time of melt spinning may not be consistent. The melt fluidity preferred for melt spinning varies depending on the resin, and the most preferred melt fluid state of polyethylene terephthalate or polymethylpentene is around 100 g / 10 minutes, and polypropylene is lower than this. For the above reasons, the thermoplastic resin used in the present invention can be used generally conveniently if the resin used in the conventional staple fiber is devised, and details are not individually mentioned. An example of a resin that is convenient for the core component of the non-slip non-woven fabric described in the paragraphs 9 and after, in addition to the soft resin such as the elastomer described above, is a polyolefin resin having a melting point of 90 to 270 ° C., low Polyester resins including melting point ester copolymers and aliphatic polyesters, polyamide resins such as polyamide and polyimide, and polycarbonate resins can be conveniently used. Examples of these resins include modified resins by polymer alloy, graft polymerization, and low-temperature plasma treatment. it can.
[0040]
The fiber diameter of the composite fiber of the present invention is such that the fiber diameter varies between the fused part and the non-fused part, and the thick part is generally less than 200 μm, and substantially continuous is the fiber for some individual reason. Unless it is broken, it means that the production condition is not intended to be broken.
[0041]
Note that the composite meltblown fiber in the present invention is more advantageous for increasing the bulk by the uneven method, especially when the aggregated and fusion-bonded lump is scattered, and when thick fibers are used, the fiber accumulation is divided into multiple times. Even in the fine fiber layer, in order to avoid unevenness of the fabric weight, it is also preferable to assemble the fibers in a plurality of times as described above.
[0042]
Further, in these fiber accumulations, the fibers are easily aligned in a certain direction by the melt blow method, and therefore, it is preferable to laminate the layers so that they intersect as much as possible. In the present invention, this point is taken into consideration in the equipment.
[0043]
Considering the required weight of each layer as described above, the weight of the nonwoven fabric of the present invention depends on the use, but is preferably 30 to 400 g / m 2, and if it exceeds 400 g / m 2, the hot air penetration is poor and 30 g If it is less than / m 2, it is not convenient because it is not possible to secure unevenness in weight per unit area.
[0044]
The fiber composition described in claim 10 or later of the present invention is advantageously a nonwoven fabric such as a spunbond nonwoven fabric, a melt blown nonwoven fabric, a spunlace nonwoven fabric, a heat bonded nonwoven fabric, a needle punched nonwoven fabric, or a resin impregnated bonded nonwoven fabric. The composite is called a composite composition.
[0045]
In order to make the composite fiber nonwoven fabric of the present invention flame-retardant, for example, a flame retardant stab CGL-116 of Ciba Specialty Chemicals may be added to the resin to obtain a nonwoven fabric. . By performing such a flame retardant treatment, the flame retardant evaluation method JIS. It becomes possible to obtain flame retardant tertiary by L1091, A-1 method. The above-mentioned flame retardant effect agent CGL-116 is a derivative of a Halus stabilizer which is a normal weathering stabilizer, and does not contain environmental hormones or harmful substances even in combination with the Hals stabilizer or other stabilizers. So it is very environmentally friendly. In addition, a spunbonded nonwoven fabric added with at least 0.5 wt% of flame retardant effect agent Flem Stub CGL-116 of Ciba Specialty Chemicals Co., Ltd. is laminated and integrated on at least one side of the composite fiber nonwoven fabric of the present invention. It may be a composite composition.
[0046]
Next, the effects of the present invention will be specifically described with reference to examples and comparative examples. The sheath component according to one embodiment of the present invention is a polyolefin elastomer that is an ethylene copolymer containing at least 20% by mass of octene-1, and the core component is a styrene thermoplastic that is styrene-hydrogenated butadiene-styrene. The melt blown non-woven fabric, which is rich in elasticity of the composite fiber used as the elastomer, and the non-slip non-woven fabric in which the ethylene-acrylic acid methyl ester copolymer and the PBT elastomer are the sheath component and the core component is polypropylene, respectively. It goes without saying that the composite fiber nonwoven fabric and the composite nonwoven fabric can be easily manufactured in the same manner with reference to the examples.
[0047]
【Example】
The composite fiber fiberized by the melt-blowing method of the present invention is a composite of 850 holes with a width of less than 70 cm that can form a composite fiber by extruding individual thermoplastic resins from two extruders and quantitatively supplying them with a gear pump. A nozzle is used to discharge from a row of orifices into a high-speed heating airflow, and at the same time, the airflow is elongated to form a basically continuous fiber, which is accumulated on a net conveyor provided with suction equipment. A composite fiber nonwoven fabric was obtained.
[0048]
In addition, a polypropylene spunbond nonwoven fabric preheated at 140 ° C. is positioned on the conveyor, and thick composite fibers having an average fineness of 6 to 10 dTex (23 to 38 μmφ) are accumulated on the nonwoven fabric with a basis weight of 15 g / m 2, The composite fiber nonwoven fabric of the present invention was also made as a trial by laminating thick fibers or fine fibers having a desired basis weight while varying the accumulation angle. Each layer is accumulated by intersecting at an angle of at least 30 °.
[0049]
The resin used in the present invention is as follows, PP is polypropylene, EO is EG8200 ethylene-octene-1 copolymer of 20% by mass of octene-1, and SE is styrene-hydrogenated butadiene-styrene. Kraton Polymer's G1657 styrenic elastomer, PB is Celanese PBT elastomer light flex 640, PT is polyethylene terephthalate (using a resin with a conventional critical viscosity IV of 0.64), EP is propylene-rich ethylene As the propylene copolymer and DY, Dynalon 1320P manufactured by JSR Corporation was used. However, EP and DY were mixed at a ratio of 45/55. The composite ratio of the sheath and the core component is 1: 1, and the melt-flowable MFR is measured at a temperature of 290 ° C. for PT and 230 ° C. for others, and the unit is g / 10 minutes. The resin whose name is not described in Table 1 is mainly described. In the case of elastomer, the melting point is read as the flow start temperature.
[0050]
[Table 1]
Figure 0004000019
[0051]
(Examples 1-7, Comparative Examples 1-2) The stretchable composite fiber meltblown nonwoven fabric of the present invention was made into a nonwoven fabric under the conditions shown in Table 2 using the resin shown in Table 1 and the above-described steps. The spinning temperature is the nozzle temperature, and is ejected using high-pressure hot air at the same temperature, sucked at a suction amount of 5 times or more of the ejected hot air amount, and accumulated on the conveyor, compared with the examples. An example composite fiber nonwoven fabric was obtained. The tensile test result (SS curve) of the composite fiber nonwoven fabric obtained in Examples 1 and 2 is shown in FIGS.
(This SS curve uses Tensilon UCT-1T manufactured by Orientec Co., Ltd., with load cell rating: 10 kgf, test speed: 300 mm / min, distance between chucks: 10 cm.)
[0052]
Table 2 shows the results of the extension repetition test of Example 1. The fineness in the table is the number average fiber diameter μm, and the fused fiber is excluded. Each fiber layer is at least two times of accumulation, and is expressed by its total weight g / m 2. The unit is 100 μm. However, since PB is a hard polymer, it is indicated by D hardness. D hardness is according to ASTM-D2240 method, as is A hardness.
[0053]
[Table 2]
Figure 0004000019
[0054]
In Comparative Example 1, a DY resin having a Shore A hardness of 39 was used instead of the EO elastomer of Example 1, and the fusion between fibers was so severe that it could not be said to be a non-woven fabric but became a film. Moreover, although the comparative example 2 is Example 8 mentioned later, there was no elasticity.
[0055]
Example 7 is a non-woven fabric obtained by placing the fiber of Example 1 on a conveyor with a PP spunbonded nonwoven fabric of about 7 dTex at a weight of 15 g and melt blown from above, and the laminated nonwoven fabric has the tensile strength of the spunbonded nonwoven fabric. The strength of the spunbonded nonwoven fabric was shown, and these were easily peeled off.
[0056]
(Examples 8 to 10, Comparative Example 3) The non-slip meltblown nonwoven fabric of the present invention comprises the resin of Table 1 and an ethylene-acrylate copolymer EM having a soft methyl acrylate content of 21% by mass and a melting point of 90 ° C. In the same manner as in Example 1, the composite fiber nonwoven fabrics of Examples and Comparative Examples were obtained by converting into a nonwoven fabric under the conditions shown in Table 2 in the above-described steps. Both were non-slip (non-slip) non-woven fabrics and, of course, did not stretch.
[0057]
(Example 11) A composite nonwoven fabric in which the nonwoven fabric of Example 8 was impregnated with acrylic resin of 3dTex fiber of polyethylene terephthalate and bonded directly by melt-blowing on a chemical bond nonwoven fabric having a basis weight of 60 g / m 2 was prepared. The nonwoven fabric was not slipped or slipped from the floor surface even when the nonwoven fabric of Example 8 was placed in contact with the floor surface and the chemical bond nonwoven fabric was kicked and walked.
[0058]
【The invention's effect】
The present invention resides in that a composite fiber using a thermoplastic resin conventionally used in staple fibers is directly made into a non-woven fabric by using a melt-blown fiberization technique, and conventional fibers such as staple fibers and multifilament fibers are used. In the method, a thermoplastic resin that is easily fused can be used positively, which has been a very serious problem, and particularly preferable is a composite fiber using the above-described easily fused resin on the fiber surface. However, by actively utilizing this fusing phenomenon, it was confirmed that the elastomer component, which caused the partial fusing of the fiber during the ejection of the fiber and agglomerated, entangled and fused and bonded, occupied the majority of the fiber surface. It is the melt blown composite fiber nonwoven fabric characterized.
By adopting the configuration as described above, the present invention provides a melt blown functional composite fiber nonwoven fabric rich in stretchability or non-slip property and a composite composition in which this is combined, and is a versatile product. It can be a nonwoven material that can be developed.
[Brief description of the drawings]
FIG. 1 is an enlarged plan view of a functional composite fiber nonwoven fabric of the present invention having excellent stretch performance.
FIG. 2 is an enlarged plan view of the functional composite fiber nonwoven fabric of the present invention having excellent anti-slip performance.
FIG. 3A is a fiber cross-sectional view of a feline eye type composite fiber.
B: Fiber cross-sectional view of a sheath-core type composite fiber.
C: Fiber cross-sectional view of a three-layer composite fiber.
4 is a longitudinal direction SS curve of the stretchable nonwoven fabric of Example 1. FIG.
5 is a transverse direction SS curve of the stretchable nonwoven fabric of Example 1. FIG.
6 is a longitudinal direction SS curve of the stretchable nonwoven fabric of Example 2. FIG.
7 is a transverse direction SS curve of the stretchable nonwoven fabric of Example 2. FIG.
[Explanation of symbols]
1 core component
2 sheath component
3 Lump parts where the composite fibers are partially agglomerated, entangled and melt bonded

Claims (12)

メルトブロー法で作られた繊維表面の過半がASTM−D2240法によるショアーA硬度(A)が50以上のエラストマーで構成された複合繊維からなり、該エラストマーがスチレン系熱可塑性エラストマー、エチレン・オクテン共重合体、又はそれらの混合物であり、該複合繊維は吐出孔間隔が1mm未満である複合ノズルから吐出され、該複合繊維同士が噴出中に部分的に接触し、部分的に凝集し絡み合い融着接着した塊が存在している機能性複合繊維不織布。The majority of the fiber surface made by the melt blow method is composed of a composite fiber composed of an elastomer having a Shore A hardness (A) of 50 or more according to ASTM-D2240 method, and the elastomer is a styrene thermoplastic elastomer, ethylene / octene copolymer The composite fibers are discharged from a composite nozzle having a discharge hole interval of less than 1 mm, and the composite fibers are partially in contact with each other during jetting, and are partially aggregated and entangled with each other. Functional composite fiber nonwoven fabric in which a lump is present. 繊維径(d:μm)が100>d>3の実質的に連続した熱可塑性エラストマーからなる繊維表面の過半が1つの成分によって覆われている複合繊維であって、ショアーA硬度(A)が70以上で、流動開始温度または融点が前記繊維表面の過半を覆っている成分以外の芯成分より低い温度の成分で繊維表面の過半が覆われており、構成する複数の各成分が、流動開始温度または融点(Tm:℃)を60<Tm<210、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は230℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200、ショアーA硬度が50以上である熱可塑性エラストマー樹脂であり、紡糸口金より熱風で吹き飛ばして繊維化するメルトブロー法で作られ、該複合繊維が部分的に凝集し絡み合い融着接着した塊が存在する平面状の繊維集積物であり、繊維表面の過半を覆っている成分で少なくとも融着接着および/または溶融接着されて接着一体化した、伸縮性能を有したことを特徴とする請求項1記載の機能性複合繊維不織布。  A composite fiber having a fiber surface (d: μm) of a substantially continuous thermoplastic elastomer having a diameter of 100> d> 3 and a majority of the fiber surface covered with one component, and having a Shore A hardness (A) of The majority of the fiber surface is covered with a component having a flow starting temperature or melting point lower than that of the core component other than the component covering the majority of the fiber surface at a temperature of 70 or more. Temperature or melting point (Tm: ° C.) 60 <Tm <210, melt flow rate melt flow rate (MFR: g / 10 min; measurement temperature is 230 ° C., load is 2.169 Kg, according to JIS-K-6760) Is a thermoplastic elastomer resin having a Shore A hardness of 50 or more, and is made by a melt-blowing method in which a fiber is blown off with hot air from a spinneret. Stretching performance, which is a flat fiber aggregate in which agglomerated, entangled and fusion-bonded lumps are present, and at least fusion-bonded and / or melt-bonded and integrated with components covering the majority of the fiber surface The functional composite fiber nonwoven fabric according to claim 1, wherein 繊維表面の過半を覆っている成分である熱可塑性エラストマーが、オクテン−1を少なくとも20質量%含むエチレン共重合体である請求項1又は2に記載の機能性複合繊維不織布。  The functional composite fiber nonwoven fabric according to claim 1 or 2, wherein the thermoplastic elastomer which is a component covering a majority of the fiber surface is an ethylene copolymer containing at least 20% by mass of octene-1. さらに、繊維表面の過半を覆っている成分以外の芯成分が、スチレンーブタジェンースチレン、スチレンー水添ブタジェンースチレン、スチレンー水添ブタジェンに代表されるスチレン系熱可塑性エラストマーを少なくとも過半含むエラストマーである請求項3に記載の機能性複合繊維不織布。  Further, the core component other than the component covering the majority of the fiber surface is an elastomer containing at least a majority of a styrene-based thermoplastic elastomer represented by styrene-butadiene-styrene, styrene-hydrogenated butadiene-styrene, and styrene-hydrogenated butadiene. The functional composite fiber nonwoven fabric according to claim 3. 熱可塑性エラストマーのうち、繊維表面の過半を覆っている成分以外の芯成分が、ハードセグメントをポリエステル、ソフトセグメントをポリエーテルとする共重合ポリエステルエラストマーを少なくとも過半含むエラストマーである請求項2に記載の機能性複合繊維不織布。  3. The thermoplastic elastomer according to claim 2, wherein the core component other than the component covering the majority of the fiber surface is an elastomer containing at least a majority of a copolyester elastomer having a hard segment as a polyester and a soft segment as a polyether. Functional composite fiber nonwoven fabric. メルトブロー不織布製造設備の吸引ネットの網目がその一面に付形され、その網目の凸部が少なくとも圧迫されて、他より強く融着接着している請求項1〜5のいずれかに記載の機能性複合繊維不織布。  The functionality according to any one of claims 1 to 5, wherein the mesh of the suction net of the melt blown nonwoven fabric manufacturing facility is formed on one surface thereof, and the convex portion of the mesh is at least pressed and fused and bonded more strongly than the other. Composite fiber nonwoven fabric. 離型機能が期待されている不織布の上に請求項1〜6のいずれかに記載の機能性複合繊維不織布が配され、少なくとも他素材との複合化加工時、伸び縮みなく加工できることを特徴とする機能性複合繊維不織布層を有する複合組成物。  The functional composite fiber nonwoven fabric according to any one of claims 1 to 6 is disposed on a nonwoven fabric expected to have a mold release function, and is capable of being processed without stretching at the time of composite processing with at least another material. A composite composition having a functional composite fiber nonwoven fabric layer. 流動開始温度または融点(Tm:℃)を60<Tm<210、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は230℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200、ショアーA硬度が50以上である熱可塑性エラストマー樹脂で繊維表面の過半が覆われ、繊維中心部を占める樹脂が、該エラストマーより融点を少なくとも20℃高く、もしくは流動開始温度より高く、その融点(TM:℃)を90<TM<270とし、その溶融流動性メルトフローレート(MFR:g/10分;測定温度は、TM≦200℃の時230℃、TM≧200℃の時290℃、加重は2.169Kg、JIS−K−6760に準ず)が、5<MFR<200である熱可塑性樹脂であり、鞘芯型、偏芯した鞘芯型、あるいは猫目型複合繊維から選択され得る複合繊維であり、繊維径(d:μm)が100>d>3で、実質的に連続した、紡糸口金より熱風で吹き飛ばして繊維化するメルトブロー法で作られ、該複合繊維が部分的に凝集し絡み合い融着接着した塊が存在する平面状の繊維集積物であり、繊維表面の過半を覆つている成分で少なくとも融着接着および/または溶融接着されて接着一体化し、滑り止め性能を有することを特徴とする請求項1記載の機能性複合繊維不織布。  Flow start temperature or melting point (Tm: ° C.) 60 <Tm <210, melt flowability melt flow rate (MFR: g / 10 min; measurement temperature is 230 ° C., weight is 2.169 Kg, JIS-K-6760 5), the majority of the fiber surface is covered with a thermoplastic elastomer resin having a Shore A hardness of 50 or more, and the resin occupying the center of the fiber has a melting point at least 20 ° C. higher than that of the elastomer, or It is higher than the flow start temperature, its melting point (TM: ° C.) is set to 90 <TM <270, its melt flowable melt flow rate (MFR: g / 10 min; measurement temperature is 230 ° C. when TM ≦ 200 ° C., TM ≧ 200 ° C., 290 ° C., weight is 2.169 Kg, according to JIS-K-6760) is a thermoplastic resin with 5 <MFR <200, sheath core type, eccentric This is a composite fiber that can be selected from a sheath-core type or cat-eye type composite fiber, and has a fiber diameter (d: μm) of 100> d> 3, and is blown with hot air from a spinneret that is substantially continuous, and fiberized A flat fiber aggregate made by a melt-blowing method, in which the composite fiber is partially agglomerated and entangled and fusion-bonded, and a component covering the majority of the fiber surface is at least fusion-bonded and / or 2. The functional composite fiber nonwoven fabric according to claim 1, wherein the functional composite fiber nonwoven fabric is melt-bonded and bonded and integrated to have anti-slip performance. 請求項8記載の複合繊維不織布の少なくとも片面に、繊維組成物が張り合わせてなる、滑り止め性能を有する複合組成物。  A composite composition having anti-slip performance, wherein the fiber composition is bonded to at least one surface of the composite fiber nonwoven fabric according to claim 8. 請求項8記載の複合繊維不織布と繊維組成物の張り合せが、請求項8記載の複合繊維不織布を構成する繊維表面の過半を覆つている成分で少なくとも融着接着および/または溶融接着されて接着一体化している請求項9記載の滑り止め性能を有する複合組成物。  The composite fiber nonwoven fabric according to claim 8 and the fiber composition are bonded to each other by at least fusion bonding and / or melt bonding with a component covering a majority of the fiber surface constituting the composite fiber nonwoven fabric according to claim 8. The composite composition having anti-slip performance according to claim 9 which is integrated. 請求項1〜10のいずれかに記載の複合繊維不織布が難燃化している機能性複合繊維不織布。  The functional composite fiber nonwoven fabric in which the composite fiber nonwoven fabric according to claim 1 is flame-retardant. 請求項1記載の複合繊維不織布の製造方法であって、吐出孔間隔が1mm未満である複合ノズルを用いてメルトブロー法により紡糸することを特徴とする機能性複合繊維不織布の製造方法。  2. The method for producing a functional composite fiber nonwoven fabric according to claim 1, wherein spinning is performed by a melt blow method using a composite nozzle having a discharge hole interval of less than 1 mm.
JP2002196039A 2002-07-04 2002-07-04 Functional composite fiber nonwoven fabric and composite composition using the same Expired - Fee Related JP4000019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002196039A JP4000019B2 (en) 2002-07-04 2002-07-04 Functional composite fiber nonwoven fabric and composite composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196039A JP4000019B2 (en) 2002-07-04 2002-07-04 Functional composite fiber nonwoven fabric and composite composition using the same

Publications (2)

Publication Number Publication Date
JP2004036047A JP2004036047A (en) 2004-02-05
JP4000019B2 true JP4000019B2 (en) 2007-10-31

Family

ID=31704252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196039A Expired - Fee Related JP4000019B2 (en) 2002-07-04 2002-07-04 Functional composite fiber nonwoven fabric and composite composition using the same

Country Status (1)

Country Link
JP (1) JP4000019B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070402B2 (en) * 2006-03-02 2012-11-14 東レ・モノフィラメント株式会社 Racket gut
EP3755828A4 (en) * 2018-02-21 2021-12-15 3M Innovative Properties Company Core-sheath filaments and methods of printing an adhesive
CN111041854A (en) * 2019-11-28 2020-04-21 如皋市五山漂染有限责任公司 Clothing adhesive interlining and production method thereof
WO2023063075A1 (en) * 2021-10-15 2023-04-20 王子ホールディングス株式会社 Method for manufacturing nonwoven fabric

Also Published As

Publication number Publication date
JP2004036047A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP5199953B2 (en) Skin covering sheet for impregnating cosmetics, method for producing the same, and face mask using the same
JP5619417B2 (en) Anisotropic and stretchable nonwoven fabric
JP3678652B2 (en) Elastic nonwoven fabric manufactured from two-component filaments
KR101368848B1 (en) Stretchable sheet and process for producing the stretchable sheet
JPH09512504A (en) Elastic fiber nonwoven laminate with slit
KR20160130784A (en) Nonwoven fabric for skin covering sheet to be impregnated with cosmetic preparation, and process for producing same
JP5324403B2 (en) Skin covering sheet for impregnating cosmetics, method for producing the same, and face mask using the same
JP6730677B2 (en) Laminated nonwoven sheet
JP4845587B2 (en) Elastic nonwoven fabric
JP2001140158A (en) Stretchable composite nonwoven fabric and absorbing article using the same
JP5884733B2 (en) Laminated nonwoven fabric and its products
JP5272130B2 (en) Skin covering sheet for impregnating cosmetics, method for producing the same, and face mask using the same
JP4211556B2 (en) Long fiber nonwoven fabric and fiber product using the same
JP5172217B2 (en) Laminated nonwoven fabric and method for producing the same
WO1995003443A1 (en) Composite elastic nonwoven fabric
JP4000019B2 (en) Functional composite fiber nonwoven fabric and composite composition using the same
JP5295713B2 (en) Laminated nonwoven fabric and method for producing the same
JP2002001855A (en) Highly stretchable nonwoven fabric composite and manufacturing method thereof
JP3244441B2 (en) Composite elastic sheet
JP4142903B2 (en) Composite fiber nonwoven fabric and composite nonwoven fabric thereof
TWI417432B (en) Scalable nonwoven
JP2801055B2 (en) Composite sheet
JP4413300B2 (en) Composite stretch sheet and method for producing the same
JP5230123B2 (en) Elastic nonwoven fabric
JP4774900B2 (en) Elastic nonwoven fabric and article using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Ref document number: 4000019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees