JP3999872B2 - Ejection amount adjustment mechanism for dispenser products - Google Patents

Ejection amount adjustment mechanism for dispenser products Download PDF

Info

Publication number
JP3999872B2
JP3999872B2 JP09247998A JP9247998A JP3999872B2 JP 3999872 B2 JP3999872 B2 JP 3999872B2 JP 09247998 A JP09247998 A JP 09247998A JP 9247998 A JP9247998 A JP 9247998A JP 3999872 B2 JP3999872 B2 JP 3999872B2
Authority
JP
Japan
Prior art keywords
ejection amount
collision
dispenser
sectional area
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09247998A
Other languages
Japanese (ja)
Other versions
JPH11268785A (en
Inventor
聡 目加多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daizo Corp
Original Assignee
Daizo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daizo Corp filed Critical Daizo Corp
Priority to JP09247998A priority Critical patent/JP3999872B2/en
Publication of JPH11268785A publication Critical patent/JPH11268785A/en
Application granted granted Critical
Publication of JP3999872B2 publication Critical patent/JP3999872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はディスペンサ製品の噴出量調整機構およびその機構を備えたディスペンサ製品に関する。さらに詳しくは、加圧されている容器内部と外部とをバルブで仕切り、バルブ操作により内容物を噴出させるエアゾール製品などのディスペンサ製品における、内容物の噴出量の変動を少なくするための噴出量調整機構、およびその機構を備えたディスペンサ製品に関する。
【0002】
【従来の技術】
通常の加圧式のディスペンサ製品、とくに圧縮ガスをプロペラントとしているものでは、使用に伴い、製品圧力(内部圧力)が大きく低下する。そのため、製品圧力が高い初期の状態では噴出量が多く、使用に伴って噴出量が著しく低下するなど、噴出量の変動が大きいという問題がある。そこで従来より、初期の噴出量を抑制し、できるだけ均一な噴射量を得るために、以下の方法が採用されている。
【0003】
(1)バルブに、スプリングで付勢した圧力応動部材を設け、製品圧力が高いときは内容物導出孔の流路断面を小さくして噴出量を抑制するようにその圧力応動部材を移動させ、製品圧力が低くなってくると流路断面を大きくするように移動させる方法(特開平8−108111号公報、特開平8−108112号公報参照)。
(2)噴出ノズルを備えた押しボタンに、中央に内容物導出孔を形成したゴム状弾性体を収容し、製品圧力が高いときは弾性体が圧縮されて孔径が小さくなり、製品圧力が低くなると孔径が広がることにより、噴射量を調整する方法(特開平8−1622779号参照)。
(3)噴出ノズルを備えた押しボタンに、前述の(1)の圧力応動部材と同様の摺動部材およびバネを収容した定圧機構を設け、ノズルと連通する空間部の内圧を一定にすることにより、ノズルからの噴出量を一定に維持する方法(実開平5−61083号公報、)。
【0004】
【発明が解決しようとする課題】
前記従来の方法はいずれも流路の途中に内圧に応じて流路断面が変動するいわばレギュレータバルブを収容したものである。そのため、とくに前述の(1)、(3)の方法は摺動部品が必要で、機構が複雑で、部品数が多くなり、製造コストが高くなる。また前記(2)の方法は、摺動部品がないが、ゴム弾性体が充填する内容物によって侵食されて劣化する場合がある。それによりゴム状弾性体の圧縮変形が不充分となってうまく作動しなくなることがある。本発明は摺動部材や弾性変形部材を用いず、それにより構造が簡単で、内容物によって劣化しにくいディスペンサ製品の噴出量調整機構を提供することを技術課題としている。
【0005】
【課題を解決するための手段】
請求項1のディスペンサ製品の噴出量調整機構は、加圧されている容器内部と外部とをバルブで仕切り、バルブ操作により内容物を噴出させるディスペンサ製品における、内容物が通過する通路に設けられる噴出量調整機構であって、カップ状の本体と、その本体の開口部を塞ぐ蓋体と、蓋体の内面に固定されるコアとを備え、前記本体の底部に流入孔が形成され、前記コアの下面と本体の底部との間に形成した隙間により流出路を設け、コアの側面と本体の内側面との間に隙間が形成され、蓋体にその隙間と外部とを連通する開口が形成されており、衝突直後の流出路の流路断面積が衝突前の流入孔の流路断面積よりも大きく、流入孔から流入する内容物流がコアの下面と衝突、衝突による反作用に基づき、流速が速いときほど噴出量を大きく減少させることを特徴としている。その場合、衝突直後の流出路の流路断面積は衝突前の流入孔の流路断面積の4倍よりも小さくするのが好ましい(請求項2)
【0006】
請求項噴出量調整機構は、加圧されている容器内部と外部とをバルブで仕切り、バルブ操作により内容物を噴出させるディスペンサ製品における、内容物が通過する通路に設けられる噴出量調整機構であって、互いに向き合う2本の通路を有する流入路と、それらの2本の通路の合流点より流入路半径方向外向きの流出路とを備えており、前記流出路の流路断面積が衝突前の2本の流入路の合計の流路断面積より大きく、互いに向き合う流入路から流入する内容物流同士が衝突して合流し、衝突による反作用に基づき、流速が速いときほど噴出量を大きく減少させることを特徴としている。
本発明のディスペンサ製品(請求項)は、前述のいずれかの噴出量調整機構を噴出通路の途中に設け、容器本体に原液と圧縮ガスとを充填したことを特徴としている。請求項のディスペンサ製品は、容器内部の圧力が0.1〜2MPa であることを特徴としている。
【0007】
【作用および発明の効果】
請求項1の機構は、上流から流れてくる内容物流がコアの下面に衝突し、周囲に放射状に拡がっていく。そしてその内容物流には、衝突および流れの方向が大きく変わることによる反作用力が発生し、これが抵抗となって運動エネルギを失い、流速が低下する。流速は製品圧力に比例し、さらに反作用力が比例する。そのため流速が大きいとき、すなわち製品圧力が高い初期の段階では大きく運動エネルギを失い、噴出流量が大きく抑制される。他方、内容物の残量が少なくなって製品圧力が低下すると、それほど抑制されない。したがって使用の初期から終了時にいたるまで、噴出量の変動が少なく、均一な噴出量が得られる。また従来の機構と異なり、作動や弾性変形する部位がないので、構造が簡単で、製造コストが低く、しかも内容物に侵されて劣化することもほとんどない。さらに衝突直後の流路断面積が衝突前の流路断面積よりも大きいので、衝突後の流路の絞りによる抵抗が少なく、衝突による圧力降下が顕著に現れる。請求項の機構では、衝突直後の流路断面積が衝突前の流路断面積の4倍よりも小さい。そのため流入孔から流入してくる内容物がコアの下面に衝突する前に側方に逃げにくい。
【0008】
求項の機構では、互いに向き合う流入路から流入する噴流体同士がぶつかり、合流した流れの方向が横向きに変わり、放射状に拡がりながら下流側に流れていく。そのため流れ方向の変更と、ぶつかって混ざることによる速度エネルギの損失に基づき、圧力損失が生じ、噴出量が抑制される。その場合も速度が大きいほど損失が大きい。したがってディスペンサ製品の使用の最初から終わりまで、ほぼ一定の噴出量が得られる。さらに衝突直後の流路断面積が衝突前の流路断面積よりも大きいので、衝突後の流路の絞りによる抵抗が少なく、衝突による圧力降下が顕著に現れる。
【0009】
本発明のディスペンサ製品(請求項4)は、前述の噴出量調整機構を備えているので、使用の初期の噴出量が抑制される。そのため使用の初期から末期に至るまでの噴出量の変動が少ない。請求項のディスペンサ製品は、製品圧力が0.1〜2MPa である。このようなディスペンサ製品の場合、通常は噴射の初期と終期の噴出量の差が大きい。しかし本願発明の噴出量調整機構を用いることにより、その差を少なくすることができる。
【0010】
【発明の実施の形態】
つぎに図面を参照しながら本発明の実施の形態を説明する。図1は本発明の噴出量調整機構の一実施形態を示す断面図、図2はその機構の概念図、図3はその機構の組立前の一部切り欠き斜視図、図4は図1の噴出量調整機構をディップチューブに設けたエアゾール製品の一実施形態を示す断面図、図5は本発明の噴出量調整機構を備えたバルブの実施形態を示す断面図、図6は本発明の噴出量調整機構を備えた押しボタンの一実施形態を示す断面図、図7は本発明の噴出量調整機構を備えた押しボタンの他の実施形態を示す部分拡大断面図、図8は本発明の範囲外の噴出量調整機構の参考例を示す断面図、図9は本発明の噴出量調整機構のさらに他の実施形態を示す概念図、図10は比較例2として用いた従来のレギュレータ機能を備えたエアゾール装置の要部断面図、図11は実施例および比較例のエアゾール製品の製品圧力と噴射量の関係を示すグラフである。
【0011】
図1に示す噴出量調整機構Aは、カップ状の本体1と、その上端開口部に嵌合される蓋体2と、本体1内に収容されるコア3とから構成されている。コア3は蓋体2と別体として接着・嵌合などで結合している。しかしコア3を蓋体2と一体に成形してもよい。本体1の底部4には、直径dの流入孔5が形成されている。また組み立てた状態では、コア3の周囲と本体1の内周面との間に、通路6となる隙間が形成される。さらにコア3の下面3aと本体1の内底面7との間には、寸法tの隙間が流出路8として形成される。そしてこの実施形態では、円筒面である流出路8の面積(πdt)を流入孔5の断面積(πd2/4)よりも大きくしている。すなわちこの実施形態ではt>d/4である。ただし大きくし過ぎるとコアの下面3aに衝突する前に側方に逃げるので、流出路8の面積(πdt)を流入孔5の断面積(πd2/4)の4倍よりも小さくするのが好ましい。したがってd>t>d/4の範囲にtを設定するのが好ましい。なお図1の場合、流出路8の面積は外側にいくのにしたがって次第に大きくなるが、もっとも内側の部分、すなわち図2に示すように、流体がコア3の下面3aにぶつかった直後の円柱面の面積S2(πdt)で比較する。S1はぶつかる前の流路の断面積(πd2/4)である。
【0012】
図1に示すように、本体1の内面上部には環状溝10が形成されている。蓋体2は本体1に嵌合される筒状部11と、その上端外周に設けられるフランジ部12とを備えている。筒状部11の外周には、本体1の環状溝10と嵌合する環状突起13が設けられている。そして環状突起13を環状溝10に係合させることにより、本体1と蓋体2とを結合することができる。なお環状溝10の位置は、蓋体2を本体1に結合させたとき、フランジ部12の下面と本体1の上端面との間に、いくらか隙間15が形成される位置にしている。
【0013】
図3に示すように、蓋体2の内部には、放射状の連結片16を介して円板部17が設けられている。円板部17はコア3の上端を固定するためのものである。筒状部11の内面と円板部17の間には、本体1の内部と連通する開口18が形成される。コア3は蓋体2の筒状部11の内面との間に前記開口18と連通する隙間19をあけて配置される円柱状の上部20と、本体1の内面との間に前述の通路6となる隙間をあけて配置される円柱状の下部21とからなる。上部20と下部21の途中には、筒状部11の下端との間に隙間があくように段部22が設けられる。なお下部21の下面に、前記流出路8の高さの寸法tを正確にするため、想像線で示すような脚片24を放射状に設けてもよい。脚片24は外側に延ばして本体1の内面と嵌合させるようにしてもよい。
【0014】
上記のごとく構成される噴出量調整機構Aは、たとえば図4に示すように、エアゾール製品25のディップチューブ26の下端に嵌合して使用する。なおエアゾール製品25は、容器本体27と、その容器本体の上部に取り付けられるバルブ28と、そのバルブ28のステム29に取り付けられる押しボタン30と、容器本体27内に充填されている原液および加圧ガス、たとえば窒素、炭酸ガス、亜酸化窒素、酸素、空気あるいはそれらの混合ガスとを備えている。加圧ガスの圧力はゲージ圧で、0.1〜2MPa 程度である。
【0015】
このものは押しボタン30を押すと、バルブ28が開き、ディップチューブ26、バルブ28および押しボタン30を通じて原液(および加圧ガス)が外部に噴出される。そのとき、図1の白抜きの矢印で示すように、原液が噴出量調整機構Aの本体1の底部の流入孔5から入り、コア3の下面3aに衝突する。そしてその衝突した部位で90°角度を変えて、半径方向外向きに広がる流出路8を通る。そのとき、流体は衝突と方向を変えるときの反作用で圧力損失を受け、流出圧力が低くなる。
【0016】
ついで流体は外側に向かって次第に拡がる流出路8を通る。またこの実施形態のように衝突後に放射状に流出する場合は、とくに通路面と流体との接触面積が大きいので、圧力損失が大きくなる。流体はその後、流出路8の外側の端部で本体1の内面にぶつかり、上向きに方向を変え、コア3と本体1の間の通路6を通って上向きに流れていく。そのとき、流体は本体1の内面にぶつかる。そしてこの部位でも反作用が生じ、圧力が損失する。流体はさらにコア3の段部と蓋体2の筒状部の下端の隙間、およびコア3と筒状部の内面の間を通り、蓋体2の開口から図4のディップチューブ26の内部に流出する。
【0017】
その後は通常のエアゾール製品と同じであり、図4のバルブ28および押しボタン30の内部を通って押しボタンのノズル31から外部に噴出される。このエアゾール製品25の使用初期では、内部圧力が高いにもか関わらず、噴出量調整機構Aの作用により噴出量が抑制され、比較的穏やかな噴出状態となる。とくに本実施形態では、容器本体の内部の圧力を0.1〜2 MPa程度としていることもあって、噴出状態は、フワーとした細かい霧状の噴出となる。そのため、顔などに直接噴霧する場合の感触がよい。さらにエアゾール製品25の使用末期では、内圧が大きく減っているが、噴出量調整機構Aの前後の圧力差も小さくなり、流速が低い。そのため噴出量抑制作用がそれほど働かない。したがって使用の初期と比較しても、それほど噴出量が大きく減らない。
【0018】
図4の実施形態ではエアゾール製品25のディップチューブ26の下端に噴出量調整機構Aを嵌入させているが、ディップチューブ26の途中、あるいは上部に嵌入させてもほぼ同じ作用効果を奏する。しかしディップチューブ26に設ける場合はその下端に嵌入するほうが組み立てやすい。さらに噴出量調整機構Aはディップチューブのほか、図5に示すように、バルブハウジング34の下部(符号35で示す部位)、ステム29の途中(符号36で示す部位)など、原液の噴出経路のいずれかの部位に介在させればよい。なお図5における符号40はバルブ28を容器本体に取り付けるためのマウンティングカップであり、符号41はバルブハウジング34の上端とマウンティングカップ40の間に介在されるバルブラバーであり、符号42はステム29を上方に付勢するバネである。
【0019】
さらに図6に示す押しボタン30のように、ステムの上端を嵌合させる孔44の上部の符号45で示す部位、あるいはノズル31の途中(符号46で示す部位)に噴出量調整機構を介在させることもできる。
【0020】
図7は押しボタン30およびノズル31で噴出量調整機構を構成する実施形態を示している。この押しボタン30では、ステムと連通する縦向きの孔48と、ノズル31を嵌入する穴49の間に噴出量調整機構の本体となる空所50が形成されており、その空所50と縦向きの孔48を区切る壁51に流入孔52が形成されている。そしてノズル31の後端部53が空所50に嵌合される蓋体となっている。またノズルの中心部にはコア3が設けられ、そのコア3の流入孔52に対向する端部54が流入孔52を遮るように配置されている。そのコア3の端部は、壁51との間に流入路54を形成するべく寸法tの隙間をあけている。流出路54の面積「πdt」は注入孔52の面積「πd2 / 4」より大きくしている。なおコア3は放射状の連結片などを介してノズルに固定してもよく、ノズルと一体に構成してもよい。また連結片を空所50内に嵌合させることにより固定することもできる。この噴出量調整機構も図1のものと実質的に同じであり、同じ作用効果を奏する。
【0021】
図8は本発明の範囲外の噴出量調整機構の参考例を示している。前述の実施形態では、噴出させる流体をコアの下面など、壁面に衝突させているが、この噴出量調整機構Bでは、流入路56は、本体1とコア3との間で、周囲から中心に向かって流体を流すように形成される、放射状ないし円盤状の形態を有する。そしてその中心部から90°方向を変えるように、流出孔57が上方に延びている。なお流入路56は円盤状の形態のほか、たとえば円錐状にすることもできる。その場合は方向を変える角度が90°より大きくなる。
【0022】
前記流入路56の最も内側の部分の流路面積は「πdt」であり、流出孔57の流路面積は「πd 2 /4」となる。そして後者が前者より大きくなるようにtとdの寸法を定めている。このものは半径方向中心向きに流れてくる流体が壁などに衝突せず、流体同士がぶつかることにより、前述と同様の反作用力が発生する。そのため、エアゾール製品の使用初期の噴出量の抑制作用をもたらし、噴出量の変動を少なくする作用効果を奏する。図8の噴出量調整機構も、ディップチューブの先端や途中、バルブハウジング、ステム、押しボタンなど、容器内部から外部に至る噴出流路の途中のいずれかの部位に介在させればよい。
【0023】
図8の参考例では、流入路56を半径方向中心向きに流れるいわば2次元的な流れとし、流出孔57を1次元的な管路としているが、図9に示す実施形態のように、流入路を互いに向かい合う1次元的な2本の通路56a、56aとし、流出路57aを半径方向外向きの2次元的な流れとすることもできる。その場合は、たとえば2液混合タイプのエアゾール製品にも採用しうる。さらに3〜6本の放射状に配列した流入路とすることもできる。他方、図1、図2の流出路8に関しても、2次元的に拡がる形態に代えて、放射状に拡がる2〜数本の流出路を採用することができる。さらにこの場合は1本の流出路とすることもできる。なお、図9の場合のように複数本の通路56a、56aを有する場合は、流入側の流路断面積は、各通路56a、56aの断面の和とする。流出側を複数の管路とする場合も同じである。
【0024】
前述のように、本発明では衝突直後の流路断面積を衝突前の流路断面積より大きくしている。本発明の範囲外であるが、衝突直後の流路断面積を衝突前の流路断面積と等しくしてもよく、また逆に小さくしてもよい。小さくする場合は反作用による圧力損失に、流れの絞りに基づく圧力損失が加えられ、一層使用初期の流速を抑制することができる。ただし小さくし過ぎると流れの絞りによる効果が強くなり、衝突による反作用の効果がほとんどなくなる。そのため、衝突直後の流路断面積は衝突前の流路断面積の1/4より大きくしておくのが好ましい。
【0025】
【実施例】
つぎに実施例および比較例をあげて、本発明の噴出量調整機構の効果を説明する。
[実施例1]
満注量180mm3 の図1に示す形態のエアゾール容器に化粧水100gを充填した後、図5に示す形態のバルブを取り付けた。バルブステムの孔の径は0.4mm、ハウジングの下孔の径は2mmであった。バルブのハウジングには、内径3.2mm、外径4.5mmのディップチューブを取り付けると共に、そのディップチューブの下端に図1に示すタイプの噴出量調整機構Aを嵌入した。流出路8の高さの寸法tは1mmであり、流入孔5の内径dは2mmとした。さらに定法に従い、バルブのステムからN2 を内圧0.7MPa で充填し、ノズル孔径0.36mmの押しボタンを取り付けて実施例1のエアゾール製品とした。
【0026】
[比較例1〜2]
噴出量調整機構を取り付けない以外は実施例1と同じものを比較例1とした。また前述のバルブに代えて、図10に示すレギュレータ付きバルブを用いたものを比較例2とした。このものはハウジング60内にスプリング61で下向きに付勢した摺動弁62を収容したものであり、製品圧力が高いときは、摺動弁62を下方に移動させてその下方のスリット63の流路断面を小さくし、噴出量を抑制する。製品圧力が低くなってくると、摺動弁62が上昇し、スリット63の流路断面を大きくする。
【0027】
上記の実施例1および比較例1〜2のエアゾール製品の押しボタンを押して内容物を噴出させたときの製品圧力と噴出量の関係を図11のグラフに示す。このグラフから分かるように、実施例1のエアゾール製品では、噴出初期の噴射量が6.6g/10sと抑制されており、噴出末期の噴射量4.7g/10sの1.4倍程度である。他方、比較例1のエアゾール製品では、使用初期の噴射量が7.2g/10sと、噴出末期の噴射量3.6g/10sの2倍であり、圧力の降下と共に大きく減少している。したがって本発明の噴出量調整機構を用いたエアゾール製品では、使用の初期から末期に至るまで、比較例1に比して大幅に均一化されていることが分かる。
【0028】
また比較例2のレギュレータ機能を有するバルブを用いたものと比較すれば、実施例1のエアゾール製品では初期の噴射量はいくらか多いが、終期ではほぼ同等の噴射量が得られている。したがって、実施例1のものは、構成が簡単であるにも関わらず、レギュレータ機能を有する比較例2のエアゾール製品に準ずる程度の性能を備えている。
【図面の簡単な説明】
【図1】 本発明の噴出量調整機構の一実施形態を示す断面図である。
【図2】 その機構の概念図である。
【図3】 その機構の組立前の斜視図である。
【図4】 図1の噴出量調整機構をディップチューブに設けたエアゾール製品の一実施形態を示す断面図である。
【図5】 本発明の噴出量調整機構を備えたバルブの実施形態を示す断面図である。
【図6】 本発明の噴出量調整機構を備えた押しボタンの一実施形態を示す断面図である。
【図7】 本発明の噴出量調整機構を備えた押しボタンの他の実施形態を示す部分拡大断面図である。
【図8】 本発明の範囲外の噴出量調整機構の参考例を示す断面図である。
【図9】 本発明の噴出量調整機構のさらに他の実施形態を示す概念図である。
【図10】 比較例2として用いた従来のレギュレータ機能を備えたエアゾール製品の要部断面図である。
【図11】 実施例および比較例のエアゾール製品の製品圧力と噴射量の関係を示すグラフである。
【符号の説明】
A 噴出量調整機構
1 本体
2 蓋体
3 コア
5 流入孔
8 流出路
25 エアゾール製品
26 ディップチューブ
27 容器本体
28 バルブ
29 ステム
30 押しボタン
50 空所
52 流入孔
B 噴出量調整機構
57 流入路
58 流出孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dispenser product ejection amount adjustment mechanism and a dispenser product including the mechanism. In more detail, in the dispenser product such as an aerosol product that partitions the pressurized container inside and outside with a valve and ejects the content by valve operation, the ejection amount adjustment to reduce the fluctuation of the ejection amount of the content The present invention relates to a mechanism and a dispenser product including the mechanism.
[0002]
[Prior art]
In ordinary pressurized dispenser products, particularly those using compressed gas as a propellant, the product pressure (internal pressure) is greatly reduced with use. For this reason, there is a problem that the amount of ejection is large, such that the amount of ejection is large in the initial state where the product pressure is high, and the amount of ejection is significantly reduced with use. Therefore, conventionally, the following method has been employed in order to suppress the initial ejection amount and obtain the uniform ejection amount as much as possible.
[0003]
(1) The valve is provided with a pressure responsive member biased by a spring, and when the product pressure is high, the pressure responsive member is moved so as to reduce the flow rate by reducing the cross section of the content outlet hole, A method of moving the flow passage so as to increase the cross section of the product when the product pressure is lowered (see Japanese Patent Application Laid-Open Nos. 8-108111 and 8-108112).
(2) A rubber-like elastic body with a content outlet hole formed in the center is housed in a push button equipped with a jet nozzle, and when the product pressure is high, the elastic body is compressed to reduce the hole diameter and the product pressure is low. Then, the method of adjusting the injection amount by expanding the hole diameter (see JP-A-8-1622779).
(3) A constant pressure mechanism containing a sliding member and a spring similar to the pressure responsive member of (1) described above is provided on the push button provided with the ejection nozzle, and the internal pressure of the space communicating with the nozzle is made constant. Thus, a method of maintaining the ejection amount from the nozzle constant (Japanese Utility Model Laid-Open No. 5-61083).
[0004]
[Problems to be solved by the invention]
In any of the above conventional methods, a regulator valve is housed in the middle of the flow path so that the cross section of the flow path varies depending on the internal pressure. Therefore, in particular, the methods (1) and (3) described above require sliding parts, the mechanism is complicated, the number of parts increases, and the manufacturing cost increases. The method (2) has no sliding parts, but may be eroded and deteriorated by the contents filled with the rubber- like elastic body. As a result, the elastic deformation of the rubber-like elastic body may be insufficient and the rubber-like elastic body may not operate properly. It is a technical object of the present invention to provide an ejection amount adjusting mechanism for a dispenser product that does not use a sliding member or an elastically deformable member, thereby having a simple structure and hardly deteriorated by contents.
[0005]
[Means for Solving the Problems]
The ejection amount adjusting mechanism of the dispenser product according to claim 1 is a jet provided in a passage through which the contents pass in a dispenser product that partitions the pressurized container inside and outside with a valve and ejects the content by operating the valve. An amount adjustment mechanism, comprising: a cup-shaped main body; a lid that closes the opening of the main body; and a core that is fixed to the inner surface of the lid, and an inflow hole is formed in the bottom of the main body. An outflow path is provided by a gap formed between the bottom surface of the main body and the bottom of the main body, a gap is formed between the side surface of the core and the inner side surface of the main body, and an opening that communicates the gap and the outside is formed in the lid. The flow passage cross-sectional area of the outflow path immediately after the collision is larger than the flow passage cross-sectional area of the inflow hole before the collision, and the content stream flowing in from the inflow hole collides with the lower surface of the core, and based on the reaction caused by the collision, The faster the flow rate, the more It is characterized in that to hear reduced. If this happens, the flow path cross-sectional area of the outflow path immediately after the collision is preferably less than 4 times the flow path cross-sectional area before the inlet collision (claim 2).
[0006]
An ejection amount adjusting mechanism according to claim 3 is provided in a passage through which a content passes in a dispenser product that partitions the pressurized container inside and outside with a valve and ejects the content by operating the valve. An inflow passage having two passages facing each other and an outflow passage outward in the radial direction of the inflow passage from a junction of the two passages, and the flow passage cross-sectional area of the outflow passage is Larger than the total channel cross-sectional area of the two inflow channels before the collision, the contents flowing in from the inflow channels facing each other collide and merge, and based on the reaction caused by the collision, the larger the flow velocity, the larger the ejection amount It is characterized by decreasing.
The dispenser product of the present invention (Claim 4 ) is characterized in that any one of the above-described ejection amount adjusting mechanisms is provided in the middle of the ejection passage, and the container body is filled with the stock solution and the compressed gas. The dispenser product according to claim 5 is characterized in that the pressure inside the container is 0.1 to 2 MPa.
[0007]
[Operation and effect of the invention]
In the mechanism of claim 1, the content stream flowing from the upstream collides with the lower surface of the core and spreads radially around the periphery. In the content logistics, a reaction force is generated due to a significant change in the direction of collision and flow , which becomes resistance and loses kinetic energy, resulting in a decrease in flow velocity. The flow rate is proportional to the product pressure, and the reaction force is proportional. Therefore, when the flow velocity is large, that is, at the initial stage where the product pressure is high, the kinetic energy is largely lost, and the ejection flow rate is greatly suppressed. On the other hand, when the remaining amount of the contents is reduced and the product pressure is lowered, it is not so suppressed. Therefore, there is little fluctuation in the ejection amount from the beginning to the end of use, and a uniform ejection amount can be obtained. Unlike conventional mechanisms, there are no parts that are actuated or elastically deformed, so the structure is simple, the manufacturing cost is low, and the contents are hardly damaged by deterioration. Furthermore, since the flow path cross-sectional area immediately after the collision it is larger than the flow path cross-sectional area of the front collision, less resistance due to stop of the flow path after the collision, the pressure drop caused by the collision becomes conspicuous. In the mechanism of claim 2 , the flow path cross-sectional area immediately after the collision is smaller than four times the flow path cross-sectional area before the collision. Therefore, it is difficult for the contents flowing in from the inflow hole to escape to the side before colliding with the lower surface of the core.
[0008]
The mechanism of Motomeko 3, bump into the jet bodies flowing from inlet channel facing each other, the direction of the combined streams is changed laterally, it flows to the downstream side while spreading radially. Therefore, a pressure loss occurs based on the change of the flow direction and the loss of velocity energy due to the collision and mixing, and the ejection amount is suppressed. Even in this case, the greater the speed, the greater the loss. Thus, a substantially constant ejection volume is obtained from the beginning to the end of use of the dispenser product. Furthermore, since the flow path cross-sectional area immediately after the collision it is larger than the flow path cross-sectional area of the front collision, less resistance due to stop of the flow path after the collision, the pressure drop caused by the collision becomes conspicuous.
[0009]
Since the dispenser product of the present invention (Claim 4) includes the above-described ejection amount adjustment mechanism, the initial ejection amount of use is suppressed. Therefore, there are few fluctuations in the amount of ejection from the beginning to the end of use. The dispenser product according to claim 5 has a product pressure of 0.1 to 2 MPa. In the case of such a dispenser product, there is usually a large difference in the ejection amount between the initial stage and the final stage of the ejection. However, the difference can be reduced by using the ejection amount adjusting mechanism of the present invention.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the ejection amount adjusting mechanism of the present invention, FIG. 2 is a conceptual view of the mechanism, FIG. 3 is a partially cutaway perspective view before the mechanism is assembled, and FIG. FIG. 5 is a sectional view showing an embodiment of an aerosol product in which an ejection amount adjusting mechanism is provided on a dip tube, FIG. 5 is a sectional view showing an embodiment of a valve having an ejection amount adjusting mechanism of the present invention, and FIG. FIG. 7 is a partially enlarged cross-sectional view showing another embodiment of the push button provided with the ejection amount adjusting mechanism of the present invention, and FIG. 8 is a cross-sectional view showing one embodiment of the push button provided with the amount adjusting mechanism. sectional view showing a reference example outside the range of the ejection amount adjusting mechanism, conceptual diagram showing still another embodiment of the ejection amount adjustment mechanism 9 is the invention, FIG 10 is a conventional regulator function using Comparative example 2 FIG. 11 is a cross-sectional view of an essential part of the aerosol device provided, and FIG. Is a graph showing the relationship between the product pressure and injection quantity of aerosol products.
[0011]
The ejection amount adjustment mechanism A shown in FIG. 1 includes a cup-shaped main body 1, a lid body 2 fitted into the upper end opening, and a core 3 accommodated in the main body 1. The core 3 is bonded to the lid 2 as a separate body by bonding or fitting. However, the core 3 may be formed integrally with the lid 2. An inflow hole 5 having a diameter d is formed in the bottom 4 of the main body 1. Further, in the assembled state, a gap serving as the passage 6 is formed between the periphery of the core 3 and the inner peripheral surface of the main body 1. Further, a gap having a dimension t is formed as an outflow path 8 between the lower surface 3 a of the core 3 and the inner bottom surface 7 of the main body 1. And in this embodiment, it is made larger than the cross-sectional area of the inlet hole 5 the area of the outlet channel 8 is a cylindrical surface (πdt) (πd 2/4 ). That is, in this embodiment, t> d / 4. However, since an excessively large escape sideways before impinging on the lower surface 3a of the core, is to less than 4 times the cross-sectional area of the inlet hole 5 the area of the outlet channel 8 (πdt) (πd 2/4 ) preferable. Therefore, it is preferable to set t in the range of d>t> d / 4. In the case of FIG. 1, the area of the outflow passage 8 gradually increases as it goes outward, but the innermost portion, that is, the cylindrical surface immediately after the fluid hits the lower surface 3 a of the core 3 as shown in FIG. 2. The area S2 (πdt) is compared. S1 is the cross-sectional area of the front of the channel hits (πd 2/4).
[0012]
As shown in FIG. 1, an annular groove 10 is formed in the upper part of the inner surface of the main body 1. The lid body 2 includes a cylindrical portion 11 fitted to the main body 1 and a flange portion 12 provided on the outer periphery of the upper end thereof. On the outer periphery of the cylindrical portion 11, an annular protrusion 13 that fits with the annular groove 10 of the main body 1 is provided. The main body 1 and the lid body 2 can be coupled by engaging the annular protrusion 13 with the annular groove 10. The position of the annular groove 10 is such that when the lid 2 is coupled to the main body 1, some gap 15 is formed between the lower surface of the flange portion 12 and the upper end surface of the main body 1.
[0013]
As shown in FIG. 3, a disc portion 17 is provided inside the lid body 2 via a radial connecting piece 16. The disc portion 17 is for fixing the upper end of the core 3. An opening 18 that communicates with the inside of the main body 1 is formed between the inner surface of the cylindrical portion 11 and the disc portion 17. The core 3 is disposed between the inner surface of the main body 1 and the cylindrical upper portion 20 disposed with a gap 19 communicating with the opening 18 between the inner surface of the cylindrical portion 11 of the lid body 2. And a cylindrical lower portion 21 arranged with a gap therebetween. In the middle of the upper part 20 and the lower part 21, a step part 22 is provided so that a gap is formed between the lower end of the cylindrical part 11. In addition, in order to make the height dimension t of the outflow passage 8 accurate on the lower surface of the lower portion 21, leg pieces 24 as indicated by imaginary lines may be provided radially. The leg pieces 24 may extend outward and be fitted to the inner surface of the main body 1.
[0014]
The ejection amount adjustment mechanism A configured as described above is used by being fitted to the lower end of the dip tube 26 of the aerosol product 25 as shown in FIG. The aerosol product 25 includes a container body 27, a valve 28 attached to the upper part of the container body, a push button 30 attached to the stem 29 of the valve 28, a stock solution filled in the container body 27, and pressurization. A gas such as nitrogen, carbon dioxide, nitrous oxide, oxygen, air, or a mixed gas thereof is provided. The pressure of the pressurized gas is a gauge pressure and is about 0.1 to 2 MPa.
[0015]
When the push button 30 is pressed, the valve 28 is opened, and the stock solution (and pressurized gas) is ejected to the outside through the dip tube 26, the valve 28 and the push button 30. At that time, as shown by the white arrow in FIG. 1, the stock solution enters from the inflow hole 5 at the bottom of the main body 1 of the ejection amount adjusting mechanism A and collides with the lower surface 3 a of the core 3. And the 90 degree angle is changed in the colliding site | part, and it passes the outflow path 8 which spreads to radial direction outward. At that time, the fluid is subjected to pressure loss due to the reaction when the collision and direction change, and the outflow pressure becomes low.
[0016]
The fluid then passes through the outflow channel 8 which gradually expands outward. Further, in the case of flowing out radially after a collision as in this embodiment, since the contact area between the passage surface and the fluid is particularly large, the pressure loss increases. Thereafter, the fluid collides with the inner surface of the main body 1 at the outer end of the outflow passage 8, changes its direction upward, and flows upward through the passage 6 between the core 3 and the main body 1. At that time, the fluid hits the inner surface of the main body 1. And also in this part, reaction occurs and pressure is lost. The fluid further passes through the gap between the stepped portion of the core 3 and the lower end of the cylindrical portion of the lid body 2 and between the core 3 and the inner surface of the cylindrical portion, and from the opening of the lid body 2 into the dip tube 26 of FIG. leak.
[0017]
Thereafter, it is the same as a normal aerosol product, and is ejected from the nozzle 31 of the push button through the inside of the valve 28 and the push button 30 of FIG. In the initial use of the aerosol product 25, although the internal pressure is high, the ejection amount is suppressed by the action of the ejection amount adjusting mechanism A, and a relatively gentle ejection state is obtained. In particular, in the present embodiment, the pressure inside the container main body is set to about 0.1 to 2 MPa, and the ejection state is a fine mist-like ejection that is a forward. Therefore, the touch when spraying directly on the face or the like is good. Further, at the end of use of the aerosol product 25, the internal pressure is greatly reduced, but the pressure difference before and after the ejection amount adjusting mechanism A is also reduced, and the flow velocity is low. For this reason, the ejection amount suppression action does not work so much. Therefore, even if compared with the initial stage of use, the ejection amount is not greatly reduced.
[0018]
In the embodiment of FIG. 4, the ejection amount adjustment mechanism A is inserted into the lower end of the dip tube 26 of the aerosol product 25, but substantially the same operational effects can be obtained by inserting it in the middle or upper part of the dip tube 26. However, when it is provided on the dip tube 26, it is easier to assemble it by fitting it at its lower end. Further, in addition to the dip tube, the ejection amount adjusting mechanism A includes a lower part of the valve housing 34 (part indicated by reference numeral 35) and a part of the stem 29 (part indicated by reference numeral 36), as shown in FIG. What is necessary is just to interpose in any site | part. 5, reference numeral 40 denotes a mounting cup for attaching the valve 28 to the container body, reference numeral 41 denotes a valve rubber interposed between the upper end of the valve housing 34 and the mounting cup 40, and reference numeral 42 denotes the stem 29. A spring biasing upward.
[0019]
Further, like the push button 30 shown in FIG. 6, an ejection amount adjusting mechanism is interposed in a part indicated by reference numeral 45 above the hole 44 into which the upper end of the stem is fitted or in the middle of the nozzle 31 (part indicated by reference numeral 46). You can also.
[0020]
FIG. 7 shows an embodiment in which the push button 30 and the nozzle 31 constitute an ejection amount adjusting mechanism. In this push button 30, a void 50 serving as a main body of the ejection amount adjusting mechanism is formed between a vertical hole 48 communicating with the stem and a hole 49 into which the nozzle 31 is fitted. An inflow hole 52 is formed in the wall 51 that delimits the facing hole 48. The rear end 53 of the nozzle 31 is a lid that is fitted into the space 50. A core 3 is provided at the center of the nozzle, and an end 54 facing the inflow hole 52 of the core 3 is disposed so as to block the inflow hole 52. The end of the core 3 is spaced from the wall 51 by a dimension t so as to form an inflow channel 54. Area of the outflow path 54 "πdt" is larger than the area of the injection hole 52 "[pi] d 2/4". The core 3 may be fixed to the nozzle via a radial connecting piece or the like, or may be configured integrally with the nozzle. It is also possible to fix the connecting piece by fitting it in the space 50. This ejection amount adjusting mechanism is substantially the same as that shown in FIG. 1 and has the same effects.
[0021]
FIG. 8 shows a reference example of the ejection amount adjusting mechanism outside the scope of the present invention. In the above-described embodiment, the fluid to be ejected collides with the wall surface such as the lower surface of the core. However, in this ejection amount adjusting mechanism B, the inflow path 56 is centered from the periphery between the main body 1 and the core 3. It has a radial or disk-like shape that is formed to allow fluid to flow toward it. And the outflow hole 57 is extended upwards so that a 90 degree direction may be changed from the center part. In addition, the inflow channel 56 may be conical, for example, in addition to the disc shape. In that case, the angle for changing the direction becomes larger than 90 °.
[0022]
The flow area of the innermost portion of the inflow path 56 is “πdt”, and the flow area of the outflow hole 57 is “ πd 2 . / 4 ". The dimensions t and d are determined so that the latter is larger than the former. In this case, the fluid flowing toward the center in the radial direction does not collide with a wall or the like, and the reaction force similar to the above is generated when the fluids collide with each other. Therefore, the effect of suppressing the amount of ejection at the initial use of the aerosol product is brought about, and the effect of reducing the fluctuation of the amount of ejection is achieved. The ejection amount adjusting mechanism shown in FIG. 8 may be interposed at any part of the ejection flow path from the inside of the container to the outside, such as the tip or middle of the dip tube, the valve housing, the stem, or the push button.
[0023]
In the reference example of FIG. 8, the inflow path 56 is a two-dimensional flow that flows toward the center in the radial direction, and the outflow hole 57 is a one-dimensional pipe. However, as in the embodiment shown in FIG. It is also possible to use two one-dimensional passages 56a and 56a facing each other and the outflow passage 57a to be a two-dimensional flow outward in the radial direction. In that case, for example, it can be used for a two-component mixed aerosol product. Furthermore, it can be set as the inflow path arranged 3-6 radially. On the other hand, regarding the outflow path 8 of FIGS. 1 and 2, two or several outflow paths that expand radially can be employed instead of the two-dimensionally expanded form. Further, in this case, a single outflow path can be provided. In the case of having a plurality of passages 56a and 56a as in the case of FIG. 9, the flow passage cross-sectional area on the inflow side is the sum of the cross sections of the passages 56a and 56a. The same applies to the case where the outflow side has a plurality of pipelines.
[0024]
As described above, in the present invention , the channel cross-sectional area immediately after the collision is made larger than the channel cross-sectional area before the collision . Although outside the scope of the present invention, the cross-sectional area of the flow channel immediately after the collision may be equal to the cross-sectional area of the flow channel before the collision , or may be reduced. In the case of reducing the pressure, the pressure loss based on the flow restriction is added to the pressure loss due to the reaction, and the flow velocity at the initial use can be further suppressed. However, if it is too small, the effect of restricting the flow becomes stronger, and the reaction effect due to the collision is almost lost. Therefore, it is preferable that the flow path cross-sectional area immediately after the collision be larger than 1/4 of the flow path cross-sectional area before the collision.
[0025]
【Example】
Next, the effects of the ejection amount adjusting mechanism of the present invention will be described with reference to examples and comparative examples.
[Example 1]
After filling 100 g of lotion into an aerosol container of the form shown in FIG. 1 having a full injection amount of 180 mm 3 , a valve of the form shown in FIG. 5 was attached. The diameter of the valve stem hole was 0.4 mm, and the diameter of the lower hole of the housing was 2 mm. A dip tube having an inner diameter of 3.2 mm and an outer diameter of 4.5 mm was attached to the valve housing, and an ejection amount adjusting mechanism A of the type shown in FIG. 1 was inserted into the lower end of the dip tube. The height t of the outflow passage 8 is 1 mm, and the inner diameter d of the inflow hole 5 is 2 mm. Further, according to a conventional method, the aerosol product of Example 1 was obtained by filling N 2 from the valve stem with an internal pressure of 0.7 MPa and attaching a push button having a nozzle hole diameter of 0.36 mm.
[0026]
[Comparative Examples 1-2]
The same thing as Example 1 was set as the comparative example 1 except not attaching an ejection amount adjustment mechanism. Further, instead of the above-mentioned valve, a valve using a regulator with a regulator shown in FIG. In this housing, a sliding valve 62 urged downward by a spring 61 is accommodated in a housing 60. When the product pressure is high, the sliding valve 62 is moved downward to flow through the slit 63 below the sliding valve 62. Reduce the cross section of the road and reduce the amount of jets. When the product pressure decreases, the sliding valve 62 rises, and the flow path cross section of the slit 63 is enlarged.
[0027]
The graph of FIG. 11 shows the relationship between the product pressure and the ejection amount when the contents are ejected by pressing the aerosol product push buttons of Example 1 and Comparative Examples 1-2. As can be seen from the graph, in the aerosol product of Example 1, the injection amount at the initial stage of the ejection is suppressed to 6.6 g / 10 s, which is about 1.4 times the injection amount at the end of the ejection period of 4.7 g / 10 s. . On the other hand, in the aerosol product of Comparative Example 1, the injection amount at the initial stage of use is 7.2 g / 10 s, which is twice the injection amount of 3.6 g / 10 s at the end of the ejection, and greatly decreases with the pressure drop. Therefore, it can be seen that the aerosol product using the ejection amount adjusting mechanism of the present invention is made more uniform than the comparative example 1 from the initial stage of use to the end stage.
[0028]
Compared with the comparative example 2 using the valve having the regulator function, the aerosol product of Example 1 has a somewhat higher initial injection amount, but almost the same injection amount is obtained at the end. Therefore, although the thing of Example 1 is simple, it has the performance of the grade equivalent to the aerosol product of the comparative example 2 which has a regulator function.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of an ejection amount adjusting mechanism of the present invention.
FIG. 2 is a conceptual diagram of the mechanism.
FIG. 3 is a perspective view of the mechanism before assembly.
4 is a cross-sectional view showing an embodiment of an aerosol product in which the ejection amount adjustment mechanism of FIG. 1 is provided in a dip tube. FIG.
FIG. 5 is a cross-sectional view showing an embodiment of a valve provided with the ejection amount adjusting mechanism of the present invention.
FIG. 6 is a cross-sectional view showing an embodiment of a push button provided with the ejection amount adjusting mechanism of the present invention.
FIG. 7 is a partially enlarged sectional view showing another embodiment of the push button provided with the ejection amount adjusting mechanism of the present invention.
FIG. 8 is a cross-sectional view showing a reference example of the ejection amount adjusting mechanism outside the scope of the present invention.
FIG. 9 is a conceptual diagram showing still another embodiment of the ejection amount adjusting mechanism of the present invention.
10 is a cross-sectional view of an essential part of an aerosol product having a conventional regulator function used as Comparative Example 2. FIG.
FIG. 11 is a graph showing the relationship between the product pressure and the injection amount of the aerosol products of Examples and Comparative Examples.
[Explanation of symbols]
A Amount of ejection adjustment mechanism 1 Main body 2 Lid 3 Core 5 Inflow hole 8 Outflow path 25 Aerosol product 26 Dip tube 27 Container body 28 Valve 29 Stem 30 Push button 50 Empty space 52 Inlet hole B Ejection amount adjustment mechanism 57 Inflow path 58 Outflow Hole

Claims (5)

加圧されている容器内部と外部とをバルブで仕切り、バルブ操作により内容物を噴出させるディスペンサ製品における、内容物が通過する通路に設けられる噴出量調整機構であって、
カップ状の本体と、その本体の開口部を塞ぐ蓋体と、蓋体の内面に固定されるコアとを備え、
前記本体の底部に流入孔が形成され、
前記コアの下面と本体の底部との間に形成した隙間により流出路を設け、
コアの側面と本体の内側面との間に隙間が形成され、蓋体にその隙間と外部とを連通する開口が形成されており、
衝突直後の流出路の流路断面積が衝突前の流入孔の流路断面積よりも大きく、
流入孔から流入する内容物流がコアの下面と衝突、衝突による反作用に基づき、流速が速いときほど噴出量を大きく減少させる、ディスペンサ製品の噴出量調整機構。
A dispenser adjusting mechanism provided in a passage through which the contents pass in a dispenser product that partitions the inside and outside of the pressurized container with a valve and ejects the contents by valve operation,
A cup-shaped main body, a lid for closing the opening of the main body, and a core fixed to the inner surface of the lid,
An inflow hole is formed at the bottom of the main body,
An outflow path is provided by a gap formed between the lower surface of the core and the bottom of the main body,
A gap is formed between the side surface of the core and the inner side surface of the main body, and an opening that connects the gap and the outside is formed in the lid.
The channel cross-sectional area of the outflow channel immediately after the collision is larger than the channel cross-sectional area of the inflow hole before the collision,
Content stream flowing from the inflow holes collide with the lower surface of the core, based on the reaction due to the collision, the flow rate is large to reduce the ejection amount smaller the faster, the dispenser product ejection amount adjusting mechanism.
衝突直後の流出路の流路断面積が衝突前の流入孔の流路断面積の4倍より小さい請求項1記載のディスペンサ製品の噴出量調整機構The dispenser product ejection amount adjustment mechanism according to claim 1, wherein the flow passage cross-sectional area of the outflow passage immediately after the collision is smaller than four times the flow passage cross-sectional area of the inflow hole before the collision. 加圧されている容器内部と外部とをバルブで仕切り、バルブ操作により内容物を噴出させるディスペンサ製品における、内容物が通過する通路に設けられる噴出量調整機構であって、A dispenser adjusting mechanism provided in a passage through which the contents pass in a dispenser product that partitions the inside and outside of the pressurized container with a valve and ejects the contents by valve operation,
互いに向き合う2本の通路を有する流入路と、それらの2本の通路の合流点より半径方向外向きの流出路とを備えており、An inflow passage having two passages facing each other, and an outflow passage radially outward from the junction of the two passages,
前記流出路の流路断面積が衝突前の2本の流入路の合計の流路断面積より大きく、The flow passage cross-sectional area of the outflow passage is larger than the total flow passage cross-sectional area of the two inflow passages before the collision,
互いに向き合う流入路から流入する内容物流同士が衝突して合流し、衝突による反作用に基づき、流速が速いときほど噴出量を大きく減少させる、ディスペンサ製品の噴出量調整機構。A dispenser jet quantity adjustment mechanism that reduces the quantity of jets as the flow rate increases, based on the reaction caused by the collisions between the content streams flowing in from the inflow paths facing each other.
請求項1、2または3のいずれかに記載の噴出量調整機構を噴出通路の途中に設け、容器本体に原液と圧縮ガスとを充填したディスペンサ製品。  A dispenser product in which the ejection amount adjusting mechanism according to any one of claims 1, 2, and 3 is provided in the middle of an ejection passage, and a container body is filled with a stock solution and a compressed gas. 容器内部の圧力が0.1〜2MPa である請求項記載のディスペンサ製品。The dispenser product according to claim 4 , wherein the pressure inside the container is 0.1 to 2 MPa.
JP09247998A 1998-03-19 1998-03-19 Ejection amount adjustment mechanism for dispenser products Expired - Fee Related JP3999872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09247998A JP3999872B2 (en) 1998-03-19 1998-03-19 Ejection amount adjustment mechanism for dispenser products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09247998A JP3999872B2 (en) 1998-03-19 1998-03-19 Ejection amount adjustment mechanism for dispenser products

Publications (2)

Publication Number Publication Date
JPH11268785A JPH11268785A (en) 1999-10-05
JP3999872B2 true JP3999872B2 (en) 2007-10-31

Family

ID=14055454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09247998A Expired - Fee Related JP3999872B2 (en) 1998-03-19 1998-03-19 Ejection amount adjustment mechanism for dispenser products

Country Status (1)

Country Link
JP (1) JP3999872B2 (en)

Also Published As

Publication number Publication date
JPH11268785A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
US11059659B2 (en) Aerosol spray device
US20090173751A1 (en) Check valve and a split-body fluid device having such a check valve
EP1858777B1 (en) Aerosol dispenser
US4230242A (en) Triple seal valve member for an atomizing pump dispenser
EP1210268B1 (en) High volume aerosol valve
US6938803B2 (en) Non-leaking non-dripping liquid jet pump
JP3241387B2 (en) High pressure manual spray pump with reduced operating force
JPH08511988A (en) Pumping device with integral transport seal with telescoping pump chamber
US4122978A (en) Pressurized package for dispensing a product in a finely dispersed spray pattern with little dilution by propellant
JP2018052610A (en) Attachment for discharge container and discharge container
JP3999872B2 (en) Ejection amount adjustment mechanism for dispenser products
WO2006095163A1 (en) Nozzle comprising a flow control apparatus
JP2012501825A (en) Fluid dispenser device
JP3889557B2 (en) Spray container
JP2588607Y2 (en) Aerosol container with flow rate adjustment function
JP2512368B2 (en) Flow control valve
JP5574370B2 (en) Liquid ejector capable of upside-down ejection
JPH07100410A (en) Liquid jet nozzle
JP3453660B2 (en) Flow control structure for aerosol container
JPH1176880A (en) Aerosol valve with control function of jetting amount
JP2004042980A (en) Flow rate adjusting mechanism for aerosol container, and aerosol type product equipped with the same
JP2002326682A (en) Aerosol sprayer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees