JP3999767B2 - Two-fluid injection internal combustion engine and method of operating the same - Google Patents

Two-fluid injection internal combustion engine and method of operating the same Download PDF

Info

Publication number
JP3999767B2
JP3999767B2 JP2004176616A JP2004176616A JP3999767B2 JP 3999767 B2 JP3999767 B2 JP 3999767B2 JP 2004176616 A JP2004176616 A JP 2004176616A JP 2004176616 A JP2004176616 A JP 2004176616A JP 3999767 B2 JP3999767 B2 JP 3999767B2
Authority
JP
Japan
Prior art keywords
steam
cylinder
heat receiving
fuel injection
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004176616A
Other languages
Japanese (ja)
Other versions
JP2006002580A (en
Inventor
邦憲 伊藤
暁 山下
道雄 阿部
謙一 小菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN MARINE EQUIPMENT ASSOCIATION
Mitsubishi Heavy Industries Ltd
Original Assignee
JAPAN MARINE EQUIPMENT ASSOCIATION
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN MARINE EQUIPMENT ASSOCIATION, Mitsubishi Heavy Industries Ltd filed Critical JAPAN MARINE EQUIPMENT ASSOCIATION
Priority to JP2004176616A priority Critical patent/JP3999767B2/en
Publication of JP2006002580A publication Critical patent/JP2006002580A/en
Application granted granted Critical
Publication of JP3999767B2 publication Critical patent/JP3999767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主として2流体噴射内燃機関(例えば、ガスエンジンやディーゼル機関)に適用され、燃料噴射装置からの燃料をシリンダ内に噴射する燃料噴射弁と、蒸気噴射装置からの蒸気をシリンダ内に噴射する蒸気噴射弁等とを併設してなる2流体噴射式内燃機関及びその運転方法に関する。   The present invention is mainly applied to a two-fluid injection internal combustion engine (for example, a gas engine or a diesel engine), and a fuel injection valve that injects fuel from the fuel injection device into the cylinder, and steam from the steam injection device into the cylinder. The present invention relates to a two-fluid injection internal combustion engine and a method for operating the same.

内燃機関において、上死点前に燃料噴射弁からシリンダ内に燃料を噴射し、該燃料噴射後の受熱期間中に蒸気を噴射すると、仕事量及び熱効率が上昇することは良く知られており、かかる技術の1つに特許文献1(特開2002−54510号公報)の技術がある。
かかる技術においては、給気管に接続されて蒸気を給気ポートに吸入可能にする蒸気ラインと、該蒸気ラインに介装されバルブ開度調整信号が入力されることによって蒸気の注入量を可変せしめる流量調整弁と、給気管に供給される空気の湿度が目標絶対湿度になるのに必要な水分量を算出しかつ該必要水分量を注入させるバルブ開度調整信号を前記流量調整弁に出力する制御手段とを設け、燃料消費率の上昇を抑えつつ年間を通してNOxを低レベルに抑制し突き始め等の機関調整を季節ごとに行う必要がないように構成されている。
In an internal combustion engine, it is well known that when fuel is injected into a cylinder from a fuel injection valve before top dead center and steam is injected during a heat receiving period after the fuel injection, work amount and thermal efficiency are increased. As one of such techniques, there is a technique disclosed in Japanese Patent Application Laid-Open No. 2002-54510.
In such a technique, a steam line that is connected to an air supply pipe so that steam can be sucked into the air supply port, and a valve opening adjustment signal that is interposed in the steam line is input to vary the amount of steam injected. Calculates the amount of water required for the flow rate adjustment valve and the humidity of the air supplied to the air supply pipe to reach the target absolute humidity, and outputs a valve opening adjustment signal for injecting the required amount of water to the flow rate adjustment valve. The control means is provided so that NOx is suppressed to a low level throughout the year while suppressing an increase in the fuel consumption rate, and it is not necessary to perform engine adjustments such as the beginning of every season.

特開2002−54510号公報JP 2002-54510 A

内燃機関において、上死点前での燃料噴射後の受熱期間中に蒸気を噴射すると、仕事量が増加して熱効率が上昇する一方で、該蒸気噴射を筒内最高圧力が許容値を超えないように行なっても、受熱期間終了後における筒内最高温度は高温側にシフトされ、蒸気噴射を終了すると、膨張行程における筒内圧力・温度の減少曲線は高い側にシフトされて、膨張行程終了時点における筒内温度は高温側にシフトされた状態となる。
このため、受熱期間中における蒸気噴射に伴う筒内温度上昇によって、NOx(窒素酸化物)の発生量が増加するとともに、燃焼室構成部材の熱応力が上昇して耐久性の保持が困難となる。
In an internal combustion engine, when steam is injected during the heat receiving period after fuel injection before top dead center, the work volume increases and the thermal efficiency increases, while the maximum pressure in the cylinder does not exceed the allowable value. Even if it carries out like this, after the end of the heat receiving period, the in-cylinder maximum temperature is shifted to the high temperature side, and when the steam injection is terminated, the in-cylinder pressure / temperature decrease curve in the expansion stroke is shifted to the higher side, and the expansion stroke ends. The in-cylinder temperature at the time is shifted to the high temperature side.
For this reason, the amount of NOx (nitrogen oxide) generated increases due to the rise in in-cylinder temperature accompanying steam injection during the heat receiving period, and the thermal stress of the combustion chamber constituent member rises, making it difficult to maintain durability. .

然るに前記特許文献1の技術にあっては、給気管に供給される空気の湿度が目標絶対湿度になるのに必要な水分量を算出しかつ該必要水分量を注入させるバルブ開度調整信号を蒸気ラインの流量調整弁に出力するように構成されているにとどまり、前記のような蒸気噴射に伴う筒内温度上昇への対処はなされていない。   However, in the technique of Patent Document 1, a valve opening degree adjustment signal for calculating the amount of water necessary for the humidity of the air supplied to the air supply pipe to reach the target absolute humidity and injecting the necessary amount of water is provided. It is only configured to output to the flow rate regulating valve of the steam line, and no countermeasure is taken against the temperature increase in the cylinder due to the steam injection as described above.

本発明はかかる従来技術の課題に鑑み、蒸気等の噴射による仕事量の増加及び熱効率の上昇を保持しつつ、筒内温度を低下せしめてNOx(窒素酸化物)の発生量を低減するとともに、燃焼室構成部材の耐久性を保持し得る流体噴射式内燃機関を提供することを目的とする。   In view of the problems of the conventional technology, the present invention reduces the amount of NOx (nitrogen oxide) generated by lowering the in-cylinder temperature while maintaining the increase in work amount and the increase in thermal efficiency due to the injection of steam and the like. An object of the present invention is to provide a fluid injection type internal combustion engine capable of maintaining the durability of a combustion chamber component.

本発明はかかる目的を達成するもので、燃料噴射装置からの燃料をシリンダ内に噴射する燃料噴射弁と、蒸気噴射装置からの蒸気をシリンダ内に噴射する蒸気噴射弁とを併設してなる2流体噴射式内燃機関において、前記燃料噴射弁からシリンダ内への燃料噴射後の受熱期間終了前及び前記受熱期間の終了から膨張行程にかけての2回、前記蒸気噴射弁から蒸気を噴射するように前記蒸気噴射装置を制御する制御装置を備え、該制御装置の制御により前記蒸気噴射装置を介して蒸気噴射弁からシリンダ内における受熱期間終了前に蒸気を噴射し、さらに前記受熱期間終了後に2回目の蒸気噴射を行うように構成し、筒内最高圧力(Pmax)および筒内最高温度(Tmax)がともに許容値以下で前記膨張行程において所要の仕事量の増加が得られるような目標受熱率モードを設定し、実際の受熱率モードが前記目標受熱率モードになるように、前記燃料噴射弁からの燃料噴射条件及び蒸気噴射弁からの蒸気噴射条件を制御するように構成されてなることを特徴とする。 The present invention achieves such an object, and is provided with a fuel injection valve that injects fuel from the fuel injection device into the cylinder and a steam injection valve that injects steam from the steam injection device into the cylinder. In the fluid injection type internal combustion engine, the steam is injected from the steam injection valve before the end of the heat receiving period after fuel injection from the fuel injection valve into the cylinder and twice from the end of the heat receiving period to the expansion stroke. A control device for controlling the steam injection device, and under the control of the control device, the steam is injected from the steam injection valve before the end of the heat receiving period in the cylinder through the steam injection device, and further after the end of the heat receiving period configured to perform the steam injection, the increase in the required amount of work in the expansion stroke cylinder maximum pressure (Pmax) and the in-cylinder maximum temperature (Tmax) are both below the allowable value is obtained The target heat receiving rate mode is set, and the fuel injection condition from the fuel injection valve and the steam injection condition from the steam injection valve are controlled so that the actual heat receiving rate mode becomes the target heat receiving rate mode. It is characterized by.

また前記2流体噴射式内燃機関の運転方法として、燃料噴射装置からの燃料をシリンダ内に噴射する燃料噴射弁と、蒸気噴射装置からの蒸気をシリンダ内に噴射する蒸気噴射弁とを併設してなる2流体噴射式内燃機関の運転方法において、前記内燃機関の上死点前に燃料噴射弁からシリンダ内に燃料を噴射し、該燃料噴射後の受熱期間終了前及び前記受熱期間の終了から膨張行程にかけての2回、前記蒸気噴射弁から蒸気を噴射し、筒内最高圧力(Pmax)および筒内最高温度(Tmax)がともに許容値以下で前記膨張行程において所要の仕事量の増加が得られるような目標受熱率モードを設定し、実際の受熱率モードが前記目標受熱率モードになるように、前記燃料噴射弁からの燃料噴射条件及び蒸気噴射弁からの蒸気噴射条件を制御することを特徴とする2流体噴射式内燃機関の運転方法を提案する。 As a method of operating the two-fluid injection internal combustion engine, a fuel injection valve for injecting fuel from the fuel injection device into the cylinder and a steam injection valve for injecting steam from the steam injection device into the cylinder are provided. In the operating method of the two-fluid injection internal combustion engine, the fuel is injected into the cylinder from the fuel injection valve before the top dead center of the internal combustion engine, and the fuel expands before and after the end of the heat receiving period after the fuel injection. Steam is injected from the steam injection valve twice during the stroke, and the maximum work pressure in the expansion stroke is obtained when both the maximum cylinder pressure (Pmax) and the maximum cylinder temperature (Tmax) are less than the allowable values. The target heat receiving rate mode is set, and the fuel injection condition from the fuel injection valve and the steam injection condition from the steam injection valve are controlled so that the actual heat receiving rate mode becomes the target heat receiving rate mode. Suggest method of operating a two-fluid injection internal combustion engine according to claim.

かかる発明において、具体的には前記制御装置により次のような制御を行って前記エンジンを運転する。
即ち、前記筒内圧力検出手段からの筒内圧力検出値及び前記筒内温度検出手段からの筒内温度検出値に基づきシリンダ内における実際の受熱率モードを算出する。
In this invention, specifically, the engine is operated by performing the following control by the control device.
That is, an actual heat receiving rate mode in the cylinder is calculated based on the in-cylinder pressure detection value from the in-cylinder pressure detection means and the in-cylinder temperature detection value from the in-cylinder temperature detection means .

また、前記目標受熱率モードを、前記エンジンの燃料噴射量及び燃料噴射時期の設定値、並びに蒸気噴射量及び蒸気噴射時期の設定値に基づき設定する。 Further, the target heat receiving rate mode is set based on set values of the fuel injection amount and fuel injection timing of the engine, and the set values of steam injection amount and steam injection timing .

かかる発明によれば、エンジンの上死点前に燃料噴射弁からシリンダ内に燃料を噴射し、該燃料噴射後の受熱期間終了前好ましくは上死点前に蒸気噴射弁から蒸気を噴射した上で、さらに受熱期間の終了から膨張行程に蒸気噴射弁から蒸気を噴射することにより、膨張行程における仕事量が増加してエンジン出力が増加し、エンジンの熱効率が上昇する。
また、受熱期間の終了から膨張行程での蒸気噴射に伴う蒸気による熱吸収作用によって、かかる膨張行程での蒸気噴射を行わない従来技術よりも筒内温度が低下し、NOx(窒素酸化物)の発生を抑制できるとともに、燃焼室構成部材の熱応力が低下して耐久性を保持できる。
According to this invention, the fuel is injected into the cylinder from the fuel injection valve before the top dead center of the engine, and the steam is injected from the steam injection valve before the end of the heat receiving period after the fuel injection, preferably before the top dead center. Further, by injecting steam from the steam injection valve in the expansion stroke after the end of the heat receiving period, the work amount in the expansion stroke increases, the engine output increases, and the thermal efficiency of the engine increases.
In addition, due to the heat absorption effect of the steam accompanying the steam injection in the expansion stroke from the end of the heat receiving period, the in-cylinder temperature is lower than in the prior art that does not perform the steam injection in the expansion stroke, and NOx (nitrogen oxide) Generation | occurrence | production can be suppressed and the thermal stress of a combustion chamber structural member can fall and durability can be hold | maintained.

加えて、前記受熱期間中における受熱率モードの最適値である目標受熱率モードを、予め設定された燃料噴射量及び燃料噴射時期、並びに蒸気噴射量及び蒸気噴射時期の双方で設定し、筒内圧力検出値及び筒内温度検出値に基づき算出した検出受熱率モードと前記目標受熱率モードとの比較結果に基づき、燃料噴射弁からの燃料噴射条件つまり燃料噴射量及び燃料噴射時期と蒸気噴射弁からの蒸気噴射条件つまり蒸気噴射量及び蒸気噴射時期の双方を関連させて変化させて、実際の受熱率モードを前記目標受熱率モードに一致せしめるように制御するので、エンジンの全運転域において常時最適の受熱率モードでの燃焼を継続できる。   In addition, the target heat receiving rate mode, which is the optimum value of the heat receiving rate mode during the heat receiving period, is set for both the preset fuel injection amount and fuel injection timing, and the steam injection amount and steam injection timing. Based on the comparison result between the detected heat reception rate mode calculated based on the pressure detection value and the in-cylinder temperature detection value and the target heat reception rate mode, the fuel injection conditions from the fuel injection valve, that is, the fuel injection amount, the fuel injection timing, and the steam injection valve Since the actual heat receiving rate mode is controlled so as to match the target heat receiving rate mode by changing both the steam injection conditions, i.e., the steam injection amount and the steam injection timing, from all over the engine operating range. Combustion in the optimum heat receiving rate mode can be continued.

さらにかかる発明によれば、前記のようにして設定した目標受熱率モードを、筒内最高圧力(Pmax)が許容値及び筒内最高温度(Tmax)あるいは排気温度等の燃焼ガス温度の許容値を取り込んで補正し、前記筒内最高圧力が許容値以下になるように、かつ前記燃焼ガス温度が許容値以下になるように目標受熱率モードを補正し、この目標受熱率モードを前記目標受熱率モードに置きかえるようにしたので、常時筒内最高圧力を許容値以下に保持しかつ燃焼ガス温度を許容値以下に保持し得るような受熱率モードでの燃焼を継続できる。   Further, according to the invention, the target heat receiving rate mode set as described above is configured such that the in-cylinder maximum pressure (Pmax) is an allowable value and the in-cylinder maximum temperature (Tmax) or the allowable value of the combustion gas temperature such as the exhaust temperature. The target heat receiving rate mode is corrected so that the in-cylinder maximum pressure is less than or equal to an allowable value and the combustion gas temperature is less than or equal to an allowable value, and the target heat receiving rate mode is set to the target heat receiving rate. Since the mode is changed, the combustion in the heat receiving rate mode in which the maximum in-cylinder pressure is always kept below the allowable value and the combustion gas temperature can be kept below the allowable value can be continued.

従って、かかる発明によれば、エンジンの上死点前に燃料噴射弁からシリンダ内に燃料を噴射し、燃料噴射後の受熱期間終了前及び受熱期間の終了から膨張行程にかけての2回、蒸気噴射弁から蒸気を噴射することにより、膨張行程における仕事量が増加してエンジン出力が増加し、エンジンの熱効率を上昇できる。   Therefore, according to this invention, the fuel is injected into the cylinder from the fuel injection valve before the top dead center of the engine, before the end of the heat receiving period after fuel injection, and twice from the end of the heat receiving period to the expansion stroke. By injecting steam from the valve, the amount of work in the expansion stroke is increased, the engine output is increased, and the thermal efficiency of the engine can be increased.

さらには、受熱期間中における受熱率モードを燃料噴射量及び燃料噴射時期、並びに蒸気噴射量及び蒸気噴射時期の双方で制御するとともに、該受熱率モードを筒内最高圧力が許容値以下になるようにかつ燃焼ガス温度が許容値以下になるように補正するので、実際の受熱率モードを目標受熱率モードに一致せしめるように制御することによりエンジンの全運転域において常時最適の受熱率モードでの燃焼を継続でき、かつ筒内最高圧力及び燃焼ガス温度を常時許容値以下に保持して燃焼室構成部材の耐久性を保持した安定運転を継続できる。   Further, the heat receiving rate mode during the heat receiving period is controlled by both the fuel injection amount and the fuel injection timing, and the steam injection amount and the steam injection timing, and the heat receiving rate mode is set so that the in-cylinder maximum pressure is less than the allowable value. In addition, the combustion gas temperature is corrected to be below the allowable value, so by controlling the actual heat receiving rate mode to match the target heat receiving rate mode, the optimum heat receiving rate mode is always maintained in the entire engine operating range. Combustion can be continued, and stable operation can be continued in which the in-cylinder maximum pressure and the combustion gas temperature are always kept below the allowable values and the durability of the combustion chamber constituent members is maintained.

また、かかる発明において、前記蒸気噴射を次の2通りの手段で行うように構成することも可能である。
(1)前記蒸気噴射弁からの蒸気噴射を、受熱期間終了前から受熱期間終了後まで継続して行う。
(2)蒸気噴射弁からの蒸気噴射を、受熱期間終了前に複数回、および前記受熱期間終了から膨張行程にかけてさらに複数回行う。
Moreover, in this invention, it is also possible to comprise so that the said vapor | steam injection may be performed by the following two means.
(1) Steam injection from the steam injection valve is continuously performed from before the end of the heat receiving period to after the end of the heat receiving period.
(2) Steam injection from the steam injection valve is performed a plurality of times before the end of the heat receiving period, and further a plurality of times from the end of the heat receiving period to the expansion stroke.

また、かかる発明において好ましくは、前記燃料噴射装置及び燃料噴射弁、並びに蒸気噴射装置及び蒸気噴射弁は、燃料噴射量あるいは蒸気噴射量が比例的に変化する比例制御弁方式に構成されてなる。
このように構成すれば、燃料噴射弁からの燃料噴射量及び蒸気噴射弁からの蒸気噴射量
を時間変化に比例して連続的に変化せしめることができるので、筒内圧力検出値及び筒内温度検出値を含む燃焼ガス温度の検出値に基づいて燃料噴射量及び燃料噴射時期、並びに蒸気噴射量及び蒸気噴射時期を連続的に制御することにより、シリンダ内における受熱率モードを高精度で制御できる。
In this invention, preferably, the fuel injection device and the fuel injection valve, and the steam injection device and the steam injection valve are configured in a proportional control valve system in which the fuel injection amount or the steam injection amount changes proportionally.
With this configuration, the fuel injection amount from the fuel injection valve and the steam injection amount from the steam injection valve can be continuously changed in proportion to the time change, so that the in-cylinder pressure detection value and the in-cylinder temperature By continuously controlling the fuel injection amount and fuel injection timing, and the steam injection amount and steam injection timing based on the detected value of the combustion gas temperature including the detected value, the heat receiving rate mode in the cylinder can be controlled with high accuracy. .

また、かかる発明において、前記蒸気に代えて、超臨界水を用いることもできる。
このようにすれば、超臨界水のシリンダ内での活発な反応性により、NOx(窒素酸化物)、煤煙等の発生を抑制できる。
In this invention, supercritical water can be used instead of the steam.
In this way, generation of NOx (nitrogen oxide), soot and the like can be suppressed by vigorous reactivity in the cylinder of supercritical water.

本発明によれば、エンジンの上死点前に燃料噴射弁からシリンダ内に燃料を噴射し、燃料噴射後の受熱期間終了前及び受熱期間の終了から膨張行程にかけての2回、蒸気噴射弁から蒸気を噴射することにより、膨張行程における仕事量が増加してエンジン出力が増加し、エンジンの熱効率を上昇できる。
また、受熱期間の終了から膨張行程での噴射蒸気による熱吸収作用によって、膨張行程での蒸気噴射を行わない従来技術よりも筒内温度が低下し、NOx(窒素酸化物)の発生を抑制できるとともに、燃焼室構成部材の熱応力が低下して耐久性を保持できる。
According to the present invention, fuel is injected into the cylinder from the fuel injection valve before the top dead center of the engine, before the end of the heat receiving period after fuel injection and twice from the end of the heat receiving period to the expansion stroke, from the steam injection valve. By injecting the steam, the work amount in the expansion stroke is increased, the engine output is increased, and the thermal efficiency of the engine can be increased.
In addition, due to the heat absorption effect of the injected steam in the expansion stroke from the end of the heat receiving period, the in-cylinder temperature is lower than in the prior art that does not perform the steam injection in the expansion stroke, and generation of NOx (nitrogen oxide) can be suppressed At the same time, the thermal stress of the combustion chamber constituent member is lowered, and the durability can be maintained.

さらに、受熱期間中における受熱率モードを燃料噴射量及び燃料噴射時期、並びに蒸気噴射量及び蒸気噴射時期の双方で制御するとともに、該受熱率モードを筒内最高圧力が許容値以下になるようにかつ燃焼ガス温度が許容値以下になるように補正するので、実際の受熱率モードを目標受熱率モードに一致せしめるように制御することによりエンジンの全運転域において常時最適の受熱率モードでの燃焼を継続可能となるとともに、筒内最高圧力及び燃焼ガス温度を常時許容値以下に保持して燃焼室構成部材の耐久性を保持した安定運転を継続できる。
また、前記蒸気に代えて超臨界水を用いれば、該超臨界水のシリンダ内での活発な反応性により、NOx(窒素酸化物)、煤煙等の発生を抑制できる。
Further, the heat receiving rate mode during the heat receiving period is controlled by both the fuel injection amount and the fuel injection timing, and the steam injection amount and the steam injection timing, and the heat receiving rate mode is set so that the maximum in-cylinder pressure is less than the allowable value. In addition, since the combustion gas temperature is corrected so that it falls below the allowable value, combustion in the optimal heat receiving rate mode is always performed in the entire engine operating range by controlling the actual heat receiving rate mode to match the target heat receiving rate mode. Can be continued, and the stable operation in which the in-cylinder maximum pressure and the combustion gas temperature are always kept below the allowable values and the durability of the combustion chamber constituent members is maintained can be continued.
Moreover, if supercritical water is used instead of the steam, generation of NOx (nitrogen oxide), soot and the like can be suppressed due to active reactivity in the cylinder of the supercritical water.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は本発明の実施例に係る燃料・蒸気噴射式4サイクルディーゼル機関の全体構成を示す系統図である。図2は前記実施例における制御ブロック図、図3(A)、(B)は前記実施例における作用説明用の線図である。図4は前記実施例における燃料噴射装置及び燃料噴射弁の構造を示す一部断面図である。   FIG. 1 is a system diagram showing the overall configuration of a fuel / steam injection type 4-cycle diesel engine according to an embodiment of the present invention. FIG. 2 is a control block diagram in the embodiment, and FIGS. 3A and 3B are diagrams for explaining the operation in the embodiment. FIG. 4 is a partial cross-sectional view showing the structure of the fuel injection device and the fuel injection valve in the embodiment.

燃料・蒸気噴射式内燃機関の全体構成を示す図1において、100はエンジン(内燃機関)、101は該エンジン100の複数のシリンダ(この図では1シリンダのみを図示している)、102は排気タービン102a及びコンプレッサ102bからなる過給機、104は給気冷却器、103は排気管、105は給気管で、前記エンジン100からの排気ガスが排気管103を通って過給機102の排気タービン102aを駆動し、該過給機102のコンプレッサ102bで加圧された高圧、高温の空気(給気)が給気冷却器104で冷却、降温され給気管105を通って前記エンジン100のシリンダ101内に供給されるようになっている。106は前記エンジン100に直結駆動される発電機である。   In FIG. 1 showing the overall configuration of a fuel / steam injection type internal combustion engine, 100 is an engine (internal combustion engine), 101 is a plurality of cylinders of the engine 100 (only one cylinder is shown in this figure), and 102 is exhaust A turbocharger composed of a turbine 102a and a compressor 102b, 104 is an air supply cooler, 103 is an exhaust pipe, 105 is an air supply pipe, and exhaust gas from the engine 100 passes through the exhaust pipe 103 and is an exhaust turbine of the supercharger 102 102a is driven, and the high-pressure and high-temperature air (supply air) pressurized by the compressor 102b of the supercharger 102 is cooled and cooled by the supply air cooler 104, passes through the supply air pipe 105, and is supplied to the cylinder 101 of the engine 100. It is designed to be supplied inside. Reference numeral 106 denotes a generator that is directly connected to the engine 100.

6は加圧された高圧燃料が導入される燃料噴射装置、4は燃料噴射弁であり(詳細構造は後述)、該燃料噴射装置6において燃料の噴射量及び噴射時期を制御された燃料が燃料噴射弁4から前記シリンダ101内に噴射されるようになっている。
10は水ポンプ、8は該水ポンプ10により供給された水から蒸気を発生する熱交換器であり、該熱交換器8においては、前記水ポンプ10により供給された水と排気管103から導入される前記過給機102の排気タービン102a駆動後の排気ガスとを熱交換して該水を加熱し、蒸気を発生せしめるようになっている。9は前記熱交換器8出口の排気ガス中の有害固形物を分離除去するセパレータであり、該セパレータ9で浄化処理された排気ガスは大気中に放出される。
6 is a fuel injection device into which pressurized high-pressure fuel is introduced, 4 is a fuel injection valve (detailed structure will be described later), and the fuel whose fuel injection amount and injection timing are controlled in the fuel injection device 6 is fuel. The fuel is injected into the cylinder 101 from the injection valve 4.
Reference numeral 10 denotes a water pump, and 8 denotes a heat exchanger that generates steam from the water supplied by the water pump 10. The heat exchanger 8 is introduced from the water supplied from the water pump 10 and the exhaust pipe 103. The exhaust gas after driving the exhaust turbine 102a of the supercharger 102 is heat-exchanged to heat the water and generate steam. 9 is a separator for separating and removing harmful solids in the exhaust gas at the outlet of the heat exchanger 8, and the exhaust gas purified by the separator 9 is released into the atmosphere.

7は前記熱交換器8で生成された高圧の蒸気が導入される蒸気噴射装置、5は蒸気噴射弁であり(詳細構造は後述)、該蒸気噴射装置7において蒸気の噴射量及び噴射時期を制御された蒸気が蒸気噴射弁5から前記シリンダ101内に噴射されるようになっている。
1は後述する演算、制御を行う制御装置、2は前記シリンダ101内におけるガス圧力(筒内圧力)を検出する筒内圧力センサ、3は前記排気管103における排気ガスの温度を検出する排気温度センサ、30は前記エンジン100の負荷(エンジン出力)を検出する負荷検出器であり、該筒内圧力センサ2からの筒内圧力の検出値、排気温度センサからの排気温度の検出値、及び負荷検出器30からのエンジン負荷(エンジン出力)の検出値は、前記制御装置1に入力されるようになっている。
7 is a steam injection device to which the high-pressure steam generated by the heat exchanger 8 is introduced, and 5 is a steam injection valve (detailed structure will be described later). In the steam injection device 7, the steam injection amount and the injection timing are determined. Controlled steam is injected into the cylinder 101 from the steam injection valve 5.
1 is a control device that performs computation and control described later, 2 is an in-cylinder pressure sensor that detects gas pressure (in-cylinder pressure) in the cylinder 101, and 3 is an exhaust temperature that detects the temperature of exhaust gas in the exhaust pipe 103. A sensor 30 is a load detector that detects a load (engine output) of the engine 100. The detected value of the in-cylinder pressure from the in-cylinder pressure sensor 2, the detected value of the exhaust temperature from the exhaust temperature sensor, and the load The detected value of the engine load (engine output) from the detector 30 is input to the control device 1.

前記燃料噴射装置6及び燃料噴射弁4、並びに前記蒸気噴射装置7及び蒸気噴射弁5は、図4に示されるような超磁歪アクチュエータを備えた比例制御噴射装置を用いるのが好適である。
図4は前記燃料噴射装置6及び燃料噴射弁4に適用される超磁歪アクチュエータを備えた比例制御噴射装置を示す。尚、前記蒸気噴射装置7及び蒸気噴射弁5についても、図4と同一構造の装置を適用できる。
As the fuel injection device 6 and the fuel injection valve 4, and the steam injection device 7 and the steam injection valve 5, it is preferable to use a proportional control injection device having a giant magnetostrictive actuator as shown in FIG.
FIG. 4 shows a proportional control injection device provided with a giant magnetostrictive actuator applied to the fuel injection device 6 and the fuel injection valve 4. In addition, the same structure as FIG. 4 is applicable also to the said steam injection apparatus 7 and the steam injection valve 5. FIG.

図4において、014は燃料蓄圧管(燃料コモンレール)、015は高圧型の燃料ポンプ、016は燃料タンク、017は燃料管で、該燃料タンク016内の燃料を燃料ポンプ015にて高圧に加圧し燃料管017を通して燃料蓄圧管014に送り込み、該燃料蓄圧管014に蓄圧するようになっている。
022は共通油管、023は作動油ポンプ、025は作動油タンク、024は作動油管で、該作動油タンク025内の作動油を作動油ポンプ023により作動油管024を通して共通油管022に送り込み、該共通油管022に収容するようになっている。
In FIG. 4, 014 is a fuel accumulator pipe (fuel common rail), 015 is a high-pressure fuel pump, 016 is a fuel tank, and 017 is a fuel pipe. The fuel in the fuel tank 016 is pressurized to a high pressure by the fuel pump 015. The fuel is stored in the fuel accumulating pipe 014 through the fuel pipe 017 and accumulated in the fuel accumulating pipe 014.
022 is a common oil pipe, 023 is a hydraulic oil pump, 025 is a hydraulic oil tank, 024 is a hydraulic oil pipe, and the hydraulic oil in the hydraulic oil tank 025 is sent to the common oil pipe 022 through the hydraulic oil pipe 024 by the hydraulic oil pump 023. The oil pipe 022 is accommodated.

4は燃料噴射弁で次のように構成されている。
05は噴射弁本体、04は該噴射弁本体05の先端部に複数個穿孔された噴孔、06は該噴孔04に連通される油溜め、02は該噴射弁本体05内に往復摺動可能に嵌合された針弁、09は前記噴射弁本体05内に該針弁02の外周面が臨んで形成された針弁室であり、前記燃料蓄圧管014からの高圧燃料が燃料入口08を経て該針弁室09に導入されるようになっている。
また前記針弁02の先端部には円錐状のシート部02aが形成され、該シート部02aが前記噴射弁本体05に形成された弁座05aに着脱することにより、前記針弁室09と油溜め06及び噴孔04とを連通及び遮断するようになっている。
A fuel injection valve 4 is configured as follows.
05 is an injection valve main body, 04 is a plurality of injection holes perforated at the tip of the injection valve main body 05, 06 is an oil reservoir communicating with the injection hole 04, 02 is reciprocatingly slid into the injection valve main body 05 A needle valve 09, which can be fitted, is a needle valve chamber formed in the injection valve body 05 with the outer peripheral surface of the needle valve 02 facing, and the high pressure fuel from the fuel accumulating pipe 014 is supplied to the fuel inlet 08. After that, the needle valve chamber 09 is introduced.
A conical seat portion 02a is formed at the tip of the needle valve 02, and the seat portion 02a is attached to and detached from a valve seat 05a formed in the injection valve body 05, so that the needle valve chamber 09 and the oil seat The reservoir 06 and the injection hole 04 are communicated and blocked.

013は前記噴射弁本体05に前記針弁室09と隔壁0013を隔てて形成された油室で、前記針弁02の大径部である本体部02bの外周面が臨み、前記共通油管022からの作動油が作動油入口027を経て該油室013に導入されるようになっている。
019は前記噴射弁本体05に前記油室013と隔壁011を隔てて形成されたパイロット制御室で、前記針弁02の前記シート部02aとは反対側の端面018が臨んで形成されている。
そして、前記針弁02の前記本体部02b外周面には一定長さに亘って幅Wなる制御用切欠部012が形成され、前記油室013と針弁室9との差圧による前記針弁02の軸方向移動により、前記油室013とパイロット制御室019とが該制御用切欠部012を介して連通可能となっている。
Reference numeral 013 denotes an oil chamber formed on the injection valve body 05 with the needle valve chamber 09 and the partition wall 0013 separated from each other. The outer peripheral surface of the main body portion 02b, which is the large diameter portion of the needle valve 02, faces from the common oil pipe 022. The hydraulic oil is introduced into the oil chamber 013 through the hydraulic oil inlet 027.
Reference numeral 019 denotes a pilot control chamber formed in the injection valve body 05 with the oil chamber 013 and the partition wall 011 separated from each other. The needle valve 02 has an end surface 018 opposite to the seat portion 02a.
A control notch portion 012 having a width W over a certain length is formed on the outer peripheral surface of the main body portion 02b of the needle valve 02, and the needle valve due to a differential pressure between the oil chamber 013 and the needle valve chamber 9 is formed. The axial movement of 02 allows the oil chamber 013 and the pilot control chamber 019 to communicate with each other through the control cutout portion 012.

031はパイロット弁で、前記噴射弁本体05の端部に穿孔された前記パイロット制御室019のパイロット油出口穴021を開閉するものである。即ち、該パイロット弁031は、平板状の当接面を前記噴射弁本体05の端部に形成された弁座面05cに着脱することにより、前記パイロット制御室019のパイロット油出口穴021を開閉するようになっている。   Reference numeral 031 denotes a pilot valve that opens and closes a pilot oil outlet hole 021 of the pilot control chamber 019 that is perforated at the end of the injection valve main body 05. That is, the pilot valve 031 opens and closes the pilot oil outlet hole 021 of the pilot control chamber 019 by attaching and detaching a flat contact surface to the valve seat surface 05c formed at the end of the injection valve body 05. It is supposed to be.

030は超磁歪アクチュエータであり、次のように構成されている。
033は磁石(電磁石)、032は磁気歪により変位する超磁歪材で一旦側を前記パイロット弁031の根元の支持部に固着されており、前記磁石033への通電によって超磁歪材032が軸方向に変位することにより、前記パイロット弁031を往復動せしめるようになっている。034は前記パイロット弁031の支持部とアクチュエータの本体部035との間に介装されたばねで、前記パイロット弁031を閉弁する方向に付勢されている。
かかる超磁歪アクチュエータ030の基本構成自体は公知であり、この実施例においては、該超磁歪アクチュエータ030に前記パイロット弁031を連結して開閉駆動するように構成している。
030 is a giant magnetostrictive actuator, which is configured as follows.
033 is a magnet (electromagnet), 032 is a giant magnetostrictive material that is displaced by magnetostriction, and is temporarily fixed to the support portion at the base of the pilot valve 031. When the magnet 033 is energized, the giant magnetostrictive material 032 is axially moved. The pilot valve 031 is caused to reciprocate by being displaced to. Reference numeral 034 denotes a spring interposed between the support portion of the pilot valve 031 and the main body portion 035 of the actuator, and is biased in the direction in which the pilot valve 031 is closed.
The basic configuration of the giant magnetostrictive actuator 030 is known per se. In this embodiment, the pilot valve 031 is connected to the giant magnetostrictive actuator 030 and is driven to open and close.

次に、図2の制御ブロック図、及び図3(A)、(B)の作用説明用線図に基づきかかる実施例の動作を説明する。
前記筒内圧力センサ2からの筒内圧力の検出値は制御装置1の筒内温度算出部11及び受熱率算出部12に入力される。前記筒内温度算出部11においては前記筒内圧力の検出値に基づき筒内温度を算出して前記受熱率算出部12に入力する(前記筒内温度は直接検出してもよい)。
前記受熱率算出部12においては、前記筒内圧力及び筒内温度の時間変化に基づき受熱率モードを算出し受熱率補正部22に入力する。
Next, the operation of this embodiment will be described based on the control block diagram of FIG. 2 and the action explanatory diagrams of FIGS. 3 (A) and 3 (B).
The detected value of the in-cylinder pressure from the in-cylinder pressure sensor 2 is input to the in-cylinder temperature calculation unit 11 and the heat receiving rate calculation unit 12 of the control device 1. The in-cylinder temperature calculation unit 11 calculates the in-cylinder temperature based on the detected value of the in-cylinder pressure and inputs it to the heat receiving rate calculation unit 12 (the in-cylinder temperature may be directly detected).
In the heat receiving rate calculation unit 12, a heat receiving rate mode is calculated based on the time variation of the in-cylinder pressure and the in-cylinder temperature and is input to the heat receiving rate correction unit 22.

13は燃料噴射量モード設定部、14は燃料噴射時期設定部で、該燃料噴射と後述する蒸気噴射後におけるシリンダ内の受熱率モードが後述する目標受熱率モードになるような
燃料噴射量モード及び燃料噴射時期が設定されている。15は蒸気噴射量設定部、16は蒸気噴射時期設定部で、前記燃料噴射及びかかる蒸気噴射後におけるシリンダ内の受熱率モードが後述する目標受熱率モードになるような蒸気噴射量モード及び蒸気噴射時期が設定されている。
17は目標受熱率設定部で、前記燃料噴射量モード設定部13及び燃料噴射時期設定部14、並びに蒸気噴射量モード設定部15及び蒸気噴射時期設定部16に基づき算出された目標とする受熱率モード、つまり後述するように、膨張行程における仕事量の所要増加量が得られるような受熱率モードが設定されている。
Reference numeral 13 denotes a fuel injection amount mode setting unit, and reference numeral 14 denotes a fuel injection timing setting unit. A fuel injection amount mode in which the heat reception rate mode in the cylinder after the fuel injection and steam injection described later becomes a target heat reception rate mode described later. The fuel injection timing is set. 15 is a steam injection amount setting unit, and 16 is a steam injection timing setting unit. The steam injection amount mode and the steam injection are such that the heat receiving rate mode in the cylinder after the fuel injection and the steam injection becomes a target heat receiving rate mode to be described later. The time is set.
Reference numeral 17 denotes a target heat receiving rate setting unit, which is a target heat receiving rate calculated based on the fuel injection amount mode setting unit 13 and the fuel injection timing setting unit 14, and the steam injection amount mode setting unit 15 and the steam injection timing setting unit 16. As will be described later, a heat receiving rate mode is set so that the required amount of work increase in the expansion stroke can be obtained.

即ち、図3(A)、(B)に示されるように、かかる実施例においては、エンジン100の上死点(TDC)前のθに燃料噴射弁4からシリンダ101内に燃料を噴射し、該燃料噴射後において図のSから始まる受熱期間中あるいは受熱期間前のθに蒸気噴射弁5からシリンダ内に蒸気をGsのように噴射し、該受熱期間の終了S22(あるいはθ22)から膨張行程にかけてのθに該蒸気噴射弁5から2回目の蒸気噴射Gsを行うように、前記燃射量モード設定部13及び燃料噴射時期設定部14に燃料噴射量モード及び燃料噴射時期が設定されるとともに、蒸気噴射量設定部15及び蒸気噴射時期設定部16に蒸気噴射量モード及び蒸気噴射時期が設定されている。尚、図3(A)において、Wはブローダウンエネルギー、Wはタービン仕事である。
該目標受熱率設定部17での目標受熱率モードの設定値は目標受熱率補正部18に入力される。
That is, as shown in FIGS. 3A and 3B, in this embodiment, fuel is injected from the fuel injection valve 4 into the cylinder 101 at θ 1 before the top dead center (TDC) of the engine 100. the steam from the steam injection valve 5 to the theta 2 before or heat during periods heat period starting from S 1 of FIG. after fuel injection into the cylinder by injection as Gs 1, the end of receiving heat period S 22 (or The fuel injection amount mode setting unit 13 and the fuel injection timing setting unit 14 are provided with the fuel injection amount mode and the fuel injection timing setting unit 14 so that the second steam injection Gs 2 is performed from the steam injection valve 5 at θ 3 from θ 22 ) to the expansion stroke. A fuel injection timing is set, and a steam injection amount mode and a steam injection timing are set in the steam injection amount setting unit 15 and the steam injection timing setting unit 16. In FIG. 3A, W 3 is blowdown energy and W 4 is turbine work.
The set value of the target heat receiving rate mode in the target heat receiving rate setting unit 17 is input to the target heat receiving rate correction unit 18.

19は許容Pmax設定部で、前記負荷検出器30から入力されるエンジン負荷に対応する筒内最高圧力(Pmax)の許容値で設定されている。20は許容Tmax設定部で、前記負荷検出器30から入力されるエンジン負荷に対応する筒内最高温度(Tmax)の許容値で設定されている。21は許容排気温度設定部で、前記負荷検出器30から入力されるエンジン負荷に対応する排気温度の許容値で設定されている。前記許容Pmax設定部19からの筒内最高圧力(Pmax)の許容値、前記許容Tmax設定部20からの筒内最高温度(Tmax)の許容値、及び前記許容排気温度設定部20からの排気温度の許容値は、前記目標受熱率補正部18に入力される。   Reference numeral 19 denotes an allowable Pmax setting unit, which is set with an allowable value of the in-cylinder maximum pressure (Pmax) corresponding to the engine load input from the load detector 30. Reference numeral 20 denotes an allowable Tmax setting unit, which is set as an allowable value of the in-cylinder maximum temperature (Tmax) corresponding to the engine load input from the load detector 30. Reference numeral 21 denotes an allowable exhaust temperature setting unit, which is set with an allowable value of the exhaust temperature corresponding to the engine load input from the load detector 30. Allowable value of in-cylinder maximum pressure (Pmax) from the allowable Pmax setting unit 19, allowable value of in-cylinder maximum temperature (Tmax) from the allowable Tmax setting unit 20, and exhaust temperature from the allowable exhaust temperature setting unit 20 Is input to the target heat rate correction unit 18.

前記目標受熱率補正部18においては、前記目標受熱率設定部17からの目標受熱率モードの設定値を、前記筒内最高圧力(Pmax)の許容値、筒内最高温度(Tmax)の許容値、及び排気温度の許容値を取り込んで補正し、補正目標受熱率モードつまり受熱率モードの最適値を算出し受熱率補正部22に入力する。
該受熱率補正部22においては、前記受熱率算出部12において筒内圧力及び筒内温度の時間変化に基づき算出した算出受熱率モードと前記補正目標受熱率モードとを比較し、さらに前記排気温度センサからの排気温度の検出値で補正し、その比較結果及び補正結果に基づき、前記補正目標受熱率モードになるような燃料噴射量モード及び燃料噴射時期の調整量、並びに蒸気噴射量モード及び蒸気噴射時期の調整量を算出し(23、24)、前記燃料噴射装置6及び蒸気噴射装置7にそれぞれ出力する。
燃料噴射弁4においては、燃料噴射装置6からの前記調整量に従う燃料噴射量モード及び燃料噴射時期により燃料噴射を行う。また蒸気噴射弁5においては、蒸気噴射装置7からの前記調整量に従う蒸気噴射量モード及び蒸気噴射時期により蒸気噴射を行う。
In the target heat receiving rate correction unit 18, the set value of the target heat receiving rate mode from the target heat receiving rate setting unit 17 is set to the allowable value of the in-cylinder maximum pressure (Pmax) and the allowable value of the in-cylinder maximum temperature (Tmax). Then, the allowable value of the exhaust temperature is taken in and corrected, and the optimum value of the corrected target heat receiving rate mode, that is, the heat receiving rate mode is calculated and input to the heat receiving rate correcting unit 22.
The heat receiving rate correction unit 22 compares the calculated heat receiving rate mode calculated based on the time change of the in-cylinder pressure and the in-cylinder temperature with the heat receiving rate calculating unit 12 and the exhaust target temperature. Correction based on the detection value of the exhaust temperature from the sensor, and based on the comparison result and the correction result, the fuel injection amount mode and the adjustment amount of the fuel injection timing, the steam injection amount mode and the steam so as to be the corrected target heat receiving rate mode. The adjustment amount of the injection timing is calculated (23, 24) and output to the fuel injection device 6 and the steam injection device 7, respectively.
In the fuel injection valve 4, fuel injection is performed in the fuel injection amount mode and the fuel injection timing according to the adjustment amount from the fuel injection device 6. In the steam injection valve 5, steam injection is performed in the steam injection amount mode and the steam injection timing according to the adjustment amount from the steam injection device 7.

また、前記制御装置1は、蒸気噴射弁5からの蒸気噴射を次の2通りの手段で行うように制御することもできる。
(1)前記蒸気噴射弁5からの蒸気噴射を、受熱期間終了S22(あるいはθ22)の前から受熱期間終了S22(あるいはθ22)の後まで継続して行う。
(2)蒸気噴射弁5からの蒸気噴射を、受熱期間終了S22(あるいはθ22)の前に複数回、および前記受熱期間終了S22(あるいはθ22)から膨張行程にかけてさらに複数回行う。
Moreover, the said control apparatus 1 can also be controlled to perform the steam injection from the steam injection valve 5 by the following two means.
(1) performing the steam injection from the steam injection valve 5, continuing from the previous heat period end S 22 (or theta 22) until after the heat-receiving period end S 22 (or theta 22).
(2) the steam injection from the steam injection valve 5, further performed a plurality of times more than once prior to the heat-receiving period end S 22 (or theta 22), and from said heat receiving period end S 22 (or theta 22) toward the expansion stroke.

かかる実施例によれば、エンジン100の上死点前に燃料噴射弁4からシリンダ101内に燃料を噴射し、該燃料噴射後の受熱期間終了時S22よりも前、好ましくは上死点前に蒸気噴射弁5から蒸気を噴射した上で、さらに受熱期間終了時S22から膨張行程にかけて蒸気噴射弁5から2回目の蒸気噴射を行うことにより、図(A)のWから(W+W)のように、膨張行程における仕事量Wが増加してエンジン出力が増加し、エンジンの熱効率が上昇する。
また、受熱期間終了時S22から膨張行程での蒸気噴射に伴う蒸気による熱吸収作用によって、かかる膨張行程での蒸気噴射を行わない従来技術よりも膨張行程終了時S32における筒内温度が低下し、NOx(窒素酸化物)の発生を抑制できるとともに、燃焼室構成部材の熱応力が低下する。
According to this embodiment, the fuel injected from the fuel injection valve 4 before the top dead center of the engine 100 in the cylinder 101, before the heat receiving period at the end S 22 after fuel injection, preferably before top dead center in after having injected steam from the steam injection valve 5, further by performing the steam injection valve 5 second steam injection toward the expansion stroke from the heat receiving period at the end of S 22, (W from W 0 shown in FIG. 3 (a) 0 + W 1 ), the work amount W in the expansion stroke increases, the engine output increases, and the thermal efficiency of the engine increases.
Further, by the heat absorbing action of steam with the steam injection in the expansion stroke from the heat receiving period at the end of S 22, cylinder temperature is lowered in the expansion stroke at the end S 32 than the prior art that does not perform steam injection in such expansion stroke And generation | occurrence | production of NOx (nitrogen oxide) can be suppressed, and the thermal stress of a combustion chamber structural member falls.

加えて、前記受熱期間中における受熱率モードの最適値である目標受熱率モードを、予め設定された燃料噴射量及び燃料噴射時期、並びに蒸気噴射量及び蒸気噴射時期の双方で設定し、筒内圧力検出値及び筒内温度検出値に基づき算出した検出受熱率モードと前記目標受熱率モードとの比較結果に基づき、燃料噴射弁4からの燃料噴射条件つまり燃料噴射量及び燃料噴射時期と蒸気噴射弁5からの蒸気噴射条件つまり蒸気噴射量及び蒸気噴射時期の双方を関連させて変化させて、実際の受熱率モードを前記目標受熱率モードに一致せしめるように制御するので、エンジン100の全運転域において常時最適の受熱率モードでの燃焼を継続できる。   In addition, the target heat receiving rate mode, which is the optimum value of the heat receiving rate mode during the heat receiving period, is set for both the preset fuel injection amount and fuel injection timing, and the steam injection amount and steam injection timing. Based on the comparison result between the detected heat receiving rate mode calculated based on the detected pressure value and the in-cylinder temperature detected value and the target received heat rate mode, the fuel injection condition from the fuel injection valve 4, that is, the fuel injection amount, the fuel injection timing, and the steam injection The steam injection condition from the valve 5, that is, the steam injection amount and the steam injection timing are both changed in association with each other, and the actual heat receiving rate mode is controlled to match the target heat receiving rate mode. Combustion in the optimum heat receiving rate mode can be continued at all times.

さらにかかる実施例によれば、前記のようにして設定した目標受熱率モードを、筒内最高圧力(Pmax)の許容値及び筒内最高温度(Tmax)の許容値あるいは排気温度の許容値を取り込んで補正し、前記筒内最高圧力が許容値以下になるように、かつ前記筒内最高温度あるいは排気温度が許容値以下になるように目標受熱率モードを補正し、この目標受熱率モードを前記目標受熱率モードに置きかえるようにしたので、常時筒内最高圧力を許容値以下に保持しかつ筒内最高温度、排気温度等の燃焼ガス温度を許容値以下に保持し得るような受熱率モードでの燃焼を継続できる。   Further, according to this embodiment, the target heat receiving rate mode set as described above is taken in the allowable value of the in-cylinder maximum pressure (Pmax) and the allowable value of the in-cylinder maximum temperature (Tmax) or the allowable value of the exhaust temperature. The target heat receiving rate mode is corrected so that the in-cylinder maximum pressure is less than or equal to an allowable value and the in-cylinder maximum temperature or exhaust temperature is less than or equal to an allowable value. Since it has been changed to the target heat rate mode, the heat rate mode is such that the maximum in-cylinder pressure is always kept below the allowable value and the combustion gas temperature such as the maximum in-cylinder temperature and exhaust temperature can be kept below the allowable value. Can continue burning.

また、前記実施例における蒸気に代えて、超臨界水を用いることもできる。この場合も図4に示される燃料噴射装置及び燃料噴射弁と同様な噴射システムを用いることが可能である。
かかる超臨界水利用のシステムによれば、超臨界水のシリンダ内での活発な反応性により、NOx(窒素酸化物)、煤煙等の発生の抑制効果が大きくなる。
尚、前記実施例は、本発明を4サイクルディーゼル機関に適用した場合について示しているが、本発明はこれに限定されることなく2サイクルディーゼル機関やガスエンジン等にも適用できる。
Also, supercritical water can be used in place of the steam in the above embodiment. Also in this case, it is possible to use an injection system similar to the fuel injection device and the fuel injection valve shown in FIG.
According to such a system using supercritical water, the effect of suppressing the generation of NOx (nitrogen oxide), soot, etc. is increased due to the active reactivity in the cylinder of supercritical water.
In addition, although the said Example has shown about the case where this invention is applied to a 4-cycle diesel engine, this invention is applicable to a 2-cycle diesel engine, a gas engine, etc., without being limited to this.

本発明によれば、蒸気あるいは超臨界水の噴射による仕事量の増加及び熱効率の上昇を保持しつつ、筒内温度を低下せしめてNOx(窒素酸化物)の発生量を低減するとともに、燃焼室構成部材の耐久性を保持し得る2流体噴射式内燃機関を提供できる。   According to the present invention, while maintaining the increase in work amount and the increase in thermal efficiency due to the injection of steam or supercritical water, the in-cylinder temperature is lowered to reduce the generation amount of NOx (nitrogen oxide), and the combustion chamber It is possible to provide a two-fluid injection internal combustion engine that can maintain the durability of the constituent members.

本発明の実施例に係る燃料・蒸気噴射式内燃機関の全体構成を示す系統図である。1 is a system diagram showing an overall configuration of a fuel / steam injection type internal combustion engine according to an embodiment of the present invention. 前記実施例における制御ブロック図である。It is a control block diagram in the embodiment. (A)、(B)は前記実施例における作用説明用の線図である。(A), (B) is a diagram for effect | action description in the said Example. 前記実施例における燃料噴射装置及び燃料噴射弁の構造を示す一部断面図である。It is a partial cross section figure which shows the structure of the fuel-injection apparatus and fuel-injection valve in the said Example.

符号の説明Explanation of symbols

1 制御装置
2 筒内圧力センサ
3 排気温度センサ
4 燃料噴射弁
5 蒸気噴射弁
6 燃料噴射装置
7 蒸気噴射装置
8 熱交換器
30 負荷検出器
100 エンジン(内燃機関)
101 シリンダ
102 過給機
103 排気管
105 給気管
106 発電機
DESCRIPTION OF SYMBOLS 1 Control apparatus 2 In-cylinder pressure sensor 3 Exhaust temperature sensor 4 Fuel injection valve 5 Steam injection valve 6 Fuel injection apparatus 7 Steam injection apparatus 8 Heat exchanger 30 Load detector 100 Engine (internal combustion engine)
101 cylinder 102 supercharger 103 exhaust pipe 105 air supply pipe 106 generator

Claims (13)

燃料噴射装置からの燃料をシリンダ内に噴射する燃料噴射弁と、蒸気噴射装置からの蒸気をシリンダ内に噴射する蒸気噴射弁とを併設してなる2流体噴射式内燃機関において、前記燃料噴射弁からシリンダ内への燃料噴射後の受熱期間終了前及び前記受熱期間の終了から膨張行程にかけての2回、前記蒸気噴射弁から蒸気を噴射するように前記蒸気噴射装置を制御する制御装置を備え、該制御装置の制御により前記蒸気噴射装置を介して蒸気噴射弁からシリンダ内における受熱期間終了前に蒸気を噴射し、さらに前記受熱期間終了後に2回目の蒸気噴射を行うように構成し、筒内最高圧力(Pmax)および筒内最高温度(Tmax)がともに許容値以下で前記膨張行程において所要の仕事量の増加が得られるような目標受熱率モードを設定し、実際の受熱率モードが前記目標受熱率モードになるように、前記燃料噴射弁からの燃料噴射条件及び蒸気噴射弁からの蒸気噴射条件を制御するように構成されてなることを特徴とする2流体噴射式内燃機関。 In a two-fluid injection internal combustion engine comprising a fuel injection valve for injecting fuel from a fuel injection device into a cylinder and a steam injection valve for injecting steam from the steam injection device into the cylinder, the fuel injection valve A control device for controlling the steam injection device to inject steam from the steam injection valve twice before the end of the heat receiving period after fuel injection into the cylinder and from the end of the heat receiving period to the expansion stroke; Under the control of the control device, the steam is injected from the steam injection valve before the end of the heat receiving period in the cylinder via the steam injection device, and the second steam injection is performed after the end of the heat receiving period . A target heat rate mode is set so that the maximum pressure (Pmax) and the in-cylinder maximum temperature (Tmax) are both below the allowable values and the required work volume can be increased in the expansion stroke. As the heat receiving rate mode is the target heat rate mode, the fuel injection condition and 2 a fluid jet, characterized by comprising configured to control steam injection condition from the steam injection valves from the fuel injection valve Internal combustion engine. 燃料噴射装置からの燃料をシリンダ内に噴射する燃料噴射弁と、蒸気噴射装置からの蒸気をシリンダ内に噴射する蒸気噴射弁とを併設してなる2流体噴射式内燃機関において、前記蒸気噴射弁からの蒸気噴射を、受熱期間終了前から受熱期間終了後まで蒸気を継続して噴射するように構成し、筒内最高圧力(Pmax)および筒内最高温度(Tmax)がともに許容値以下で前記膨張行程において所要の仕事量の増加が得られるような目標受熱率モードを設定し、実際の受熱率モードが前記目標受熱率モードになるように、前記燃料噴射弁からの燃料噴射条件及び蒸気噴射弁からの蒸気噴射条件を制御するように構成されてなることを特徴とする2流体噴射式内燃機関。 In the two-fluid injection internal combustion engine comprising a fuel injection valve for injecting fuel from the fuel injection device into the cylinder and a steam injection valve for injecting steam from the steam injection device into the cylinder, the steam injection valve From the end of the heat receiving period until after the end of the heat receiving period, and the maximum in-cylinder pressure (Pmax) and the maximum in-cylinder temperature (Tmax) are less than the allowable values. A target heat receiving rate mode is set so that the required work amount can be increased in the expansion stroke, and the fuel injection conditions and steam injection from the fuel injection valve are set so that the actual heat receiving rate mode becomes the target heat receiving rate mode. A two-fluid injection internal combustion engine configured to control a steam injection condition from a valve . 燃料噴射装置からの燃料をシリンダ内に噴射する燃料噴射弁と、蒸気噴射装置からの蒸気をシリンダ内に噴射する蒸気噴射弁とを併設してなる2流体噴射式内燃機関において、前記蒸気噴射弁からの蒸気噴射を、受熱期間終了前に複数回、および前記受熱期間終了から膨張行程にかけてさらに複数回行うように構成し、筒内最高圧力(Pmax)および筒内最高温度(Tmax)がともに許容値以下で前記膨張行程において所要の仕事量の増加が得られるような目標受熱率モードを設定し、実際の受熱率モードが前記目標受熱率モードになるように、前記燃料噴射弁からの燃料噴射条件及び蒸気噴射弁からの蒸気噴射条件を制御するように構成されてなることを特徴とする2流体噴射式内燃機関。 In the two-fluid injection internal combustion engine comprising a fuel injection valve for injecting fuel from the fuel injection device into the cylinder and a steam injection valve for injecting steam from the steam injection device into the cylinder, the steam injection valve From the end of the heat receiving period and multiple times from the end of the heat receiving period to the expansion stroke, both the maximum in-cylinder pressure (Pmax) and the maximum in-cylinder temperature (Tmax) are allowed The target heat receiving rate mode is set so that the required work amount can be increased in the expansion stroke below the value, and the fuel injection from the fuel injection valve is set so that the actual heat receiving rate mode becomes the target heat receiving rate mode. A two-fluid injection internal combustion engine configured to control conditions and steam injection conditions from a steam injection valve . 前記内燃機関(以下エンジンともいう)の筒内圧力を検出する筒内圧力検出手段と、前記エンジンの筒内温度を検出する筒内温度検出手段とを備え、前記制御装置は、前記筒内圧力検出手段からの筒内圧力検出値及び前記筒内温度検出手段からの筒内温度検出値に基づきシリンダ内における前記実際の受熱率モードを算出するように構成されてなることを特徴とする請求項1乃至3のいずれかに記載の2流体噴射式内燃機関。 In-cylinder pressure detection means for detecting an in-cylinder pressure of the internal combustion engine (hereinafter also referred to as an engine) and in-cylinder temperature detection means for detecting an in-cylinder temperature of the engine, the control device includes the in-cylinder pressure The in-cylinder pressure detection value from the detection means and the in-cylinder temperature detection value from the in-cylinder temperature detection means are configured to calculate the actual heat receiving rate mode in the cylinder. The two-fluid injection internal combustion engine according to any one of 1 to 3 . 前記制御装置は、前記目標受熱率モードを、前記エンジンの燃料噴射量及び燃料噴射時期の設定値、並びに蒸気噴射量及び蒸気噴射時期の設定値に基づき設定するように構成されてなることを特徴とする請求項1乃至3のいずれかに記載の2流体噴射式内燃機関。 The control device is configured to set the target heat receiving rate mode based on a set value of the fuel injection amount and fuel injection timing of the engine and a set value of the steam injection amount and steam injection timing. The two-fluid injection internal combustion engine according to any one of claims 1 to 3 . 前記エンジンの負荷あるいは出力を検出するエンジン負荷検出手段を備え、前記制御装置は、前記エンジン負荷検出手段からのエンジン負荷検出値に基づき前記筒内最高圧力の許容値及び燃焼ガス温度の許容値を設定するように構成されてなることを特徴とする請求項1乃至3のいずれかに記載の2流体噴射式内燃機関。 Engine load detecting means for detecting the load or output of the engine is provided, and the control device determines the allowable value of the in-cylinder maximum pressure and the allowable value of the combustion gas temperature based on the detected engine load value from the engine load detecting means. The two-fluid injection internal combustion engine according to any one of claims 1 to 3, wherein the internal combustion engine is configured to be set . 前記燃料噴射装置及び燃料噴射弁、並びに蒸気噴射装置及び蒸気噴射弁は、燃料噴射量あるいは蒸気噴射量が比例的に変化する比例制御弁方式に構成されてなることを特徴とする請求項1乃至3のいずれかに記載の2流体噴射式内燃機関。 The fuel injection device and the fuel injection valve, and the steam injection device and the steam injection valve are configured in a proportional control valve system in which a fuel injection amount or a steam injection amount changes proportionally. The two-fluid injection internal combustion engine according to any one of claims 3 to 4 . 前記蒸気に代えて、超臨界水を用いることを特徴とする請求項1ないし7のいずれかの項に記載の2流体噴射式内燃機関。 The two-fluid injection internal combustion engine according to any one of claims 1 to 7, wherein supercritical water is used instead of the steam . 燃料噴射装置からの燃料をシリンダ内に噴射する燃料噴射弁と、蒸気噴射装置からの蒸気をシリンダ内に噴射する蒸気噴射弁とを併設してなる2流体噴射式内燃機関の運転方法において、前記内燃機関の上死点前に燃料噴射弁からシリンダ内に燃料を噴射し、該燃料噴射後の受熱期間終了前及び前記受熱期間の終了から膨張行程にかけての2回、前記蒸気噴射弁から蒸気を噴射し、筒内最高圧力(Pmax)および筒内最高温度(Tmax)がともに許容値以下で前記膨張行程において所要の仕事量の増加が得られるような目標受熱率モードを設定し、実際の受熱率モードが前記目標受熱率モードになるように、前記燃料噴射弁からの燃料噴射条件及び蒸気噴射弁からの蒸気噴射条件を制御することを特徴とする2流体噴射式内燃機関の運転方法。 In the method of operating a two-fluid injection internal combustion engine comprising a fuel injection valve for injecting fuel from a fuel injection device into a cylinder and a steam injection valve for injecting steam from the steam injection device into the cylinder, Before the top dead center of the internal combustion engine, fuel is injected into the cylinder from the fuel injection valve, and before the end of the heat receiving period after the fuel injection and twice from the end of the heat receiving period to the expansion stroke, the steam is injected from the steam injection valve. The target heat-receiving rate mode is set such that the maximum in-cylinder pressure (Pmax) and the in-cylinder maximum temperature (Tmax) are less than the permissible values and the required work amount is increased in the expansion stroke. A method of operating a two-fluid injection internal combustion engine , wherein the fuel injection condition from the fuel injection valve and the steam injection condition from the steam injection valve are controlled so that the rate mode becomes the target heat receiving rate mode . 前記エンジンの筒内圧力及び筒内温度を検出し、前記筒内圧力検出値及び筒内温度検出値に基づきシリンダ内における前記実際の受熱率モードを算出することを特徴とする請求項9記載の2流体噴射式内燃機関の運転方法。 The in-cylinder pressure and in-cylinder temperature of the engine are detected, and the actual heat receiving rate mode in the cylinder is calculated based on the in-cylinder pressure detection value and the in-cylinder temperature detection value. A method for operating a two-fluid injection internal combustion engine. 前記目標受熱率モードを、エンジンの燃料噴射量及び燃料噴射時期の設定値、並びに蒸気噴射量及び蒸気噴射時期の設定値に基づき設定することを特徴とする請求項9記載の2流体噴射式内燃機関の運転方法。 10. The two-fluid injection internal combustion engine according to claim 9, wherein the target heat receiving rate mode is set based on a set value of an engine fuel injection amount and a fuel injection timing, and a set value of a steam injection amount and a steam injection timing. How the engine operates. 前記エンジンの負荷あるいはエンジンの出力を検出し、該エンジン負荷検出値に基づき前記筒内最高圧力の許容値及び燃焼ガス温度の許容値を設定することを特徴とする請求項9記載の2流体噴射式内燃機関の運転方法。 10. The two-fluid injection according to claim 9, wherein an engine load or an engine output is detected, and an allowable value of the in-cylinder maximum pressure and an allowable value of combustion gas temperature are set based on the detected value of the engine load. Of operating an internal combustion engine. 前記蒸気に代えて、超臨界水を用いることを特徴とする請求項9ないし12のいずれかの項に記載の2流体噴射式内燃機関の運転方法。 The method of operating a two-fluid injection internal combustion engine according to any one of claims 9 to 12, wherein supercritical water is used instead of the steam .
JP2004176616A 2004-06-15 2004-06-15 Two-fluid injection internal combustion engine and method of operating the same Expired - Fee Related JP3999767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176616A JP3999767B2 (en) 2004-06-15 2004-06-15 Two-fluid injection internal combustion engine and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176616A JP3999767B2 (en) 2004-06-15 2004-06-15 Two-fluid injection internal combustion engine and method of operating the same

Publications (2)

Publication Number Publication Date
JP2006002580A JP2006002580A (en) 2006-01-05
JP3999767B2 true JP3999767B2 (en) 2007-10-31

Family

ID=35771198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176616A Expired - Fee Related JP3999767B2 (en) 2004-06-15 2004-06-15 Two-fluid injection internal combustion engine and method of operating the same

Country Status (1)

Country Link
JP (1) JP3999767B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045569B2 (en) * 2008-06-23 2012-10-10 株式会社豊田中央研究所 Engine system and engine operating method
JP5104786B2 (en) * 2009-03-06 2012-12-19 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2006002580A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US6192863B1 (en) Common-rail fuel-injection system
US7500475B2 (en) Engine and method for operating an engine
US8131449B2 (en) Fuel injection control apparatus and fuel injection control method for internal combustion engine
US20090112447A1 (en) Intake air quantity correcting device
JP3885888B2 (en) Common rail system
EP1054150B1 (en) Diesel engine control on engine-stop
EP1803917B1 (en) Control method of a common-rail type system for direct fuel injection into an internal combustion engine
US20120303244A1 (en) Adaptation control of lean nox trap regeneration with biodiesel during engine transient operation
SE0103303D0 (en) Internal internal combustion engine with steam expansion rate
KR102451913B1 (en) Engine system having secondary air injection apparatus
JP3999767B2 (en) Two-fluid injection internal combustion engine and method of operating the same
KR101986067B1 (en) A high pressure fluid rail
JP5745934B2 (en) Fuel injection control device
US20180363570A1 (en) Internal combustion engine having an injection amount control
US11499496B2 (en) Engine control system and method
US10648416B2 (en) Internal combustion engine
EP2802761B1 (en) Abnormality determination apparatus and abnormality determination method for fuel supply system
JP2006105088A (en) Hydrogenation internal combustion engine
US20210071596A1 (en) Engine Control System and Method
JP4550991B2 (en) Fuel / water injection internal combustion engine
WO2021065426A1 (en) Internal combustion engine
JP4211732B2 (en) Fuel supply device for internal combustion engine
JP4216262B2 (en) Fuel injection system for diesel engine
JP3706589B2 (en) Reciprocating internal combustion engine and method for operating reciprocating internal combustion engine
JP4398315B2 (en) Fuel control method for multi-cylinder engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3999767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees