JP3997842B2 - Optical transmission system and optical transmission method - Google Patents

Optical transmission system and optical transmission method Download PDF

Info

Publication number
JP3997842B2
JP3997842B2 JP2002166800A JP2002166800A JP3997842B2 JP 3997842 B2 JP3997842 B2 JP 3997842B2 JP 2002166800 A JP2002166800 A JP 2002166800A JP 2002166800 A JP2002166800 A JP 2002166800A JP 3997842 B2 JP3997842 B2 JP 3997842B2
Authority
JP
Japan
Prior art keywords
light
optical
optical fiber
transmission line
fiber transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002166800A
Other languages
Japanese (ja)
Other versions
JP2004015480A (en
Inventor
淳 黒島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002166800A priority Critical patent/JP3997842B2/en
Publication of JP2004015480A publication Critical patent/JP2004015480A/en
Application granted granted Critical
Publication of JP3997842B2 publication Critical patent/JP3997842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光信号のラマン増幅作用を用いた光伝送装置、光伝送システム及び光伝送方法に関する。
【0002】
【従来の技術】
近年、インターネットの普及等により、高速大容量を可能とする光通信回線を用いた海底光ケーブルによる大陸間の長距離伝送が盛んに行われるようになっている。それに伴い、伝送距離を効率的に伸ばす技術が必要とされている。
【0003】
長距離伝送を実現するためには、伝送に伴って減衰していく信号光を、光のまま直接増幅することが有効である。その一つとして、伝送路の途中にエルビウムドープドファイバ(以下EDFと記す)を設置し、励起光を供給することで、光信号を直接増幅する技術が知られている。また、光伝送路自体を増幅媒体として、信号光より約100nm短波長の励起光を信号光と同時に伝送路に入力することにより、伝送路中にラマン散乱という物理現象を起こさせて、信号光を直接増幅するラマン増幅技術も知られている(例えば、特開平10−022931号参照)。ラマン増幅による光増幅は、光ファイバ伝送路に対して伝播する信号光の進行方向とは逆方向に励起光を入射させることが多い。
【0004】
図4に従来の増幅技術を用いた遠隔励起方式の光伝送装置及び光伝送システムの例を示す。このシステムでは、上り/下りの主信号経路51a,51bに対して、送信側から順に、送信器52a,52b、EDF53a,53b、光カプラ54a,54b、励起光源55a,55b及び受信器56a,56bが配置されている。上り側について着目すると、励起光源55aより出力された励起光58bは光カプラ54aを介して主信号経路51aに導かれ、まずEDF53aまでの主信号経路51aにて上述したラマン増幅が行われ、次にEDF53bを増幅媒体とした光増幅(以下EDF増幅と記す)が行われ、さらに送信器52aまでの主信号経路51aによりラマン増幅が行われる。なお、下りも同様である。このような遠隔励起方式の光増幅技術の特徴としては、光よりも伝送による減衰が大きい電気を中計器に対して供給する必要がなくなり、またアクティブな光源を中継器内に設置しなくて済むため、保守の面でも有効である。
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来の遠隔励起方式の構成では、一つの遠隔励起用の励起光源によっていたため、突発的な事故等によって、この励起光源がダウンした場合、通信が途絶えてしまうという問題があった。これを解決するために、受信側に励起光源を複数設置しておくことや、送信器側にも励起光源を設置して双方向で遠隔励起を行う手段もあるが、高価な励起光源を複数必要とすることから、コストアップとなる問題があった。
【0006】
本発明では、高価な励起光源を増設することなく、突発的に励起光源がダウンした場合においても、通信が遮断してしまうことがない遠隔励起方式の光増幅技術を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の遠隔励起方式の光増幅技術では、ある励起光が、上り/下りの伝送路の片方だけでなく、両方の伝送路に供給されるようになっていることを特徴としている。具体的には、本発明では、上り/下りの伝送路に対して、励起光が他方の伝送路に供給されるように、経路途中に励起光が伝播する経路が設けられていることを特徴とする。
【0008】
【発明の実施の形態】
次に、本発明の光増幅技術の実施の形態について、図面を参照して詳細に説明する。
【0009】
〔第1実施形態〕
図1に、本発明の第1の実施形態を示す。第1の実施形態による本発明は、上り/下りの対向する主信号経路1,2に対して、送信側から順に、送信器3,10、WDMカプラ4,11、WDMカプラ5,12、EDF6,13、WDMカプラ7,14,励起光源8,15及び受信器9,16が配置されている。また、WDMカプラ4とWDMカプラ12、WDMカプラ5とWDMカプラ11は、それぞれ励起光が伝播するように励起光経路17,18が設けられている。
【0010】
次に、上記構成の第1実施例の動作について説明する。主信号経路1において、送信器3から出力された信号光30は、WDMカプラ4及びWDMカプラ5を透過し、EDF6へ挿入された後、WDMカプラ7を透過して受信器9で受信される。同様に、対向する主信号経路2において、送信器10から出力された信号光31は、WDMカプラ11及び12を透過し、EDF13へ挿入された後、WDMカプラ14を透過して受信器16で受信される。また、励起光源8からWDMカプラ7を介して主信号経路1へ供給された励起光32は、EDF6へ挿入された後、WDMカプラ5にて選択的に分岐され、励起光経路18を通って、WDMカプラ11を介して反対側の主信号経路2へ挿入される。同様に、励起光源15からWDMカプラ14を介して主信号経路2へ供給された励起光33は、EDF13へ挿入された後、WDMカプラ12にて選択的に分岐され、励起光経路17を通って、WDMカプラ4を介して反対側の主信号経路1へ挿入される。これによって、信号光30は、送信器3からWDMカプラ4までの区間については、励起光33によってラマン増幅が行われ、WDMカプラ5からEDF6までの区間とEDF6からWDMカプラ7までの区間については、励起光32によってラマン増幅が行われ、EDF6の区間についてはEDF増幅が行われる。同様に、信号光31は、送信器10からWDMカプラ11までの区間については、励起光31によってラマン増幅が行われ、WDMカプラ12からEDF13までの区間とEDF13からWDMカプラ14までの区間については、励起光33によってラマン増幅が行われ、EDF13の区間についてはEDF増幅が行われる。
【0011】
よって、図1における主信号経路1に着目すると、送信器3から出力された信号光30は、励起光源8からの励起光32及び励起光源15からの励起光33により、区間を分けて光増幅されている。また、主信号経路2においても、信号光31は、励起光32及び励起光33により、区間を分けて光増幅されている。信号光及び励起光は、上り/下り共に同じ波長にしても良いし、上り/下りで波長を多少変えても良い。
【0012】
〔第2実施形態〕
図2に、本発明の第2の実施形態を示す。なお、第1の実施形態と変更がない部品については、同じ図示番号としている。第2の実施形態による本発明は、第1の実施形態とほぼ同じ構成であるが、WDMカプラ4及び11の向きを、WDMカプラ19及び20に示すように、図1と反対方向に変えている。これにより、励起光34は、WDMカプラ20により、主信号経路2に対して、第1の実施形態とは反対側に挿入される。同様に、励起光35は、WDMカプラ19により、主信号経路1に対して、第1の実施形態とは反対側に挿入される。なお、信号光34と35、励起光36と37は、上りと下りで波長が多少変えられている。
【0013】
第2の実施形態においても、第1の実施形態と同様の増幅作用が得られ、信号光34は、励起光36でEDF増幅が行われると共に、励起光36,37の両方でラマン増幅が行われ、信号光35は、励起光37でEDF増幅が行われると共に、励起光36,37の両方でラマン増幅が行われる。
【0014】
〔第3実施形態〕
図3に、本発明の第3の実施形態を示す。なお、第1の実施形態と変更がない部品については同じ図示番号としている。第3の実施形態による本発明は、励起光経路に接続されたWDMカプラの代わりに光サーキュレータを用いたことが特徴である。これにより、励起光40は、光サーキュレータ21により、励起光経路23通って、光サーキュレータ22によって主信号経路2に対して、送信器10側へ挿入される。同様に、励起光41は、光サーキュレータ22により、励起光経路23を通って、光サーキュレータ21によって主信号経路1に対して、送信器3側へ挿入される。
【0015】
第3の実施形態においても、第1の実施形態と同様の増幅作用が得られ、信号光38は、励起光40でEDF増幅が行われると共に、励起光40,41の両方で区間を分けてラマン増幅が行われ、信号光39は、励起光41でEDF増幅が行われると共に、励起光40,41の両方で区間を分けてラマン増幅が行われる。信号光及び励起光は、上り/下り共に同じ波長にしても良いし、上り/下りで波長を多少変えても良い。
【0016】
なお、送信器や励起光源の前段には、適宜アイソレータを設置しても良い。波長の例としては、信号光に1550nm帯のWDM波長、励起光に1450nm帯の波長を用いている。
【0017】
【発明の効果】
以上説明したように、本発明の遠隔励起方式の光増幅技術では、上り/下りの伝送路において、それぞれに設置された励起光源からの励起光により、区間を分けて光増幅しているため、どちらか一方の励起光源において、出力低下が発生した場合においても、もう一方の励起光源によって、励起光の出力をアップする等の救済が可能となる。さらに、送信器が出力低下した場合においても、2つの励起光源によって救済ができるため、救済できる範囲が拡大できる。このように本発明では、高価な励起光源を新たに設置することなく、高い信頼性の光伝送システムを構築することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の構成を示す図である。
【図2】本発明の第2の実施の形態の構成を示す図である。
【図3】本発明の第3の実施の形態の構成を示す図である。
【図4】従来の遠隔励起方式の光増幅技術を用いた光伝送システムの構成を示す図である。
【符号の説明】
1,2 主信号経路
3,10 送信器
4,5,11,12 WDMカプラ
6,13 EDF
7,14 WDMカプラ
8,15 励起光源
9,16 受信器
17,18 励起光経路
21,22 光サーキュレータ
23 励起光経路
30,31,34,35,38,39 信号光
32,33,36,37,40,41 励起光
51 主信号経路
52 送信器
53 EDF
54 WDMカプラ
55 励起光源
56 受信器
57 信号光
58 励起光
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical transmission device, an optical transmission system, and an optical transmission method using a Raman amplification function of an optical signal.
[0002]
[Prior art]
In recent years, due to the spread of the Internet and the like, long-distance transmission between continents by submarine optical cables using optical communication lines enabling high-speed and large-capacity has been actively performed. Along with this, a technique for efficiently extending the transmission distance is required.
[0003]
In order to realize long-distance transmission, it is effective to directly amplify the signal light that is attenuated along with the transmission as it is. As one of them, a technique is known in which an erbium-doped fiber (hereinafter referred to as EDF) is installed in the middle of a transmission line, and pumping light is supplied to directly amplify an optical signal. In addition, by using the optical transmission line itself as an amplifying medium and inputting excitation light having a wavelength of about 100 nm shorter than the signal light into the transmission line at the same time as the signal light, a physical phenomenon called Raman scattering is caused in the transmission line, and the signal light A Raman amplification technique for directly amplifying the signal is also known (see, for example, Japanese Patent Laid-Open No. 10-022931). In optical amplification by Raman amplification, excitation light is often incident in a direction opposite to the traveling direction of signal light propagating through an optical fiber transmission line.
[0004]
FIG. 4 shows an example of a remote excitation type optical transmission apparatus and optical transmission system using a conventional amplification technique. In this system, transmitters 52a and 52b, EDFs 53a and 53b, optical couplers 54a and 54b, pump light sources 55a and 55b, and receivers 56a and 56b are sequentially arranged from the transmission side with respect to the upstream / downstream main signal paths 51a and 51b. Is arranged. Focusing on the upstream side, the pumping light 58b output from the pumping light source 55a is guided to the main signal path 51a through the optical coupler 54a. First, the above-described Raman amplification is performed in the main signal path 51a up to the EDF 53a. Then, optical amplification using the EDF 53b as an amplification medium (hereinafter referred to as EDF amplification) is performed, and further, Raman amplification is performed by the main signal path 51a to the transmitter 52a. The same applies to descending. As a feature of such a remote excitation type optical amplification technique, it is not necessary to supply electricity to the middle meter, which is more attenuated by transmission than light, and it is not necessary to install an active light source in the repeater. Therefore, it is also effective in terms of maintenance.
[0005]
[Problems to be solved by the invention]
However, in such a conventional remote excitation system configuration, there is a problem that communication is interrupted if this excitation light source goes down due to a sudden accident or the like because there is one excitation light source for remote excitation. It was. In order to solve this problem, there are means to install multiple excitation light sources on the receiving side and remote excitation in both directions by installing an excitation light source on the transmitter side. There was a problem of increasing the cost because it was necessary.
[0006]
An object of the present invention is to provide a remote excitation type optical amplification technique that does not interrupt communication even when the excitation light source suddenly goes down without adding an expensive excitation light source. .
[0007]
[Means for Solving the Problems]
The remote pumping optical amplification technique of the present invention is characterized in that a certain pumping light is supplied not only to one of the upstream / downstream transmission paths but also to both transmission paths. Specifically, the present invention is characterized in that a path through which the excitation light propagates is provided in the middle of the path so that the excitation light is supplied to the other transmission path with respect to the upstream / downstream transmission path. And
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the optical amplification technique of the present invention will be described in detail with reference to the drawings.
[0009]
[First Embodiment]
FIG. 1 shows a first embodiment of the present invention. In the present invention according to the first embodiment, transmitters 3 and 10, WDM couplers 4 and 11, WDM couplers 5 and 12, and EDF 6 are arranged in order from the transmission side with respect to main signal paths 1 and 2 facing upstream and downstream. 13, WDM couplers 7, 14, excitation light sources 8, 15 and receivers 9, 16 are arranged. The WDM coupler 4 and the WDM coupler 12 and the WDM coupler 5 and the WDM coupler 11 are provided with pumping light paths 17 and 18 so that the pumping light propagates, respectively.
[0010]
Next, the operation of the first embodiment having the above configuration will be described. In the main signal path 1, the signal light 30 output from the transmitter 3 passes through the WDM coupler 4 and WDM coupler 5, is inserted into the EDF 6, and then passes through the WDM coupler 7 and is received by the receiver 9. . Similarly, in the opposing main signal path 2, the signal light 31 output from the transmitter 10 passes through the WDM couplers 11 and 12, is inserted into the EDF 13, passes through the WDM coupler 14, and then passes through the receiver 16. Received. The pumping light 32 supplied from the pumping light source 8 to the main signal path 1 via the WDM coupler 7 is inserted into the EDF 6 and then selectively branched by the WDM coupler 5 and passes through the pumping light path 18. The main signal path 2 on the opposite side is inserted through the WDM coupler 11. Similarly, the pumping light 33 supplied from the pumping light source 15 to the main signal path 2 via the WDM coupler 14 is inserted into the EDF 13 and then selectively branched by the WDM coupler 12 and passes through the pumping light path 17. And inserted into the main signal path 1 on the opposite side via the WDM coupler 4. As a result, the signal light 30 is subjected to Raman amplification by the pumping light 33 in the section from the transmitter 3 to the WDM coupler 4, and the section from the WDM coupler 5 to the EDF 6 and the section from the EDF 6 to the WDM coupler 7. Then, Raman amplification is performed by the excitation light 32, and EDF amplification is performed for the section of EDF6. Similarly, the signal light 31 is subjected to Raman amplification by the pumping light 31 in the section from the transmitter 10 to the WDM coupler 11, and the section from the WDM coupler 12 to the EDF 13 and the section from the EDF 13 to the WDM coupler 14. The Raman amplification is performed by the excitation light 33, and the EDF amplification is performed for the section of the EDF 13.
[0011]
Accordingly, focusing on the main signal path 1 in FIG. 1, the signal light 30 output from the transmitter 3 is divided into sections by the excitation light 32 from the excitation light source 8 and the excitation light 33 from the excitation light source 15. Has been. Also in the main signal path 2, the signal light 31 is optically amplified by dividing the section by the excitation light 32 and the excitation light 33. The signal light and the pumping light may have the same wavelength for both upstream and downstream, or the wavelengths may be slightly changed between upstream and downstream.
[0012]
[Second Embodiment]
FIG. 2 shows a second embodiment of the present invention. In addition, about the component which is not changed with 1st Embodiment, it has the same illustration number. The present invention according to the second embodiment has substantially the same configuration as that of the first embodiment, but the direction of the WDM couplers 4 and 11 is changed to the opposite direction as shown in FIG. Yes. As a result, the pump light 34 is inserted into the main signal path 2 on the opposite side of the first embodiment by the WDM coupler 20. Similarly, the pump light 35 is inserted by the WDM coupler 19 on the opposite side to the first embodiment with respect to the main signal path 1. Note that the wavelengths of the signal lights 34 and 35 and the excitation lights 36 and 37 are slightly changed between upstream and downstream.
[0013]
Also in the second embodiment, the same amplification action as in the first embodiment is obtained, and the signal light 34 is subjected to EDF amplification by the excitation light 36 and Raman amplification is performed by both the excitation lights 36 and 37. In addition, the signal light 35 is subjected to EDF amplification by the excitation light 37 and Raman amplification by both the excitation light 36 and 37.
[0014]
[Third Embodiment]
FIG. 3 shows a third embodiment of the present invention. In addition, the same illustration number is used about the component which is not changed with 1st Embodiment. The present invention according to the third embodiment is characterized in that an optical circulator is used instead of the WDM coupler connected to the pumping light path. Thus, the pumping light 40 is inserted by the optical circulator 21 through the pumping light path 23 and into the transmitter 10 side by the optical circulator 22 with respect to the main signal path 2. Similarly, the pumping light 41 is inserted into the transmitter 3 side by the optical circulator 22 through the pumping light path 23 and by the optical circulator 21 with respect to the main signal path 1.
[0015]
Also in the third embodiment, the same amplification action as in the first embodiment is obtained, and the signal light 38 is subjected to EDF amplification with the excitation light 40 and is divided into sections with both the excitation light 40 and 41. Raman amplification is performed, and the signal light 39 is subjected to EDF amplification by the excitation light 41 and is also divided by both the excitation light 40 and 41 and Raman amplification is performed. The signal light and the pumping light may have the same wavelength for both upstream and downstream, or the wavelengths may be slightly changed between upstream and downstream.
[0016]
It should be noted that an isolator may be appropriately installed in front of the transmitter and the excitation light source. As an example of the wavelength, a WDM wavelength of 1550 nm band is used for the signal light, and a wavelength of 1450 nm band is used for the excitation light.
[0017]
【The invention's effect】
As described above, in the remote pumping optical amplification technology of the present invention, in the upstream / downstream transmission path, the light is divided into sections by the pumping light from the pumping light source installed in each, Even when the output of one of the pumping light sources is reduced, the other pumping light source can provide relief such as increasing the output of the pumping light. Furthermore, even when the output of the transmitter is reduced, the range that can be repaired can be expanded because the two pumping light sources can be used for repair. Thus, according to the present invention, it is possible to construct a highly reliable optical transmission system without newly installing an expensive pumping light source.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first exemplary embodiment of the present invention.
FIG. 2 is a diagram showing a configuration of a second exemplary embodiment of the present invention.
FIG. 3 is a diagram showing a configuration of a third exemplary embodiment of the present invention.
FIG. 4 is a diagram showing a configuration of an optical transmission system using a conventional remote excitation type optical amplification technique.
[Explanation of symbols]
1, 2 Main signal path 3, 10 Transmitter 4, 5, 11, 12 WDM coupler 6, 13 EDF
7, 14 WDM coupler 8, 15 Excitation light source 9, 16 Receiver 17, 18 Excitation light path 21, 22 Optical circulator 23 Excitation light path 30, 31, 34, 35, 38, 39 Signal light 32, 33, 36, 37 40, 41 Excitation light 51 Main signal path 52 Transmitter 53 EDF
54 WDM coupler 55 excitation light source 56 receiver 57 signal light 58 excitation light

Claims (8)

第1の光ファイバ伝送路は、
第1の信号光を出力する第1の送信器と、
出力された前記第1の信号光を伝播する第1の主信号経路と、
前記第1の信号光に対してラマン増幅を行う第1の励起光を供給する第1の励起光源と、
前記第1の信号光を受信する第1の受信器とを備えており、
第2の光ファイバ伝送路は、
第2の信号光を出力する第の送信器と、
出力された前記第2の信号光を伝播する第2の主信号経路と、
前記第2の信号光に対してラマン増幅を行う第2の励起光を供給する第2の励起光源と、
前記第2の信号光を受信する第2の受信器とを備えており、
前記第1の光ファイバ伝送路と前記第2の光ファイバ伝送路の間には、
前記第1の光ファイバ伝送路から前記第1の励起光を取り出す第1の手段と、
前記第2の光ファイバ伝送路に前記第1の励起光を供給する第2の手段と、
前記第2の光ファイバ伝送路から前記第2の励起光を取り出す第3の手段と、
前記第1の光ファイバ伝送路に前記第2の励起光を供給する第4の手段と
を備えたことを特徴とする光伝送システム。
The first optical fiber transmission line is
A first transmitter for outputting a first signal light;
A first main signal path for propagating the output first signal light;
A first excitation light source that supplies first excitation light that performs Raman amplification on the first signal light;
A first receiver for receiving the first signal light,
The second optical fiber transmission line is
A second transmitter for outputting a second signal light,
A second main signal path for propagating the output second signal light;
A second excitation light source for supplying second excitation light for performing Raman amplification on the second signal light;
A second receiver for receiving the second signal light,
Between the first optical fiber transmission line and the second optical fiber transmission line,
First means for extracting the first excitation light from the first optical fiber transmission line;
Second means for supplying the first pumping light to the second optical fiber transmission line;
Third means for extracting the second pumping light from the second optical fiber transmission line;
An optical transmission system comprising: fourth means for supplying the second pumping light to the first optical fiber transmission line.
前記第1乃至第4の手段が光カプラであることを特徴とする請求項に記載の光伝送システム。The optical transmission system according to claim 1 , wherein the first to fourth means are optical couplers. 前記光カプラがWDMカプラであることを特徴とする請求項に記載の光伝送システム。The optical transmission system according to claim 2 , wherein the optical coupler is a WDM coupler. 前記第2の手段の光カプラが前記第2の送信器に向けて前記第1の励起光を供給し、前記第4の手段の光カプラが前記第1の送信器に向けて前記第2の励起光を供給することを特徴とする請求項2又は3に記載の光伝送システム。The optical coupler of the second means supplies the first pumping light toward the second transmitter, and the optical coupler of the fourth means toward the first transmitter 4. The optical transmission system according to claim 2, wherein pumping light is supplied. 前記第1乃至第4の手段が光サーキュレータであることを特徴とする請求項に記載の光伝送システム。The optical transmission system according to claim 1 , wherein the first to fourth means are optical circulators. 前記1及び第4の手段が同一の光サーキュレータで行われ、前記第2及び第3の手段が同一の光サーキュレータで行われることを特徴とする請求項1又は5に記載の光伝送システム。Said first and fourth means are performed in the same optical circulator, an optical transmission system according to claim 1 or 5 wherein the second and third means is characterized by being performed in the same optical circulator. 前記光ファイバ伝送路には、希土類添加光ファイバが備えられていることを特徴とする請求項1乃至6のいずれかに記載の光伝送システム。The optical transmission system according to any of claims 1 to 6 wherein the optical fiber transmission path, characterized in that is provided with a rare earth-doped optical fiber. 第1の光ファイバ伝送路は、
第1の信号光を出力する第1の送信器と、
出力された前記第1の信号光を伝播する第1の主信号経路と、
前記第1の信号光に対してラマン増幅を行う第1の励起光を供給する第1の励起光源と、
前記第1の信号光を受信する第1の受信器とを備えており、
第2の光ファイバ伝送路は、
第2の信号光を出力する第の送信器と、
出力された前記第2の信号光を伝播する第2の主信号経路と、
前記第2の信号光に対してラマン増幅を行う第2の励起光を供給する第2の励起光源と、
前記第2の信号光を受信する第2の受信器とを備えており、
前記第1の光ファイバ伝送路と前記第2の光ファイバ伝送路の間には、
前記第1の光ファイバ伝送路から前記第1の励起光を取り出す第1の手段と、
前記第2の光ファイバ伝送路に前記第1の励起光を供給する第2の手段と、
前記第2の光ファイバ伝送路から前記第2の励起光を取り出す第3の手段と、
前記第1の光ファイバ伝送路に前記第2の励起光を供給する第4の手段と
を備えたことを特徴とする光伝送方法。
The first optical fiber transmission line is
A first transmitter for outputting a first signal light;
A first main signal path for propagating the output first signal light;
A first excitation light source that supplies first excitation light that performs Raman amplification on the first signal light;
A first receiver for receiving the first signal light,
The second optical fiber transmission line is
A second transmitter for outputting a second signal light,
A second main signal path for propagating the output second signal light;
A second excitation light source for supplying second excitation light for performing Raman amplification on the second signal light;
A second receiver for receiving the second signal light,
Between the first optical fiber transmission line and the second optical fiber transmission line,
First means for extracting the first excitation light from the first optical fiber transmission line;
Second means for supplying the first pumping light to the second optical fiber transmission line;
Third means for extracting the second pumping light from the second optical fiber transmission line;
And a fourth means for supplying the second pumping light to the first optical fiber transmission line.
JP2002166800A 2002-06-07 2002-06-07 Optical transmission system and optical transmission method Expired - Lifetime JP3997842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166800A JP3997842B2 (en) 2002-06-07 2002-06-07 Optical transmission system and optical transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166800A JP3997842B2 (en) 2002-06-07 2002-06-07 Optical transmission system and optical transmission method

Publications (2)

Publication Number Publication Date
JP2004015480A JP2004015480A (en) 2004-01-15
JP3997842B2 true JP3997842B2 (en) 2007-10-24

Family

ID=30434246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166800A Expired - Lifetime JP3997842B2 (en) 2002-06-07 2002-06-07 Optical transmission system and optical transmission method

Country Status (1)

Country Link
JP (1) JP3997842B2 (en)

Also Published As

Publication number Publication date
JP2004015480A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US20060176545A1 (en) Optical transmission system, optical repeater, and optical transmission method
JP3808766B2 (en) Raman amplifier and optical transmission system
JP2001223420A (en) Raman amplifier, optical transmission system and optical fiber
US6768578B1 (en) Optical amplifier for amplifying a wavelength division multiplexed (WDM) light including light in different wavelength bands
EP0851617A2 (en) Optical arrangement for amplifying WDM signals
JP3779691B2 (en) Broadband erbium-doped optical fiber amplifier and wavelength division multiplexing optical transmission system employing the same
US7034991B2 (en) Optical amplification and transmission system
JPH08335913A (en) Optical amplification monitor
JPWO2018193835A1 (en) Bidirectional optical transmission system and bidirectional optical transmission method
JP2002164845A (en) Wavelength division multiplexing optical transmitter and receiver, wavelength division multiplexing optical repeater, and wavelength division multiplexing optical communication system
US6934078B2 (en) Dispersion-compensated erbium-doped fiber amplifier
EP1643664B1 (en) Optical fiber communication system using remote pumping
KR100396510B1 (en) Dispersion-compensated optical fiber amplifier
JP3997842B2 (en) Optical transmission system and optical transmission method
US6748152B2 (en) Optical transmission system
US20080074733A1 (en) Raman amplifier and optical communication system including the same
JP2714611B2 (en) Optical repeater and optical transmission network using the same
EP4262109A1 (en) Optical communication link with remote optically pumped amplifier
JP2000077757A (en) Optical amplifier, optical transmission device and system thereof
WO2023058175A1 (en) Optical distributed amplifier, optical distributed amplification system, and optical distributed amplification method
JP4085746B2 (en) Optical transmission system
JP2001345759A (en) Optical repeater
WO2005124446A1 (en) Optical amplifier and optical communication system
JP4777831B2 (en) Optical transmission line and optical transmission system using the same
JPWO2018168593A1 (en) Optical amplification module and optical amplification method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Ref document number: 3997842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

EXPY Cancellation because of completion of term