JP3996830B2 - Method and apparatus for measuring critical current characteristics of superconducting wire - Google Patents

Method and apparatus for measuring critical current characteristics of superconducting wire Download PDF

Info

Publication number
JP3996830B2
JP3996830B2 JP2002278545A JP2002278545A JP3996830B2 JP 3996830 B2 JP3996830 B2 JP 3996830B2 JP 2002278545 A JP2002278545 A JP 2002278545A JP 2002278545 A JP2002278545 A JP 2002278545A JP 3996830 B2 JP3996830 B2 JP 3996830B2
Authority
JP
Japan
Prior art keywords
coil
voltage
superconducting wire
critical current
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278545A
Other languages
Japanese (ja)
Other versions
JP2004117082A (en
Inventor
健吾 大倉
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Original Assignee
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Sumitomo Electric Industries Ltd filed Critical International Superconductivity Technology Center
Priority to JP2002278545A priority Critical patent/JP3996830B2/en
Publication of JP2004117082A publication Critical patent/JP2004117082A/en
Application granted granted Critical
Publication of JP3996830B2 publication Critical patent/JP3996830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超電導線材の臨界電流特性を測定する方法および装置に関し、特に長尺状の超電導線材の臨界電流特性を測定する方法および装置に関するものである。
【0002】
【従来の技術】
高温超電導線材の臨界電流特性の評価をする場合、線材の端部またはその一部だけを測定する場合と、線材全長に亘り測定する場合との2種類がある。長尺状の線材を測定する場合、たとえば以下の特許文献1(特開平10−239260号公報)に開示された方法および装置が用いられる。
【0003】
図5は、特開平10−239260号公報に開示された超電導線材の臨界電流特性を測定する装置を示す模式図である。図5を参照して、測定装置110は、冷却槽107と、サプライリール111と、巻き取りリール112と、電極部113、114と、演算・制御用コンピュータ117と、測定部118とを主に備えている。
【0004】
サプライリール111に巻付けられた長尺状の超電導線材101は、巻取りリール112によって巻取られる。そしてサプライリール111と巻取りリール112との間にて、超電導線材101は冷却槽107内の液体窒素108中に浸漬される。これにより、超電導線材101の一部が液体窒素にて冷却されて超電導状態とされる。電流源106に電気的に接続された複数の電極114のそれぞれが超電導線材101の表面に押し付けられることにより超電導線材101に一定の電流が流される。この通電状態において、電圧計103に電気的に接続された複数の電極113の各々を超電導線材101の表面に押し付けることにより電圧が測定される。この後、サプライリール111と巻取りリール112とを回転させることによって超電導線材101を移動させ、超電導線材101の別の部分にて上記と同様にして電圧が測定される。このようにして測定された複数領域の電圧値より臨界電流特性が求められる。この臨界電流特性は、普通、電界強度(V/cm)により決定され、通常、10-6V/cmでの電流で決定される。
【0005】
【特許文献1】
特開平10−239260号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記の測定装置では、冷却槽107の長さに限界があるため線材101の長さがたとえば5m程度でありそれより長くすることは困難である。また、測定電圧は計測器に測定限界があるため通常1μV程度である。このため、測定できる電界強度(電圧/線材長さ)には限界がある。永久電流モードでは普通10-10V/cmの微小な電界強度を測定する必要があるが、従来の測定装置では、上記の理由により10-8V/cm程度の電界強度の測定が限界であった。このため、永久電流モードのコイル用線材特性を評価する場合、従来の測定方法では、測定精度が低く評価できないという問題点があった。
【0007】
また従来の測定装置では、電極113、114を線材101に押し付けるために線材101表面に傷が入り劣化する危険性があるという問題点もあった。
【0008】
さらに、電圧端子113が接触型であるため、はんだ付けに比べて測定感度が低いという問題点もあった。
【0009】
それゆえ本発明の目的は、永久電流モードのコイル用線材特性の評価においても測定精度が高く、かつ測定時に線材表面に傷が入ることがなく、かつ測定感度が高い超電導線材の臨界電流特性の測定方法および装置を提供することである。
【0010】
【課題を解決するための手段】
本発明の超電導線材の臨界電流特性を測定する方法は、測定対象である長尺状の超電導線材を渦巻状に巻線した第1コイルと金属線を巻線した第2コイルとを相互誘導が生じるように配置し、第1コイルに通電したときに第1コイルに発生するインダクタンス成分の電圧と、第2コイルに発生する逆極性の誘導電圧とを加算することにより第1コイルのインダクタンス成分の電圧をキャンセルした状態で、超電導線材の両端電圧を測定することで超電導線材の臨界電流特性を測定することを特徴とするものである。
【0011】
また本発明の超電導線材の臨界電流特性を測定する装置は、第2コイルとポテンショメータとを備えている。第2コイルは、測定対象である長尺状の超電導線材を渦巻状に巻線した第1コイルとの間で相互誘導が生じるように配置されており、かつ金属線を巻線したものである。ポテンショメータは、第1コイルに通電したときに第1コイルに発生するインダクタンス成分の電圧と、第2コイルに発生する逆極性の誘導電圧とを加算することにより第1コイルのインダクタンス成分の電圧をキャンセルするために第2コイルの両端に電気的に接続され、かつ中点タップを持つものである。ポテンショメータにより第1コイルのインダクタンス成分の電圧をキャンセルした状態で、超電導線材の両端電圧を測定することで超電導線材の臨界電流特性を測定できるように、この測定装置は構成されている。
【0012】
本発明の超電導線材の臨界電流特性を測定する方法および装置によれば、測定対象である長尺状の超電導線材を渦巻状にした状態で臨界電流特性を測定することができる。このため、超電導線材を直線状態として臨界電流特性を測定する従来例よりも、小型な装置で長尺の超電導線材の臨界電流特性を測定することが可能となる。よって、装置を従来例よりも大型化することなく永久電流モードに必要な10-10V/cmの微小な電界強度(電圧/線材長)を測定することが可能となる。
【0013】
また、測定対象である超電導線材のインダクタンス成分の電圧をキャンセルして超電導線材の臨界電流特性を測定することができる。このため、永久電流モードのような10-10V/cmの微小な電界強度を高い測定精度で測定することが可能となる。
【0014】
さらに、測定時に超電導線材に電極端子を押し付ける必要がないため、測定時に超電導線材表面に傷が入ることもなく、測定感度も高くすることができる。
【0015】
上記の超電導線材の臨界電流特性を測定する方法において好ましくは、測定対象である長尺状の超電導線材は、近似的に(BiXPb1-X2Sr2Ca2Cu3Yで表わされる相を含む酸化物超電導体を、銀を主体とする材質よりなる金属被覆材で被覆した構成を有する。
【0016】
本発明の測定方法は、このような構成の超電導線材の測定に適している。
上記の超電導線材の臨界電流特性を測定する装置において好ましくは、第1コイルの一方端末とポテンショメータの端末とが電気的に接続されており、第1コイルの他方端末とポテンショメータの中点タップとの各信号を増幅して出力するための直流アンプがさらに備えられている。
【0017】
このような構成を備えることにより、第1コイルのインダクタンス成分の電圧をキャンセルすることが可能となる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について図に基づいて説明する。
【0019】
図1は、本発明の一実施の形態における超電導線材の臨界電流特性を測定する装置の構成を概略的に示す模式図である。図1を参照して、本実施の形態の測定装置10は、パンケーキコイル(第1コイル)1と、キャンセルコイル(第2コイル)2と、ポテンショメータ(電位差計)3と、直流アンプ4と、直流安定化電源6と、液体窒素断熱容器7とを主に有している。
【0020】
パンケーキコイル1は、図2に示すような多芯線構造の超電導線材30を、たとえばステンレス製の円盤のエッジ上にポリイミドテープなどの絶縁テープにより電気絶縁しながら渦巻状に巻線してなるコイルである。なお、図2に示す多芯線構造の超電導線材30は、複数本の酸化物超電導体(超電導フィラメント)31を金属被覆材32で被覆した構成を有している。酸化物超電導体31は、たとえば、近似的に(BiXPb1-X2Sr2Ca2Cu3Yで表わされる相を含む酸化物超電導体よりなっている。また金属被覆材32は、たとえば銀を主体とする材質よりなっており、具体的には銀シースである。
【0021】
またキャンセルコイル2は、たとえば0.2mmφのエナメル銅線を金属あるいは絶縁の巻枠に所定の巻数で巻線したものである。これらのパンケーキコイル1とキャンセルコイル2とは、互いに相互誘導が生じるように、液体窒素断熱容器7内に配置される。この液体窒素断熱容器7内には、液体窒素が充填可能であり、その液体窒素によりパンケーキコイルとキャンセルコイルとは冷却可能である。
【0022】
パンケーキコイル1の抵抗測定用に高温超電導線材の巻始めと巻終りに電圧タップ(引出し線)が設けられており、パンケーキコイル1の巻始めと巻終りの両端に直流安定化電源6が電気的に接続されている。一方、キャンセルコイル2の巻始めと巻終りにポテンショメータ3が電気的に接続されている。
【0023】
このポテンショメータ3は、パンケーキコイル1に通電したときにパンケーキコイル1に発生するインダクタンス成分の電圧と、キャンセルコイル2に発生する逆極性の誘導電圧とを加算することにより、パンケーキコイル1のインダクタンス成分の電圧をキャンセルするためにキャンセルコイル2の両端に電気的に接続されており、かつ中点タップを有している。
【0024】
またパンケーキコイル1の一方端末とポテンショメータ3の端末とが電気的に接続されており、パンケーキコイル1の他方端末とポテンショメータ3の中点タップとが直流アンプ4に電気的に接続されている。
【0025】
次に、本実施の形態における超電導線材の臨界電流特性の測定方法について説明する。
【0026】
まず、測定しようとする長尺状の酸化物超電導線材30(図2)を用いてパンケーキコイル1が準備される。このパンケーキコイル1は、キャンセルコイル2と相互誘導が生じるように液体窒素断熱容器7内に配置される。そして液体窒素断熱容器7内に液体窒素が充填され、パンケーキコイル1とキャンセルコイル2とが冷却されて超電導状態とされる。
【0027】
この状態で、直流安定化電源6によりパンケーキコイル1に電流Iが流される。このとき、パンケーキコイル1の巻始めと巻終りとの両端に接続された電圧タップに発生する電圧をV1とする。パンケーキコイル1への通電により、パンケーキコイル1およびキャンセルコイル2を貫くように磁束が発生し、これによりキャンセルコイル2の巻線端末には、レンツの法則によりパンケーキコイル1で発生する磁束を打消そうとする誘導起電力(誘導電圧)が発生する。この電圧の一部V2がポテンショメータ3により検出される。
【0028】
このパンケーキコイル1の電圧V1には、コイルのインダクタンスをLとするとL×dI/dtの電流スイープ速度に比例するインダクタンス成分の電圧VLと、超電導線材30に一定以上の電流を流すと発生する抵抗成分の電圧VRとが含まれている。一方、キャンセルコイル2の電圧V2は、パンケーキコイル1のインダクタンス成分の電圧VLと比例する逆符合(逆極性)の電圧となる。
【0029】
このため、ポテンショメータ3によりキャンセルコイル2の電圧V2の大きさを調整し、V2=−VLとし、そのキャンセルコイル2の電圧V2をパンケーキコイル1の電圧V1に加算することにより、パンケーキコイル1のインダクタンス成分の電圧VLがキャンセルコイル2の電圧V2によりキャンセルされ、パンケーキコイル1の抵抗成分の電圧VRだけが残る。このパンケーキコイル1の抵抗成分の電圧VRをパンケーキコイル1の線材長で割ることにより、電界強度が算出され、この電界強度により超電導線材の臨界電流特性を評価することができる。
【0030】
次に、パンケーキコイル1のインダクタンス成分の電圧VLをキャンセルコイル2の電圧V2によりキャンセルする方法について詳細に説明する。
【0031】
パンケーキコイル1に直流安定化電源6により通電すると、その電流値Iに対するパンケーキコイル1の抵抗成分の電圧VRの変化は、図3に示すようになる。つまり、図3を参照して、パンケーキコイル1に流す電流Iが小さいときは、超電導線材は超電導であるため、抵抗成分による電圧VRは0となる。このため、パンケーキコイル1に流す電流Iが小さいときには、パンケーキコイル1のインダクタンス成分の電圧VLのみが測定されることになる。
【0032】
このため、パンケーキコイル1に流す電流Iが小さいとき(抵抗成分の電圧VRが0のとき)に、パンケーキコイル1の電圧V1を測定し、ポテンショメータ3によりキャンセルコイル2の電圧V2の大きさを調整し、V2=−V1とすれば、V2=−VLとすることができる。よって、そのキャンセルコイル2の電圧V2をパンケーキコイル1の電圧V1に加算することにより、パンケーキコイル1のインダクタンス成分の電圧VLをキャンセルすることができる。このように、パンケーキコイル1の通電当初にポテンショメータ3を調整し、インダクタンス成分の電圧VLをキャンセルコイル2の電圧V2によりキャンセルして出力が0になるように調整することで、抵抗成分の電圧VRを正確に測定することが可能となる。
【0033】
また、この方法では、パンケーキコイル1に流す電流値Iを変化させながら、インダクタンス成分の電圧VLの変化分だけがキャンセルコイル2の電圧V2によりキャンセルされる。
【0034】
ここで、パンケーキコイル1に通電する電流値Iを一定値にキープして異なる電流値毎に何点かの電圧を測定することも可能である。この場合、パンケーキコイル1に流す電流Iとパンケーキコイル1の抵抗成分による電圧VRとの関係は図4に示すようになる。しかし、この方法による場合、抵抗成分による電圧VRが非常に小さいため、パンケーキコイル1に流す電流Iの微小なふらつきによってもインダクタンス成分の電圧VLが出てしまい、このインダクタンス成分の電圧VLが抵抗成分のVRよりも桁違いに大きいため、抵抗成分の電圧VRを正確に測ることができない。また、この方法により抵抗成分の電圧VRの変化を正しく測ろうとすると、非常に多くの電流値I毎に測定しなければならず、それぞれを安定に測るためには大変な時間と労力が必要である。
【0035】
そこで、本願発明者らは、パンケーキコイル1に流す電流値Iを順次変化させながら、その電流値の変化に伴うインダクタンス成分の電圧VLの変化分のみをキャンセルコイル2の電圧V2によりキャンセルする方法を考えた。よって、このキャンセルをするためには、上述したように、パンケーキコイル1の通電当初に、インダクタンス成分の電圧VLをキャンセルコイル2の電圧V2によりキャンセルして出力が0になるようにポテンショメータ3を調整する必要がある。
【0036】
なお、本実施の形態では、測定対象が変わるごとに、パンケーキコイル1を交換する必要がある。
【0037】
また、測定対象として図2に示すように多芯線構造の酸化物超電導線材について説明したが、測定対象は、1本の酸化物超電導体(超電導フィラメント)を金属被覆材で被覆した単芯線構造の酸化物超電導線材であってもよい。
【0038】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0039】
【発明の効果】
以上説明したように、本発明の超電導線材の臨界電流特性を測定する方法および装置によれば、測定対象である長尺状の超電導線材を渦巻状にした状態で臨界電流特性を測定することができる。このため、超電導線材を直線状態として臨界電流特性を測定する従来例よりも、小型な装置で長尺の超電導線材の臨界電流特性を測定することが可能となる。よって、装置を従来例よりも大型化することなく永久電流モードに必要な10-10V/cmの微小な電界強度(電圧/線材長)を測定することが可能となる。
【0040】
また、測定対象である超電導線材のインダクタンス成分の電圧をキャンセルして超電導線材の臨界電流特性を測定することができる。このため、永久電流モードのような10-10V/cmの微小な電界強度を高い測定精度で測定することが可能となる。
【0041】
さらに、測定時に超電導線材に電極端子を押し付ける必要がないため、測定時に超電導線材表面に傷が入ることもなく、測定感度も高くすることができる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態における超電導線材の臨界電流特性を測定する装置の構成を概略的に示す模式図である。
【図2】 測定対象である酸化物超電導線材の構成を示す部分断面斜視図である。
【図3】 パンケーキコイルに通電したときの電流値と抵抗成分による電圧VRとの関係を示す図である。
【図4】 電流を一定値にキープしてパンケーキコイルに通電したときの電流Iと抵抗成分による電圧VRとの関係を示す図である。
【図5】 従来の超電導線材の臨界電流特性を測定する装置の構成を概略的に示す模式図である。
【符号の説明】
1 パンケーキコイル、2 キャンセルコイル、3 ポテンショメータ、4 直流アンプ、6 直流安定化電源、7 液体窒素断熱容器、10 臨界電流特性の測定装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for measuring critical current characteristics of a superconducting wire, and more particularly to a method and apparatus for measuring critical current characteristics of a long superconducting wire.
[0002]
[Prior art]
When evaluating the critical current characteristics of a high-temperature superconducting wire, there are two types: measuring the end of the wire or only a part thereof, and measuring the entire length of the wire. When measuring a long wire, for example, the method and apparatus disclosed in the following Patent Document 1 (Japanese Patent Laid-Open No. 10-239260) are used.
[0003]
FIG. 5 is a schematic diagram showing an apparatus for measuring critical current characteristics of a superconducting wire disclosed in Japanese Patent Laid-Open No. 10-239260. Referring to FIG. 5, the measuring apparatus 110 mainly includes a cooling tank 107, a supply reel 111, a take-up reel 112, electrode parts 113 and 114, a calculation / control computer 117, and a measurement part 118. I have.
[0004]
The long superconducting wire 101 wound around the supply reel 111 is taken up by a take-up reel 112. The superconducting wire 101 is immersed in the liquid nitrogen 108 in the cooling tank 107 between the supply reel 111 and the take-up reel 112. As a result, a part of the superconducting wire 101 is cooled with liquid nitrogen to be in a superconducting state. Each of the plurality of electrodes 114 electrically connected to the current source 106 is pressed against the surface of the superconducting wire 101 so that a constant current flows through the superconducting wire 101. In this energized state, the voltage is measured by pressing each of the plurality of electrodes 113 electrically connected to the voltmeter 103 against the surface of the superconducting wire 101. Thereafter, the superconducting wire 101 is moved by rotating the supply reel 111 and the take-up reel 112, and the voltage is measured in the same manner as described above at another part of the superconducting wire 101. The critical current characteristic is obtained from the voltage values of the plurality of regions measured in this way. This critical current characteristic is usually determined by the electric field strength (V / cm) and is usually determined by the current at 10 −6 V / cm.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-239260
[Problems to be solved by the invention]
However, in the above measuring apparatus, since the length of the cooling bath 107 is limited, the length of the wire 101 is about 5 m, for example, and it is difficult to make it longer. The measurement voltage is usually about 1 μV because the measuring instrument has a measurement limit. For this reason, there is a limit to the electric field strength (voltage / wire length) that can be measured. In the permanent current mode, it is usually necessary to measure a minute electric field strength of 10 −10 V / cm. However, in the conventional measuring apparatus, the measurement of the electric field strength of about 10 −8 V / cm is the limit for the above reason. It was. For this reason, when evaluating the wire material characteristics for coils in the permanent current mode, there is a problem that the conventional measurement method cannot be evaluated with low measurement accuracy.
[0007]
Further, in the conventional measuring apparatus, there is a problem that there is a risk that the surface of the wire 101 is scratched and deteriorated because the electrodes 113 and 114 are pressed against the wire 101.
[0008]
Further, since the voltage terminal 113 is a contact type, there is a problem that measurement sensitivity is lower than that of soldering.
[0009]
Therefore, the object of the present invention is to provide a critical current characteristic of a superconducting wire that has high measurement accuracy even in evaluation of the wire property for a coil in a permanent current mode, does not damage the wire surface during measurement, and has high measurement sensitivity. It is to provide a measuring method and apparatus.
[0010]
[Means for Solving the Problems]
The method for measuring the critical current characteristics of the superconducting wire of the present invention is based on mutual induction of a first coil wound in a spiral shape and a second coil wound with a metal wire. The inductance component voltage generated in the first coil when the first coil is energized and the reverse polarity induced voltage generated in the second coil are added to the inductance component of the first coil. In the state where the voltage is canceled, the critical current characteristic of the superconducting wire is measured by measuring the voltage across the superconducting wire.
[0011]
The apparatus for measuring the critical current characteristic of the superconducting wire of the present invention includes a second coil and a potentiometer. The second coil is arranged so that mutual induction occurs between the first coil in which a long superconducting wire to be measured is wound in a spiral shape, and a metal wire is wound around the second coil. . The potentiometer cancels the voltage of the inductance component of the first coil by adding the voltage of the inductance component generated in the first coil when the first coil is energized and the induced voltage having the opposite polarity generated in the second coil. For this purpose, the second coil is electrically connected to both ends and has a midpoint tap. This measuring apparatus is configured so that the critical current characteristic of the superconducting wire can be measured by measuring the voltage across the superconducting wire while the potentiometer cancels the voltage of the inductance component of the first coil.
[0012]
According to the method and apparatus for measuring the critical current characteristic of the superconducting wire of the present invention, the critical current characteristic can be measured in a state where the long superconducting wire to be measured is spiral. For this reason, it becomes possible to measure the critical current characteristic of a long superconducting wire with a small device, compared to the conventional example in which the critical current characteristic is measured with the superconducting wire in a straight state. Therefore, it is possible to measure a small electric field strength (voltage / wire length) of 10 −10 V / cm necessary for the permanent current mode without increasing the size of the apparatus as compared with the conventional example.
[0013]
Moreover, the critical current characteristic of the superconducting wire can be measured by canceling the voltage of the inductance component of the superconducting wire to be measured. For this reason, it becomes possible to measure a minute electric field strength of 10 −10 V / cm as in the permanent current mode with high measurement accuracy.
[0014]
Furthermore, since it is not necessary to press the electrode terminal against the superconducting wire during measurement, the surface of the superconducting wire is not damaged during measurement, and the measurement sensitivity can be increased.
[0015]
In the preferred method of measuring the critical current characteristic of the superconducting wire, elongated superconducting wire is measured is approximately expressed by (Bi X Pb 1-X) 2 Sr 2 Ca 2 Cu 3 O Y The oxide superconductor containing the above-mentioned phase is covered with a metal coating made of a material mainly composed of silver.
[0016]
The measuring method of the present invention is suitable for measuring a superconducting wire having such a configuration.
Preferably, in the apparatus for measuring the critical current characteristics of the superconducting wire, one terminal of the first coil and the terminal of the potentiometer are electrically connected, and the other terminal of the first coil and the midpoint tap of the potentiometer A DC amplifier for amplifying and outputting each signal is further provided.
[0017]
By providing such a configuration, it is possible to cancel the voltage of the inductance component of the first coil.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a schematic diagram schematically showing a configuration of an apparatus for measuring critical current characteristics of a superconducting wire according to an embodiment of the present invention. Referring to FIG. 1, measuring apparatus 10 of the present embodiment includes pancake coil (first coil) 1, cancel coil (second coil) 2, potentiometer (potentiometer) 3, DC amplifier 4, and so on. The DC stabilized power source 6 and the liquid nitrogen heat insulating container 7 are mainly included.
[0020]
The pancake coil 1 is a coil formed by winding a superconducting wire 30 having a multi-core structure as shown in FIG. 2 in a spiral shape while being electrically insulated by an insulating tape such as a polyimide tape on the edge of a stainless steel disk, for example. It is. 2 has a configuration in which a plurality of oxide superconductors (superconducting filaments) 31 are covered with a metal coating material 32. Oxide superconductor 31 is, for example, consist of an oxide superconductor including a phase represented approximately by (Bi X Pb 1-X) 2 Sr 2 Ca 2 Cu 3 O Y. Moreover, the metal coating | covering material 32 consists of the material which mainly has silver, for example, and is specifically a silver sheath.
[0021]
The cancel coil 2 is formed by winding, for example, a 0.2 mmφ enameled copper wire around a metal or insulating winding frame with a predetermined number of turns. The pancake coil 1 and the cancel coil 2 are arranged in the liquid nitrogen heat insulating container 7 so that mutual induction occurs. The liquid nitrogen heat insulation container 7 can be filled with liquid nitrogen, and the pancake coil and the cancel coil can be cooled by the liquid nitrogen.
[0022]
A voltage tap (leader wire) is provided at the beginning and end of winding of the high-temperature superconducting wire for resistance measurement of the pancake coil 1, and a DC stabilized power source 6 is provided at both ends of the pancake coil 1 at the beginning and end of winding. Electrically connected. On the other hand, a potentiometer 3 is electrically connected to the start and end of winding of the cancel coil 2.
[0023]
The potentiometer 3 adds the voltage of the inductance component generated in the pancake coil 1 when the pancake coil 1 is energized and the reverse polarity induced voltage generated in the cancel coil 2, thereby In order to cancel the voltage of the inductance component, the cancel coil 2 is electrically connected to both ends, and has a midpoint tap.
[0024]
Further, one terminal of the pancake coil 1 and the terminal of the potentiometer 3 are electrically connected, and the other terminal of the pancake coil 1 and the midpoint tap of the potentiometer 3 are electrically connected to the DC amplifier 4. .
[0025]
Next, a method for measuring the critical current characteristic of the superconducting wire in the present embodiment will be described.
[0026]
First, the pancake coil 1 is prepared using the long oxide superconducting wire 30 (FIG. 2) to be measured. The pancake coil 1 is disposed in the liquid nitrogen heat insulating container 7 so that mutual induction with the cancel coil 2 occurs. The liquid nitrogen heat insulation container 7 is filled with liquid nitrogen, and the pancake coil 1 and the cancel coil 2 are cooled to a superconducting state.
[0027]
In this state, a current I is passed through the pancake coil 1 by the DC stabilized power supply 6. At this time, the voltage generated at the voltage taps connected to both ends of the start and end of the pancake coil 1 is defined as V1. By energizing the pancake coil 1, a magnetic flux is generated so as to pass through the pancake coil 1 and the cancel coil 2. As a result, the magnetic flux generated in the pancake coil 1 at the winding terminal of the cancel coil 2 according to Lenz's law. An induced electromotive force (inductive voltage) is generated to cancel A part V2 of this voltage is detected by the potentiometer 3.
[0028]
The voltage V1 of the pancake coil 1 is generated when a voltage V L of an inductance component proportional to a current sweep speed of L × dI / dt and a current of a certain level or more are passed through the superconducting wire 30 when the coil inductance is L. Voltage V R of the resistance component to be included. On the other hand, the voltage V2 of the cancel coil 2 is a reverse sign (reverse polarity) voltage proportional to the voltage V L of the inductance component of the pancake coil 1.
[0029]
For this reason, the potentiometer 3 adjusts the magnitude of the voltage V2 of the cancel coil 2 so that V2 = −V L, and the voltage V2 of the cancel coil 2 is added to the voltage V1 of the pancake coil 1. The voltage V L of the inductance component of 1 is canceled by the voltage V2 of the cancel coil 2, and only the voltage V R of the resistance component of the pancake coil 1 remains. By dividing the voltage V R of the resistance component of the pancake coils 1 in the wire length of the pancake coils 1, the electric field strength is calculated by the field strength it is possible to evaluate the critical current characteristic of a superconducting wire.
[0030]
Next, a method for canceling the voltage V L of the inductance component of the pancake coil 1 with the voltage V2 of the cancel coil 2 will be described in detail.
[0031]
Is energized by the DC stabilized power supply 6 to the pancake coils 1, the change of the voltage V R of the resistance components of the pancake coils 1 for the current value I is as shown in FIG. That is, referring to FIG. 3, when the current I flowing through the pancake coils 1 is small, the superconducting wire is superconducting, the voltage V R by the resistance component is zero. For this reason, when the current I flowing through the pancake coil 1 is small, only the voltage V L of the inductance component of the pancake coil 1 is measured.
[0032]
Therefore, when the current I flowing through the pancake coils 1 is small (when the voltage V R of the resistance component is 0), to measure the voltage V1 of the pancake coils 1, the magnitude of the voltage of the cancel coil 2 V2 potentiometer 3 If V2 = −V1 is adjusted, V2 = −V L can be obtained. Therefore, the voltage V L of the inductance component of the pancake coil 1 can be canceled by adding the voltage V2 of the cancel coil 2 to the voltage V1 of the pancake coil 1. In this way, the potentiometer 3 is adjusted at the beginning of energization of the pancake coil 1, and the voltage V L of the inductance component is canceled by the voltage V2 of the cancel coil 2 and adjusted so that the output becomes 0. The voltage V R can be accurately measured.
[0033]
Further, in this method, only the change in the inductance component voltage V L is canceled by the voltage V 2 of the cancel coil 2 while changing the current value I flowing through the pancake coil 1.
[0034]
Here, it is possible to keep the current value I applied to the pancake coil 1 at a constant value and measure several voltages for different current values. In this case, the relationship between the voltage V R by the resistance component of the current I and the pancake coils 1 to flow to the pancake coil 1 is as shown in FIG. However, when using this method, the voltage V R by the resistance component is very small, even by staggering minute of the current I flowing through the pancake coils 1 come out voltage V L of the inductance component, the voltage of the inductance component V since L is orders of magnitude greater than V R the resistance component, it is impossible to measure the voltage V R of the resistance components accurately. In addition, if a change in the voltage V R of the resistance component is to be measured correctly by this method, it must be measured for each very large current value I, and a great deal of time and labor are required to measure each of them stably. It is.
[0035]
Accordingly, the inventors of the present application cancel the change in the inductance component voltage V L due to the change in the current value I by the voltage V2 of the cancel coil 2 while sequentially changing the current value I flowing through the pancake coil 1. I thought of a way. Therefore, in order to cancel, as described above, the potentiometer 3 is configured so that the voltage V L of the inductance component is canceled by the voltage V2 of the cancel coil 2 and the output becomes 0 at the beginning of energization of the pancake coil 1. Need to be adjusted.
[0036]
In the present embodiment, it is necessary to replace the pancake coil 1 every time the measurement object changes.
[0037]
In addition, the oxide superconducting wire having a multi-core structure as shown in FIG. 2 has been described as a measurement target. However, the measurement target has a single-core structure in which one oxide superconductor (superconducting filament) is covered with a metal coating material. An oxide superconducting wire may be used.
[0038]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0039]
【The invention's effect】
As described above, according to the method and apparatus for measuring the critical current characteristic of the superconducting wire of the present invention, it is possible to measure the critical current characteristic in a spiral state of the long superconducting wire that is the measurement target. it can. For this reason, it becomes possible to measure the critical current characteristic of a long superconducting wire with a small device, compared to the conventional example in which the critical current characteristic is measured with the superconducting wire in a straight state. Therefore, it is possible to measure a small electric field strength (voltage / wire length) of 10 −10 V / cm necessary for the permanent current mode without increasing the size of the apparatus as compared with the conventional example.
[0040]
Moreover, the critical current characteristic of the superconducting wire can be measured by canceling the voltage of the inductance component of the superconducting wire to be measured. For this reason, it becomes possible to measure a minute electric field strength of 10 −10 V / cm as in the permanent current mode with high measurement accuracy.
[0041]
Furthermore, since it is not necessary to press the electrode terminal against the superconducting wire during measurement, the surface of the superconducting wire is not damaged during measurement, and the measurement sensitivity can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic diagram schematically showing a configuration of an apparatus for measuring critical current characteristics of a superconducting wire according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional perspective view showing a configuration of an oxide superconducting wire to be measured.
3 is a diagram showing the relationship between the voltage V R by the current value and the resistance component when energized pancake coils.
4 is a diagram showing the relationship between the voltage V R by the current I and the resistance component when energized pancake coils to keep the current constant value.
FIG. 5 is a schematic view schematically showing a configuration of a conventional apparatus for measuring critical current characteristics of a superconducting wire.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pancake coil, 2 Cancel coil, 3 Potentiometer, 4 DC amplifier, 6 DC stabilized power supply, 7 Liquid nitrogen heat insulation container, 10 Critical current characteristic measuring apparatus.

Claims (4)

測定対象である長尺状の超電導線材を渦巻状に巻線した第1コイルと金属線を巻線した第2コイルとを相互誘導が生じるように配置し、前記第1コイルに通電したときに前記第1コイルに発生するインダクタンス成分の電圧と、前記第2コイルに発生する逆極性の誘導電圧とを加算することにより前記第1コイルの前記インダクタンス成分の電圧をキャンセルした状態で、前記超電導線材の両端電圧を測定することで前記超電導線材の臨界電流特性を測定することを特徴とする、超電導線材の臨界電流特性を測定する方法。When a long coil as a measuring object is wound in a spiral shape and a second coil wound with a metal wire is arranged so that mutual induction occurs, and the first coil is energized The superconducting wire rod in a state where the voltage of the inductance component of the first coil is canceled by adding the voltage of the inductance component generated in the first coil and the induced voltage of the opposite polarity generated in the second coil. A method for measuring a critical current characteristic of a superconducting wire, wherein the critical current characteristic of the superconducting wire is measured by measuring a voltage between both ends of the superconducting wire. 測定対象である長尺状の前記超電導線材は、近似的に(BiXPb1-X2Sr2Ca2Cu3Yで表わされる相を含む酸化物超電導体を、銀を主体とする材質よりなる金属被覆材で被覆した構成を有することを特徴とする、請求項1に記載の超電導線材の臨界電流特性を測定する方法。Elongate the superconducting wire is measured is an oxide superconductor including a phase represented approximately by (Bi X Pb 1-X) 2 Sr 2 Ca 2 Cu 3 O Y, composed mainly of silver The method for measuring the critical current characteristics of a superconducting wire according to claim 1, wherein the method comprises a structure coated with a metal coating made of a material. 測定対象である長尺状の超電導線材を渦巻状に巻線した第1コイルとの間で相互誘導が生じるように配置された、金属線を巻線した第2コイルと、
前記第1コイルに通電したときに前記第1コイルに発生するインダクタンス成分の電圧と、前記第2コイルに発生する逆極性の誘導電圧とを加算することにより前記第1コイルの前記インダクタンス成分の電圧をキャンセルするために前記第2コイルの両端に電気的に接続され、かつ中点タップを持つポテンショメータとを備え、
前記ポテンショメータにより前記第1コイルの前記インダクタンス成分の電圧をキャンセルした状態で、前記超電導線材の両端電圧を測定することで前記超電導線材の臨界電流特性を測定できるよう構成されていることを特徴とする、超電導線材の臨界電流特性を測定する装置。
A second coil wound with a metal wire, arranged so that mutual induction occurs between the first coil wound in a spiral shape with a long superconducting wire to be measured;
The voltage of the inductance component of the first coil is obtained by adding the voltage of the inductance component generated in the first coil when the first coil is energized and the induced voltage having the opposite polarity generated in the second coil. A potentiometer electrically connected to both ends of the second coil and having a mid-point tap,
The critical current characteristic of the superconducting wire can be measured by measuring the voltage across the superconducting wire in a state where the voltage of the inductance component of the first coil is canceled by the potentiometer. A device that measures the critical current characteristics of superconducting wires.
前記第1コイルの一方端末と前記ポテンショメータの端末とが電気的に接続されており、
前記第1コイルの他方端末と前記ポテンショメータの前記中点タップとの各信号を増幅して出力するための直流アンプをさらに備えたことを特徴とする、請求項3に記載の超電導線材の臨界電流特性を測定する装置。
One terminal of the first coil and the terminal of the potentiometer are electrically connected;
The critical current of the superconducting wire according to claim 3, further comprising a direct current amplifier for amplifying and outputting each signal of the other end of the first coil and the midpoint tap of the potentiometer. A device that measures properties.
JP2002278545A 2002-09-25 2002-09-25 Method and apparatus for measuring critical current characteristics of superconducting wire Expired - Fee Related JP3996830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278545A JP3996830B2 (en) 2002-09-25 2002-09-25 Method and apparatus for measuring critical current characteristics of superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278545A JP3996830B2 (en) 2002-09-25 2002-09-25 Method and apparatus for measuring critical current characteristics of superconducting wire

Publications (2)

Publication Number Publication Date
JP2004117082A JP2004117082A (en) 2004-04-15
JP3996830B2 true JP3996830B2 (en) 2007-10-24

Family

ID=32273800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278545A Expired - Fee Related JP3996830B2 (en) 2002-09-25 2002-09-25 Method and apparatus for measuring critical current characteristics of superconducting wire

Country Status (1)

Country Link
JP (1) JP3996830B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557810B1 (en) 2004-07-19 2006-03-10 한국전기연구원 measuring apparatus for critical current of superconducting tape
JP2007178340A (en) * 2005-12-28 2007-07-12 Sumitomo Electric Ind Ltd Method for measuring critical current value of superconductive wire rod
KR101597028B1 (en) 2014-05-08 2016-02-24 두산중공업 주식회사 Estimation method and device of superconducting wire
CN106546838B (en) * 2016-09-22 2023-09-01 西南交通大学 Device and method for measuring critical current characteristics of high-temperature superconducting strip
CN108957056B (en) * 2018-09-13 2024-03-19 广东电网有限责任公司 Auxiliary device for measuring critical current under tensile stress of superconducting strip

Also Published As

Publication number Publication date
JP2004117082A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
Sohn et al. Controllability of the contact resistance of 2G HTS coil with metal insulation
JP3171131B2 (en) Method and apparatus for measuring critical current value of superconducting wire
JP4223744B2 (en) Critical current measurement method for high temperature superconducting wire
JP3996830B2 (en) Method and apparatus for measuring critical current characteristics of superconducting wire
JP2014149264A (en) Method and device for measuring alternating current loss of superconducting coil
JPH10197468A (en) Critical current measuring method of superconductor wire and measuring apparatus therefor
Kim et al. Contact resistance and current characteristics of NI HTS coils in low frequency AC method
US4050013A (en) Magnetic field probe which measures switching current of magnetic element at moment the element switches as measure of external field
JP2012248725A (en) Superconducting magnet device, and quenching detector and detection method of superconducting coil
JP4670839B2 (en) Method and apparatus for measuring loss of superconducting wire
Tsuda et al. Suitable excitation condition in overshooting process for suppressing magnetic field attenuation in Y-based coated conductor coils
Stoll Method of measuring alternating currents without disturbing the conducting circuit
Tominaka et al. Electrical properties of superconducting joint between composite conductors
Safran et al. AC loss characterization of single pancake BSCCO coils by measured different methods
JP2006329925A (en) Method and device for evaluating superconductor
EP3671247A1 (en) Method for evaluating the electrical properties of a hts superconductor
JPH1082807A (en) Superconductor and measuring method for its alternating current loss
Sumiyoshi et al. Sweep-rate dependences of losses in aluminum-stabilized superconducting conductors for the Large Helical Device
JP4310431B2 (en) Method and apparatus for measuring critical current density and current / voltage characteristics of superconducting thick film
Ilyin et al. Self field measurements by Hall sensors on the SeCRETS long sample CICCs in SULTAN
JPH0197876A (en) Critical current measuring method of superconductor wire
Kawabata et al. Current distributions at steady-state of superconducting cable conductors for AC use
Kawagoe et al. A measurement method of AC losses in superconducting coils using Poynting's vector method
Polak et al. Properties of an experimental coil wound with YBCO coated conductor carrying an AC current with frequencies up to 864 Hz
Kawabata et al. Measurement of Transport Characteristics in HTS Conductors With Large Current Capacity by Using an HTS Current Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees