JP3996553B2 - High thermal efficiency dewar - Google Patents

High thermal efficiency dewar Download PDF

Info

Publication number
JP3996553B2
JP3996553B2 JP2003175976A JP2003175976A JP3996553B2 JP 3996553 B2 JP3996553 B2 JP 3996553B2 JP 2003175976 A JP2003175976 A JP 2003175976A JP 2003175976 A JP2003175976 A JP 2003175976A JP 3996553 B2 JP3996553 B2 JP 3996553B2
Authority
JP
Japan
Prior art keywords
dewar
vacuum
inner tank
vacuum part
thermal efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003175976A
Other languages
Japanese (ja)
Other versions
JP2005012043A (en
Inventor
常広 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003175976A priority Critical patent/JP3996553B2/en
Publication of JP2005012043A publication Critical patent/JP2005012043A/en
Application granted granted Critical
Publication of JP3996553B2 publication Critical patent/JP3996553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、人体あるいは生物体から発生する磁場の計測を行うための医療用診断装置、脳磁計用材料の透磁率を測定するための物性測定装置、磁気的な信号伝送のインターフェイスのための通信装置等に用いるSQUID(Superconducting Quantum Interference Device :超伝導量子干渉デバイス)を格納することに適したデュワーに関するものであり、特に脳磁計用としても利用できる高熱効率デュワーに関するものである。
【0002】
【従来の技術】
極めて多くの低温物性研究や超伝導素子を用いた計測器等の冷却に、液体ヘリウムは不可欠である。また、人間の脳から発する磁界を検出する脳磁気計測システム等では脳の活動を高時空間分解能で非侵襲的に計測できるSQUID(超電導量子干渉計)が利用されており、このSQUIDの冷却にも液体ヘリウムが利用されている。
【0003】
上述した装置等では現在ほとんどの場合、冷却のための液体ヘリウムは蒸発した後、大気に放出する形となっており、上記システムに使用している従来からの液体へリュウム槽でも、同槽から蒸発したヘリウムガスは、ほとんどの場合大気に開放している。しかし、この場合1リットル当たり約1200円する高価なヘリウムを多量に無駄に消費するため経済的かつ資源的に問題があり、このため、蒸発したヘリウムガスを回収し再度液化して再利用したいという要求は極めて強いものがある。
このため、最近では、液体ヘリウム貯留槽で気化したヘリウムガスを全量回収し、システム内でヘリウムガス内の汚染物質を除去した後、再凝縮して液化する再循環システムが研究されている(特許文献1)。
【0004】
【特許文献1】
特願2003−25525
【0005】
【発明が解決しようとする課題】
上記出願中のヘリウム循環装置は、4KGM冷凍機を用い回収したヘリウムガスの大半を、冷却能力の大きい第1段目の冷凍サイクルを利用し、液体にすることなく、40K程度の低温ガスに冷却した後、デュワーのネックチューブ部に供給し、再度高温ガスとして回収することによって冷却能力を発揮させる。次に回収された1部のガスは、全冷凍サイクルを利用し、4Kの液体ヘリウムにして、別の供給ラインからデュワーに注入することによって、デュワーを4Kに保持する。同時に蒸発したヘリウムガスをできるだけ低温で回収し、直ちに液体ヘリウムに再凝縮して再度デュワーに戻すというシステムを採用している。
しかし上記装置は、デュワー内で発生した低温ヘリウムガスを回収する点、およびデュワー内への進入熱および発生熱を効率良く回収するという点に於いて改善すべき部分がある。
【0006】
そこで、本発明は、上記の問題点を解決するためになされたものであり、デュワー内で発生した低温ヘリウムガス(約4K)を効率良く回収し再凝縮冷凍器に送ることができるとともに、デュワー内に進入した熱やデュワー内で発生した熱を約40Kのヘリウムガスを利用して効率よく回収し、デュワー外に排出できる高熱効率デュワーを提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、本発明が採用した技術解決手段は、
外槽内に内槽を配置して両者の間を真空層とし、さらに内槽内に液体ヘリウムを貯留してなる高熱効率デュワーにおいて、前記内槽内上部にトランスファーチューブ挿入用の貫通孔を持つ第1真空部と第2真空部とを隙間を有して配置し前記貫通孔内にトランスファーチューブを配置し、さらに前記トランスファーチューブからの高温(約40K)のヘリウムガスが第1真空部と第2真空部の隙間に放出できる構造としたことを特徴とする高熱効率デュワーである。
また、外槽内に内槽を配置して両者の間を真空層とし、さらに内槽内に液体ヘリウムを貯留してなる高熱効率デュワーにおいて、前記真空層内に伝熱材を配置して、その一端を内槽壁に接続して熱アンカーとし、また、内槽内上部にはトランスファーチューブ挿入用の貫通孔を持つ第1真空部と第2真空部とを隙間を有して配置し、前記貫通孔内にトランスファーチューブを配置し、さらに前記トランスファーチューブからの高温(約40K)のヘリウムガスを第1真空部と第2真空部の隙間に開放し、第1真空部外周上部を冷却可能にしたことを特徴とする高熱効率デュワーである。
また、外槽内に内槽を配置して両者の間を真空層とし、さらに内槽内に液体ヘリウムを貯留してなる高熱効率デュワーにおいて、前記真空層内に伝熱材を配置して、その一端を内槽壁に接続して熱アンカーとし、また、内槽内にはトランスファーチューブ挿入用の貫通孔を持つ第1真空部と第2真空部とを備え、前記貫通孔内にトランスファーチューブを配置し、さらに前記トランスファーチューブからの高温(約40K)のヘリウムガスを第1真空部と第2真空部の間に開放し、第1真空部外周上部を冷却可能にしたことを特徴とする高熱効率デュワーである。
また、前記熱アンカーは40Kのヘリウムが吹き出す第1真空部と第2真空部の間よりも、上方に位置して設けたことを特徴とする高熱効率デュワーである。
また、前記各真空部は内槽壁との間に所定の隙間を持って配置したことを特徴とする高熱効率デュワーである。
また、前記第2真空部の下面を上方に向かって傾斜した円錐状として構成したことを特徴とする高熱効率デュワーである。
また、前記第2真空部の下面に、上方に向かって傾斜した円錐状をした別部材を取り付けたことを特徴とする高熱効率デュワーである。
【0008】
【発明の実施形態】
以下、図面を参照して本発明に係るデュワーの構成を説明すると、図1は脳磁計の断面図である。
図において、このデュワー100は、図示せぬ支持部材によって支持されており、SQUID素子を有するSQUIDセンサとその冷却媒体である液体ヘリウムLを収納可能な略円筒状の内槽1と、この内槽1を包囲するとともに内槽1との間に真空層3などの断熱層を形成し前記内槽1を断熱状態で保持する外槽2と、内層1および外槽2の上部を閉塞する閉塞部材4を備えている。図中、5はデュワー100を支持するための支持部材である。
【0009】
外槽2はFRPなどの断熱材で構成されており、外槽2と内槽1との間の真空層3の上部は断熱材6で密閉状態に閉じられている。さらに、外槽2の上部は閉塞部材4によって閉塞されており、閉塞部材4には熱アンカー9、16(後述する)で熱を奪い昇温したヘリウムガスを再凝縮冷凍機に送るライン7が接続されている。前記真空層3内には内槽1を囲むように形成された複数の伝熱材8a、8b、8cが配置され(本例では3個)ている。第1伝熱材8aおよび第2伝熱材8bは、一端が真空層3の下方において自由端となっており、他端が内槽1を形成する壁材の所定位置に熱的に接続され熱アンカー9を構成している。この熱アンカー9の取り付け位置は、本例では、後述する第1真空部10の中間部となっている(言い換えると前記熱アンカーは40Kのヘリウムが吹き出す第1真空部と第2真空部の間によりも、上方に位置して設けてある)。
。また第3伝熱材8cは内槽1の下面を覆う円筒状として形成され、上部が後述する第1真空部10と第2真空部11との間の隙間12に対応した位置の内槽壁に接続されて熱アンカー9を構成している。
【0010】
内槽1内には上下に第1真空部10と第2真空部11が配置され、それぞれの真空部10、11にはトランスファーチューブ13が貫通して配置されている。このトランスファーチューブ13は中心部に4Kの液体ヘリウムが、その外周には4Kのヘリウムガスが、さらにその外側には40Kのヘリウムガスが流れる構造となっている。
内槽1内の上部に配置される第1真空部10は、その外周と内槽1との間にトランスファーチューブ(後述する)から放出される高温ヘリウムガス(約40K)を上方に向かって流すための流路14を形成している。さらに第1真空部10内には伝熱材15が複数(本例では2枚)が配置され、それぞれが第1真空部の壁部に接続され熱アンカー16を形成している。第1真空部10の中心に貫通配置されるトランスファーチューブ13は第1真空部10と密着状態で配置されており、図示せぬ再凝縮冷凍機によって冷却された40Kのヘリウムガスが第1真空部10の下面付近から内槽1内に噴出するようになっている。
【0011】
また第1真空部10の下方には隙間12をもって第2真空部11が配置されている。前記第2真空部11は、その外周と内槽1との間には僅かな隙間17が形成されるように配置されており、さらに第2真空部11の下面18が外周から中心部に上方に向かって傾斜した円錐面で形成されている。この円錐面は第2真空部それ自体で構成することもできるが、第2真空部11の下面を平面とし、その平面に外周から中心部に上方に向かって傾斜した円錐面を有する別部材を取り付けて構成することも可能である。別部材の材料はウレタン等適宜材料を使用することができる。第2真空部11の中心部には前記4Kの液体ヘリウムと、4Kの低温ヘリウムガスを流すチューブからなるトランスファーチューブ13が隙間19をもって貫通配置されている。第2真空部10の下方にはSQUIDセンサ(不図示)を冷却するための液体ヘリウムLが貯留されている。
【0012】
上記構成のデュワー100では、トランスファーチューブ13の中心部の4Kの液体ヘリウムラインから液体ヘリウムが脳磁計デュワー内に供給される。また、脳磁計デュワー内で蒸発したヘリウムガス(約4K)の大半は第2真空部11の下面18の傾斜部に沿って上方の中心部に向かって流れ、トランスファーチューブ13の4Kヘリウムガスラインから吸引され再凝縮冷凍機に戻される。またデュワー100内で蒸発したヘリウムガス(約4K)の一部はトランスファーチューブ13と第2真空部11との隙間19を通って第1真空部10と第2真空部11の間の隙間12に流れる。一方、トランスファーチューブ13の40Kのヘリウムガスラインからは再凝縮冷凍機から40Kのヘリウムガスが内槽1内に供給される。内槽1内に供給された40Kのヘリウムガスは、前記4Kのヘリウムガスと混合しながら、内槽1と第1真空部10との隙間14を通って、熱アンカー9、16を冷却し伝熱材8、15の熱を奪って昇温し、最終的には約300K程度の高温ヘリウムガスとなって、再凝縮冷凍機に戻される。
【0013】
以上のように本発明では、第2真空部11を形成したことによりデュワー上部からの熱侵入が低下し、デュワー内に貯留する液体ヘリウムガスの量を減らすことができるとともに、蒸発した低温ヘリウムガス(約4K)を効率良く回収でき、再凝縮冷凍機での再凝縮効率が上昇する。また40Kヘリウムガスによって熱アンカーを効率的に冷却することができ、デュワー内に進入した熱やデュワー内で発生した熱を効率よく回収できる。
【0014】
本発明の実施形態について説明したが、熱アンカーの位置、伝熱材の数、形状等はデュワー(たとえば脳磁計用デュワー等)に合わせて適宜選択できる。また第2真空部の傾斜面の角度は設計時において、それぞれのデュワーに合わせて決めることができる。また当然のことながら、前述した高熱効率デュワーは脳磁計用のデュワーとしてそのまま利用することもできる。
さらに、本発明はその精神または主要な特徴から逸脱することなく、他のいかなる形でも実施できる。そのため、前述の実施形態はあらゆる点で単なる例示にすぎず限定的に解釈してはならない。
【0015】
【発明の効果】
以上説明したように、本発明の高熱効率用デュワーによれば、デュワー内で発生した低温ヘリウムガス(約4K)を効率良く回収し再凝縮冷凍機に送ることができるとともに、デュワー内に進入した熱やデュワー内で発生した熱を約40Kのヘリウムガスを利用して効率よく回収し、デュワー外に排出できる、という優れた効果を奏することができる。
【図面の簡単な説明】
【図1】本発明に係る高熱効率デュワーの断面図である。
【符号の説明】
1 内槽
2 外槽
3 真空層
4 閉塞部材
5 支持部材
6 断熱材
7 ライン
8、15 伝熱材
9、16 熱アンカー
10 第1真空部
11 第2真空部
12、14、17、19 隙間
13 トランスファーチューブ
18 下面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medical diagnostic apparatus for measuring a magnetic field generated from a human body or a living body, a physical property measuring apparatus for measuring the magnetic permeability of a magnetoencephalograph material, and a communication for magnetic signal transmission interface. The present invention relates to a dewar suitable for storing a SQUID (Superconducting Quantum Interference Device) used for an apparatus or the like, and particularly relates to a high thermal efficiency dewar that can be used for a magnetoencephalograph.
[0002]
[Prior art]
Liquid helium is indispensable for extremely low temperature properties research and cooling of measuring instruments using superconducting elements. In addition, in a brain magnetic measurement system or the like that detects a magnetic field emitted from a human brain, a SQUID (superconducting quantum interferometer) that can measure brain activity noninvasively with high spatio-temporal resolution is used. For cooling this SQUID Liquid helium is also used.
[0003]
In most of the devices described above, currently liquid helium for cooling evaporates and is released into the atmosphere. Even in the conventional liquid helium tank used in the above system, The evaporated helium gas is almost open to the atmosphere. However, in this case, there is a problem in terms of economy and resources because a large amount of expensive helium, which costs about 1200 yen per liter, is wasted. Therefore, it is desired to recover the evaporated helium gas, liquefy it again, and reuse it. The requirements are very strong.
For this reason, recently, a recirculation system that collects all of the helium gas vaporized in the liquid helium storage tank, removes contaminants in the helium gas in the system, and then recondenses and liquefies (patents). Reference 1).
[0004]
[Patent Document 1]
Japanese Patent Application No. 2003-25525
[0005]
[Problems to be solved by the invention]
The helium circulation device in the above application uses the first stage refrigeration cycle having a large cooling capacity to cool most of the recovered helium gas to a low temperature gas of about 40K without using a 4KGM refrigerator. After that, it is supplied to the neck tube part of the Dewar and recovered as a high temperature gas again to exhibit the cooling capacity. The recovered part of the gas is then kept at 4K by using the entire refrigeration cycle to 4K liquid helium and injected into the dewar from another supply line. At the same time, a system is adopted in which the evaporated helium gas is recovered at the lowest possible temperature, immediately recondensed into liquid helium, and returned to the dewar again.
However, the above apparatus has a part to be improved in that it collects low-temperature helium gas generated in the dewar and efficiently recovers the heat entering and generating in the dewar.
[0006]
Accordingly, the present invention has been made to solve the above-described problems, and can efficiently recover low-temperature helium gas (about 4K) generated in the dewar and send it to the recondensing refrigerator. An object of the present invention is to provide a high thermal efficiency dewar that can efficiently recover the heat that has entered inside and the heat generated in the dewar using helium gas of about 40K, and can be discharged outside the dewar.
[0007]
[Means for Solving the Problems]
For this reason, the technical solution means adopted by the present invention is:
In the high thermal efficiency dewar in which the inner tank is disposed in the outer tank and a vacuum layer is formed between the two, and liquid helium is stored in the inner tank, there is a through hole for inserting a transfer tube in the upper part of the inner tank. A first vacuum part and a second vacuum part are disposed with a gap , a transfer tube is disposed in the through-hole, and high-temperature (about 40K) helium gas from the transfer tube is It is a high thermal efficiency dewar characterized in that it can be discharged into the gap of the second vacuum part.
Moreover, in the high thermal efficiency dewar which arrange | positions an inner tank in an outer tank and makes a vacuum layer between both, and also stores liquid helium in an inner tank, arrange | positions a heat-transfer material in the said vacuum layer, One end is connected to the inner tank wall as a thermal anchor, and the upper part in the inner tank is arranged with a first vacuum part and a second vacuum part having a through hole for inserting a transfer tube with a gap, A transfer tube is placed in the through hole, and high-temperature (about 40K) helium gas from the transfer tube is opened in the gap between the first vacuum part and the second vacuum part, so that the outer periphery of the first vacuum part can be cooled. It is a high thermal efficiency dewar characterized by
Moreover, in the high thermal efficiency dewar which arrange | positions an inner tank in an outer tank and makes a vacuum layer between both, and also stores liquid helium in an inner tank, arrange | positions a heat-transfer material in the said vacuum layer, One end thereof is connected to the inner tank wall to form a thermal anchor, and the inner tank is provided with a first vacuum part and a second vacuum part having a through hole for inserting a transfer tube, and the transfer tube is provided in the through hole. And a high-temperature (about 40K) helium gas from the transfer tube is opened between the first vacuum part and the second vacuum part so that the outer periphery of the first vacuum part can be cooled. High heat efficiency dewar.
The thermal anchor is a high thermal efficiency dewar characterized in that it is positioned higher than between the first vacuum part and the second vacuum part from which 40K helium is blown.
Each vacuum part is a high thermal efficiency dewar characterized in that it is arranged with a predetermined gap between it and the inner tank wall.
Moreover, it is a high thermal efficiency dewar characterized by comprising the lower surface of the said 2nd vacuum part as the cone shape which inclined upwards.
Further, the dewar is a high thermal efficiency dewar characterized in that another member having a conical shape inclined upward is attached to the lower surface of the second vacuum portion.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the dewar according to the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a magnetoencephalograph.
In the figure, the dewar 100 is supported by a support member (not shown), a SQUID sensor having a SQUID element, a substantially cylindrical inner tank 1 that can store liquid helium L as a cooling medium, and the inner tank. An outer tub 2 that surrounds the inner tub 1 and forms a heat insulating layer such as a vacuum layer 3 between the inner tub 1 and holds the inner tub 1 in a heat insulating state, and a closing member that closes the upper portions of the inner layer 1 and the outer tub 2 4 is provided. In the figure, reference numeral 5 denotes a support member for supporting the dewar 100.
[0009]
The outer tub 2 is made of a heat insulating material such as FRP, and the upper portion of the vacuum layer 3 between the outer tub 2 and the inner tub 1 is closed with a heat insulating material 6 in a sealed state. Further, the upper part of the outer tub 2 is closed by a closing member 4, and the closing member 4 has a line 7 for depriving heat by heat anchors 9 and 16 (described later) and sending helium gas heated to a recondensing refrigerator. It is connected. In the vacuum layer 3, a plurality of heat transfer materials 8a, 8b, and 8c formed so as to surround the inner tank 1 are arranged (three in this example). One end of the first heat transfer material 8a and the second heat transfer material 8b is a free end below the vacuum layer 3, and the other end is thermally connected to a predetermined position of the wall material forming the inner tank 1. A thermal anchor 9 is formed. In this example, the mounting position of the thermal anchor 9 is an intermediate portion of the first vacuum portion 10 described later (in other words, the thermal anchor is located between the first vacuum portion and the second vacuum portion where 40K helium is blown out. Is also located above).
. The third heat transfer material 8c is formed in a cylindrical shape covering the lower surface of the inner tank 1, and the inner tank wall at a position corresponding to the gap 12 between the first vacuum part 10 and the second vacuum part 11 described later. To form a thermal anchor 9.
[0010]
A first vacuum part 10 and a second vacuum part 11 are arranged vertically in the inner tank 1, and a transfer tube 13 is disposed through each of the vacuum parts 10 and 11. The transfer tube 13 has a structure in which 4K liquid helium flows in the center, 4K helium gas flows on the outer periphery, and 40K helium gas flows on the outer side.
The first vacuum unit 10 disposed in the upper part of the inner tank 1 allows high-temperature helium gas (about 40 K) released from a transfer tube (described later) to flow upward between the outer periphery and the inner tank 1. The flow path 14 for this is formed. Further, a plurality of heat transfer materials 15 (two in this example) are arranged in the first vacuum portion 10, and each is connected to the wall portion of the first vacuum portion to form a heat anchor 16. A transfer tube 13 penetratingly arranged at the center of the first vacuum unit 10 is disposed in close contact with the first vacuum unit 10, and 40 K helium gas cooled by a recondensing refrigerator (not shown) is supplied to the first vacuum unit 10. 10 is jetted into the inner tank 1 from the vicinity of the lower surface.
[0011]
A second vacuum part 11 is disposed below the first vacuum part 10 with a gap 12. The second vacuum part 11 is disposed so that a slight gap 17 is formed between the outer periphery of the second vacuum part 11 and the inner tank 1, and the lower surface 18 of the second vacuum part 11 is further upward from the outer periphery to the center part. It is formed with a conical surface inclined toward the. The conical surface can be formed by the second vacuum part itself, but the lower surface of the second vacuum part 11 is a flat surface, and another member having a conical surface inclined upward from the outer periphery to the central part on the flat surface. It is also possible to install and configure. As the material of the separate member, an appropriate material such as urethane can be used. At the center of the second vacuum part 11, a transfer tube 13 made of a tube through which the 4K liquid helium and the 4K low-temperature helium gas flow is disposed with a gap 19 therebetween. Below the second vacuum part 10, liquid helium L for cooling a SQUID sensor (not shown) is stored.
[0012]
In the dewar 100 configured as described above, liquid helium is supplied from the 4K liquid helium line at the center of the transfer tube 13 into the magnetoencephalograph dewar. In addition, most of the helium gas (about 4K) evaporated in the magnetoencephalograph dewar flows along the inclined portion of the lower surface 18 of the second vacuum portion 11 toward the upper central portion, and from the 4K helium gas line of the transfer tube 13. Suctioned and returned to the recondensing refrigerator. Part of the helium gas (about 4K) evaporated in the dewar 100 passes through the gap 19 between the transfer tube 13 and the second vacuum part 11 and enters the gap 12 between the first vacuum part 10 and the second vacuum part 11. Flowing. On the other hand, 40 K helium gas is supplied into the inner tank 1 from the recondensing refrigerator from the 40 K helium gas line of the transfer tube 13. The 40K helium gas supplied into the inner tank 1 is mixed with the 4K helium gas, passes through the gap 14 between the inner tank 1 and the first vacuum part 10, and cools the thermal anchors 9 and 16 to be transmitted. The heat materials 8 and 15 are deprived of heat and raised in temperature, and finally become high-temperature helium gas of about 300K and returned to the recondensing refrigerator.
[0013]
As described above, in the present invention, since the second vacuum part 11 is formed, the heat intrusion from the upper part of the dewar is reduced, the amount of liquid helium gas stored in the dewar can be reduced, and the evaporated low-temperature helium gas (About 4K) can be efficiently recovered, and the recondensing efficiency in the recondensing refrigerator increases. Further, the heat anchor can be efficiently cooled by 40K helium gas, and the heat that has entered the dewar and the heat generated in the dewar can be efficiently recovered.
[0014]
Although the embodiment of the present invention has been described, the position of the thermal anchor, the number of heat transfer materials, the shape, and the like can be appropriately selected in accordance with a dewar (for example, a dewar for a magnetoencephalograph). Further, the angle of the inclined surface of the second vacuum portion can be determined in accordance with each dewar at the time of design. As a matter of course, the high thermal efficiency dewar described above can be used as it is as a dewar for a magnetoencephalograph.
In addition, the present invention can be implemented in any other form without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner.
[0015]
【The invention's effect】
As described above, according to the dewar for high thermal efficiency of the present invention, the low-temperature helium gas (about 4K) generated in the dewar can be efficiently recovered and sent to the recondensing refrigerator, and has entered the dewar. The heat and the heat generated in the dewar can be efficiently recovered using about 40K of helium gas and discharged outside the dewar.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a high thermal efficiency dewar according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inner tank 2 Outer tank 3 Vacuum layer 4 Closure member 5 Support member 6 Heat insulating material 7 Line 8, 15 Heat-transfer material 9, 16 Heat anchor 10 1st vacuum part 11 2nd vacuum part 12, 14, 17, 19 19 Transfer tube 18 bottom

Claims (6)

外槽内に内槽を配置して両者の間を真空層とし、さらに内槽内に液体ヘリウムを貯留してなる高熱効率デュワーにおいて、前記内槽内上部にトランスファーチューブ挿入用の貫通孔を持つ第1真空部と第2真空部とを隙間を有して配置し前記貫通孔内にトランスファーチューブを配置し、さらに前記トランスファーチューブからの高温(約40K)のヘリウムガスが第1真空部と第2真空部の隙間に放出できる構造としたことを特徴とする高熱効率デュワー。In the high thermal efficiency dewar in which the inner tank is disposed in the outer tank and a vacuum layer is formed between the two, and liquid helium is stored in the inner tank, there is a through hole for inserting a transfer tube in the upper part of the inner tank. A first vacuum part and a second vacuum part are disposed with a gap , a transfer tube is disposed in the through-hole, and high-temperature (about 40K) helium gas from the transfer tube is A high thermal efficiency dewar characterized in that it can be discharged into the gap of the second vacuum part. 外槽内に内槽を配置して両者の間を真空層とし、さらに内槽内に液体ヘリウムを貯留してなる高熱効率デュワーにおいて、前記真空層内に伝熱材を配置して、その一端を内槽壁に接続して熱アンカーとし、また、内槽内上部にはトランスファーチューブ挿入用の貫通孔を持つ第1真空部と第2真空部とを隙間を有して配置し、前記貫通孔内にトランスファーチューブを配置し、さらに前記トランスファーチューブからの高温(約40K)のヘリウムガスを第1真空部と第2真空部の隙間に開放し、第1真空部外周上部を冷却可能にしたことを特徴とする高熱効率デュワー。In the high thermal efficiency dewar in which the inner tank is arranged in the outer tank and a vacuum layer is formed between the two, and liquid helium is stored in the inner tank, a heat transfer material is arranged in the vacuum layer, and one end thereof Is connected to the inner tank wall as a thermal anchor, and the first vacuum part having a through hole for inserting a transfer tube and the second vacuum part are arranged with a gap in the upper part in the inner tank, and the penetration A transfer tube was placed in the hole, and high-temperature (about 40K) helium gas from the transfer tube was opened in the gap between the first vacuum part and the second vacuum part, so that the upper periphery of the first vacuum part could be cooled. Dewar with high thermal efficiency. 前記熱アンカーは40Kのヘリウムが吹き出す第1真空部と第2真空部の間よりも、上方に位置して設けたことを特徴とする請求項2に記載の高熱効率デュワー。3. The high thermal efficiency dewar according to claim 2, wherein the thermal anchor is provided at a position higher than between the first vacuum part and the second vacuum part from which 40 K helium is blown. 前記各真空部は内槽壁との間に所定の隙間を持って配置したことを特徴とする請求項1〜請求項3のいずれかに記載の高熱効率デュワー。The high heat efficiency dewar according to any one of claims 1 to 3, wherein each of the vacuum parts is arranged with a predetermined gap between the vacuum part and the inner tank wall. 前記第2真空部の下面を上方に向かって傾斜した円錐状として構成したことを特徴とする請求項1〜請求項4のいずれかに記載の高熱効率デュワー。The high thermal efficiency dewar according to any one of claims 1 to 4, wherein the lower surface of the second vacuum part is configured as a conical shape inclined upward. 前記第2真空部の下面に、上方に向かって傾斜した円錐状をした別部材を取り付けたことを特徴とする請求項1〜請求項4に記載の高熱効率デュワー。5. The high thermal efficiency dewar according to claim 1, wherein another member having a conical shape inclined upward is attached to a lower surface of the second vacuum portion.
JP2003175976A 2003-06-20 2003-06-20 High thermal efficiency dewar Expired - Fee Related JP3996553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175976A JP3996553B2 (en) 2003-06-20 2003-06-20 High thermal efficiency dewar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175976A JP3996553B2 (en) 2003-06-20 2003-06-20 High thermal efficiency dewar

Publications (2)

Publication Number Publication Date
JP2005012043A JP2005012043A (en) 2005-01-13
JP3996553B2 true JP3996553B2 (en) 2007-10-24

Family

ID=34098975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175976A Expired - Fee Related JP3996553B2 (en) 2003-06-20 2003-06-20 High thermal efficiency dewar

Country Status (1)

Country Link
JP (1) JP3996553B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100402915C (en) * 2006-02-16 2008-07-16 北京英纳超导技术有限公司 Dewar flask
RU2605404C2 (en) 2012-08-06 2016-12-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Cold-rolled steel sheet and method for manufacture thereof, and hot-formed article
CN104051119A (en) * 2014-06-24 2014-09-17 广东电网公司电网规划研究中心 Condensation-proof Dewar bottle structure for superconductive electrical equipment
CN110579510A (en) * 2019-09-30 2019-12-17 中国科学院理化技术研究所 Vacuum test device suitable for liquid helium dewar

Also Published As

Publication number Publication date
JP2005012043A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US7881760B2 (en) Measuring structure for magneto encephalographic equipment with a superconducting magnetic-shield
JP3446883B2 (en) Liquid helium recondensing device and transfer line used for the device
CN101707112B (en) Cooled current leads for cooled equipment
US20060021355A1 (en) Cryostat configuration
JP2004537026A (en) Apparatus for recondensing low-boiling gas of liquefied gas-gas evaporating from vessel using cryo-generator
US20060225437A1 (en) Ultracryostat and frigidity supplying apparatus
JP3996553B2 (en) High thermal efficiency dewar
JP5086920B2 (en) Cryogenic containment vessel and cryogenic equipment
CN1307660C (en) Cooling of a MRI system
JP2008306060A (en) Extremely low temperature containment cooling system and its operating method
CN106688059A (en) Arrangement for cryogenic cooling
CN115003225A (en) Double-helmet magnetoencephalogram device
US20230263445A1 (en) Magnetocardiography measuring apparatus
Rijpma et al. A nitrogen triple-point thermal storage unit for cooling a SQUID magnetometer
JP2007252425A5 (en)
JPH11193979A (en) Low temperature liquefied gas cooler
JP3523085B2 (en) Transfer line
JP4074049B2 (en) Cryogenic cooling device
JP2005201604A (en) Low temperature cooling system, and heat storage device
JP2010046344A (en) Living body magnetic field measuring instrument
JP4079101B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP4906703B2 (en) Superconducting magnet device
Wakai Current and future technologies for biomagnetism
US20040169515A1 (en) Superconductive magnet apparatus and magnetic resonance imaging apparatus
JP4519363B2 (en) Cryogenic containment vessel and biomagnetic measuring device using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees