JP3995548B2 - Method for producing metal material in which mixed film of oxide and fluoride is formed on at least part of its surface - Google Patents

Method for producing metal material in which mixed film of oxide and fluoride is formed on at least part of its surface Download PDF

Info

Publication number
JP3995548B2
JP3995548B2 JP2002209037A JP2002209037A JP3995548B2 JP 3995548 B2 JP3995548 B2 JP 3995548B2 JP 2002209037 A JP2002209037 A JP 2002209037A JP 2002209037 A JP2002209037 A JP 2002209037A JP 3995548 B2 JP3995548 B2 JP 3995548B2
Authority
JP
Japan
Prior art keywords
fluoride
metal
film
gas
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002209037A
Other languages
Japanese (ja)
Other versions
JP2004052024A (en
Inventor
裕久 菊山
雅秀 脇
浩人 泉
周徳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to JP2002209037A priority Critical patent/JP3995548B2/en
Publication of JP2004052024A publication Critical patent/JP2004052024A/en
Application granted granted Critical
Publication of JP3995548B2 publication Critical patent/JP3995548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、そのフッ化物が蒸気圧を有する金属材料表面に、金属酸化物と金属フッ化物との混合物、金属酸フッ化物、又は該金属酸フッ化物と前記混合物とからなる皮膜(以下これらを総称して金属酸化フッ化皮膜という)を形成する方法に関し、その目的とする所は、半導体材料やコンデンサ材料に使用する高耐食性と高絶縁性を備えた耐食絶縁被膜を形成しうる方法を提供することである。
【0002】
【従来の技術】
金属表面に酸化膜を形成する方法は、酸素または水蒸気を含む雰囲気中で加熱する方法や、化学気相堆積法(CVD法)、陽極酸化法等が挙げられる。
また、金属表面にフッ化膜を形成する方法は、特開平2-263972公報に記載されているフッ素系ガス雰囲気中で加熱する方法やフッ素ガス雰囲気中でスパッタリングを行う方法等が挙げられる。
【0003】
酸化膜、フッ化膜はそれぞれ特徴があり、その用途に合わせて使い分けられている。酸化膜では、半導体製造に使用されるガス供給ラインの接ガス表面に用いることにより、腐食を低減し、半導体製造の歩留まり向上に寄与している。また、コンデンサの絶縁膜としても用いられているフッ化膜では、フッ素系ガスを使用する部材表面に用いることにより、腐食を低減している。
【0004】
而して、酸化膜、フッ化膜の両皮膜の特性を備えた皮膜を形成しようとする場合、酸化フッ化皮膜が考えられる。酸化フッ化皮膜の簡便な形成方法は、酸化ガス、フッ化ガス共存下での加熱処理であるが、酸化ガスとフッ化ガスが共存していても、フッ化ガスと金属との反応性が勝るため、酸化された金属は直ちにフッ化され、最終的にはフッ化皮膜しか形成されない。
【0005】
【発明が解決しようとする課題】
本発明は、従来技術の上記問題点を解消し、金属材料表面の少なくとも一部に、酸化ガスおよびフッ化ガスを作用させて高耐食性と高絶縁性を併せ持つ金属酸化フッ化皮膜を形成することである。
【0006】
【課題を解決するための手段】
この課題は、金属フッ化物の融点が2.3〜500℃の範囲内である金属材料の少なくとも一表面を、該金属材料とフッ化ガスとの反応により生成する金属フッ化物を融点以上の温度雰囲気において、フッ化ガス及び酸化ガスと接触させることにより解決される。
【0007】
【作用】
金属フッ化物の融点が2.3〜500℃の範囲内である金属材料の少なくとも一表面に、フッ化ガスとの反応により生成する金属フッ化物が融点以上の温度雰囲気とする条件下で、酸化ガスとフッ化ガスを反応させることにより、フッ化反応と併行して酸化反応も起こり、該金属の酸化物とフッ化物との混合層、酸フッ化物層、あるいはこれ等三者の混合層が
生成する。これ等の膜はいずれも高耐食性と高絶縁性を有するものである。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に於いては、金属材料の少なくとも一面を酸化ガスとフッ化ガスとで反応させることにより、前記酸化フッ化皮膜を製造するが、該反応は酸化ガス及びフッ化ガスの気流下で行なっても良いし、チャンバー内に封入した雰囲気下で行なっても良い。原料コストや環境への負荷を考慮する場合、チャンバー内に酸化ガス及びフッ化ガスを封入した雰囲気下で反応を行うことが好適に選択されるが、より高純度の金属酸化フッ化膜を製造したい場合には、酸化ガス及びフッ化ガスの気流下で反応を実施することが特に好ましい。
【0009】
本発明に於いて使用する酸化ガスについては、その純度は、特に限定されるものではなく、99%以上であることが好ましく、99.9%以上であることがより好ましく、99.99%以上であることがさらに好ましく、99.999%以上であることが特に好ましい。不純物が1%を超える場合には、金属の酸化やフッ化処理の制御が困難となる傾向があり、金属表面に斑が生じたりする可能性がある。例えば半導体材料やコンデンサ材料のような高い信頼性が要求される用途への適用には好適とは云い難くなる。
【0010】
不純物の中でも特に、水は上記問題点を引き起こしやすいので、その存在濃度は、1000ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましく、10ppm以下であることが特に好ましい。
【0011】
本発明に於いて使用するフッ化ガスについては、その純度は、特に限定されるものではなく、99%以上であることが好ましく、99.9%以上であることがより好ましく、99.99%以上であることがさらに好ましく、99.999%以上であることが特に好ましい。不純物が1%を超える場合には、金属の酸化やフッ化処理の制御が困難となり、金属表面に斑が生じたりする可能性があり、例えば半導体材料やコンデンサ材料のような高い信頼性が要求される用途への適用には好適とは云い難くなる。
【0012】
不純物の中でも特に、フッ化水素は上記問題点を引き起こしやすいので、その存在濃度は、1000ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましく、10ppm以下であることが特に好ましい。
【0013】
本発明に於いては、酸化ガス及びフッ化ガスを不活性ガスで希釈して使用することが出来る。具体的には窒素、ヘリウム、ネオン、アルゴン、クリプトン、キセノンなどのガスが例示される。不活性ガスの純度は、酸化ガス及びフッ化ガスの純度に準拠すれば良く、特に限定されるものではないが、99%以上であることが好ましく、99.9%以上であることがより好ましく、99.99%以上であることがさらに好ましく、99.999%以上であることが特に好ましい。不純物が1%を超える場合には、金属の酸化やフッ化膜の制御が困難となり、表面に斑が生じたりする可能性があり、例えば得られる酸化物とフッ化物等の混合膜の純度が低くなり、高い信頼性が要求される用途への適用は困難である。
【0014】
不純物の中でも特に、水は上記問題点を引き起こしやすいので、その存在濃度は、1000ppm以下であることが好ましく、100ppm以下であることがより好ましく、10ppm以下であることがさらに好ましく、1ppm以下であることが特に好ましい。
【0015】
本発明に於いては金属材料とフッ化ガスとの反応により生成する金属フッ化物の融点以上の温度雰囲気において、金属基材を酸化及びフッ化することが必要である。融点より低い温度で処理した場合には、酸化反応が阻害される結果、金属表面には金属フッ化物のみが形成される。
【0016】
本発明に於いては、前記で説明した通り金属基材を処理するが、この処理で金属基材の表面に形成される皮膜は以下のものである。即ち
【0017】
(1)金属フッ化物と金属酸化物との混合層
(2)金属の酸フッ化物層
(3)上記(1)と(2)との混合層
である。
いずれにしても前記(1)〜(3)の皮膜は優れた耐食性と耐絶縁性を有する。
【0018】
本発明に於いて使用される金属材料は、特に限定されるものではなく、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、鉛、スカンジウム、チタニウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオビウム、モリブデン、銀、カドミウムなどが例示される。
【0019】
その中でも、該金属材料のフッ化物の融点が500℃以下であるものが好適であり、200℃以下であることがより好適であり、150℃以下であることが特に好適である。このためニオブ、タンタル、モリブデン、ビスマスなどが好適に例示される。該フッ化物の融点が高い、例えばカルシウム(フッ化カルシウム;融点=1360℃)、バリウム(フッ化バリウム;融点≒1353℃)等においては、高温での反応が必要となるため、処理コストがかさむことやチャンバー等が劣化しやすい等の問題があるので若干注意が必要である。
【0020】
一方、該金属材料のフッ化物の融点が低い、例えば、砒素(五フッ化砒素;融点=−80℃)や、アンチモン(五フッ化アンチモン;融点=8℃)、モリブデン(六フッ化モリブデン;融点=17.5℃)、タングステン(六フッ化タングステン;融点=2.3℃)等においては、反応温度が対応するフッ化物の融点より上がり過ぎないよう注意することが好ましい。
【0021】
本発明に於いては、上記の如き各種金属材料が好適に使用出来るが、更にその少なくとも1種以上の合金も使用することが出来る。この合金の場合も、合金としてのフッ化物の融点が、前記範囲に入いるものが好ましい。
本発明に於いてはその反応温度は、上記フッ化物の融点以上であるが、好ましくは該融点から20〜350℃高い温度である。特に好ましくは、20〜150℃高い温度である。また反応時間は通常0.5〜5時間であり、好ましくは0.5〜3時間である。
【0022】
かくして本発明により得られる金属酸化フッ化皮膜には、その厚みは一般的に0.01〜100μmの範囲内である。皮膜の厚みを調整する必要がある場合、反応温度、フッ化ガス及び酸化ガス濃度、反応時間を制御することで所望の厚みの皮膜を得ることが出来る。
【0023】
本発明に於いて使用される反応容器は、PFA、PTFEなどのフッ素樹脂皮膜、又はフッ化不動態処理された金属フッ化皮膜など、フッ素ガス存在下で不純物を排出しない材料で被覆されているか、または全体が製造されていることが、得られる皮膜への不純物の混入を防止出来、表面斑の発生を防止する観点において望ましい。
【0024】
本発明に於いては、前記酸化フッ化膜は、その金属材料の少なくとも一表面に形成される。勿論、全表面に形成されても良く、また表面(裏面を除く)だけでも良い。更には、表面の一部分だけでも良い。
【0025】
【実施例】
以下に本発明を具体的に例示する。なお、本発明はこれらに何ら制限されるものではない。
【0026】
なお実施例及び比較例での評価は、以下の(イ)〜(ハ)の方法により行った。
【0027】
(イ)膜組成;X線光電子分光法により金属、フッ素、酸素含量をそれぞれ評価。
【0028】
(ロ)膜厚;走査型電子顕微鏡により皮膜の厚みを評価した。
【0029】
(ハ)耐食性;5%塩酸水溶液に室温で24時間浸漬した後、顕微鏡および目視により表面状態の変化の有無を評価。表面の変化なき場合は耐食性良好、変化が認められた場合は耐食性不足と判断した。
【0030】
【実施例1】
PTFEで内面100μmを被覆したチャンバー内に、厚み1mmのニオブ板(5cm×1cm)を入れ、チャンバーを充分に減圧にした後、純度99.99%以上の窒素でパージを行った。もう一度、チャンバー内を充分に減圧にした後、純度99.99%以上のフッ素1%、純度99.99%以上の酸素10%、純度99.99%以上の窒素89%の混合ガスをチャンバーに流し、常圧に戻ったところで混合ガスの供給を止め、200℃で1時間放置した。その後、窒素パージしながら室温にまで温度を戻し、厚み10μmのニオブ酸化フッ化膜を得た。得られた皮膜の組成はNb=32%、F=16%、O=52%であり、耐食性良好であった。
【0031】
【実施例2〜5】
それぞれ、フッ素濃度1%を5%に変更した以外は実施例1と同様[実施例2]、ニオブの変わりにタンタルを使用した以外は実施例1と同様[実施例3]、常圧に戻った後も混合ガスを常圧に保持しながら流した以外は実施例1と同様[実施例4]、純度99.99%以上の窒素のかわりに純度99.99%以上のアルゴンを用いた以外は実施例1と同様[実施例5]に処理してそれぞれ金属酸化フッ化膜を製造した。その結果、実施例2では膜厚15μmで組成がNb=32%、F=16%、O=52%である金属酸化フッ化膜が、実施例3では膜厚1μmで組成がTa=32%、F=16%、O=52%である金属酸化フッ化膜が、実施例4では膜厚10μmで組成がNb=32%、F=16%、O=52%である金属酸化フッ化膜が、実施例5では膜厚10μmで組成がNb=32%、F=16%、O=52%である金属酸化フッ化膜が、それぞれ得られた。また、実施例2〜5で得られた金属酸化フッ化膜はいずれも耐食性良好であった。
【0032】
【比較例1】
ステンレス(SUS316L)を実施例1と同様に処理したところ、膜厚0.1μmの皮膜が得られた。しかし、この皮膜を評価したところ、酸素は検出されず、皮膜はフッ化金属であることがわかった。
【0033】
【比較例2】
酸化フッ化処理していないステンレス(SUS316L)では耐食性は不足していた。
【0034】
【実施例6】
純度99.99%以上の窒素のかわりに、純度99%で水分含有量が5000ppmの窒素を用いた以外は実施例1と同様にして金属酸化フッ化膜を製造した。得られた金属酸化フッ化皮膜は、膜厚10μmで組成がNb=32%、F=16%、O=52%であり、表面に若干の色斑が発生していた。しかしながら、耐食性は良好であった。
【0035】
【実施例7】
200℃のかわりに400℃に変更した以外は実施例1と同様にして金属酸化フッ化膜を製造した。反応後、反応に用いたチャンバーを被覆するPTFE等が高温のため変形していることを確認した。得られた金属酸化フッ化皮膜は、膜厚100μmで組成がNb=32%、F=16%、O=52%であった。しかしながら、耐食性は良好であった。
【0036】
以上の結果から、本発明に従う実施例1〜7は金属表面上に金属酸化フッ化膜が形成されていることが確認された。また、その中でも本発明の好適な条件を満たしている実施例1〜5は特に良好に金属酸化フッ化膜を製造することが可能であることが確認された。
【0037】
【本発明の効果】
本発明の方法は、初めて金属材料表面に金属酸化フッ化皮膜、更に詳しくは酸化物及びフッ化物層の混合皮膜、酸フッ化物から成る皮膜或いはこれ等の混合皮膜を形成することが出来る方法を開発したものであり、その産業上の効果は極めて大きい。
[0001]
[Industrial application fields]
The present invention provides a metal material having a vapor pressure of fluoride on its surface, a mixture of metal oxide and metal fluoride, a metal oxyfluoride, or a film comprising the metal oxyfluoride and the mixture (hereinafter referred to as these). The general purpose is to provide a method capable of forming a corrosion-resistant insulating film having high corrosion resistance and high insulation used for semiconductor materials and capacitor materials. It is to be.
[0002]
[Prior art]
Examples of the method for forming an oxide film on the metal surface include a method of heating in an atmosphere containing oxygen or water vapor, a chemical vapor deposition method (CVD method), an anodic oxidation method, and the like.
Examples of the method for forming a fluoride film on the metal surface include a method of heating in a fluorine-based gas atmosphere and a method of sputtering in a fluorine gas atmosphere described in JP-A-2-263972.
[0003]
Each of the oxide film and the fluoride film has its characteristics and is properly used according to its application. The oxide film is used on the gas contact surface of a gas supply line used for semiconductor manufacture, thereby reducing corrosion and contributing to improvement in the yield of semiconductor manufacture. Moreover, in the fluoride film used also as the insulating film of a capacitor, corrosion is reduced by using it on the surface of a member using a fluorine-based gas.
[0004]
Thus, in the case of forming a film having the characteristics of both the oxide film and the fluoride film, an oxyfluoride film can be considered. A simple method for forming an oxyfluoride film is a heat treatment in the presence of an oxidizing gas and a fluorinated gas, but the reactivity between the fluorinated gas and the metal is high even if the oxidizing gas and the fluorinated gas coexist. To excel, the oxidized metal is immediately fluorinated, and ultimately only a fluorinated film is formed.
[0005]
[Problems to be solved by the invention]
The present invention eliminates the above-mentioned problems of the prior art, and forms a metal oxyfluoride film having both high corrosion resistance and high insulation by acting an oxidizing gas and a fluorinated gas on at least a part of the surface of the metal material. It is.
[0006]
[Means for Solving the Problems]
The problem is that at least one surface of a metal material having a melting point of the metal fluoride in the range of 2.3 to 500 ° C. is produced by converting the metal fluoride generated by the reaction between the metal material and the fluorinated gas to a temperature higher than the melting point. This is solved by contacting with a fluorinated gas and an oxidizing gas in an atmosphere.
[0007]
[Action]
On at least one surface of the metal material having a melting point of the metal fluoride in the range of 2.3 to 500 ° C., oxidation is performed under a condition that the metal fluoride generated by the reaction with the fluorinated gas has a temperature atmosphere higher than the melting point. By reacting the gas and the fluorinated gas, an oxidation reaction occurs in parallel with the fluorination reaction, and a mixed layer of the oxide and fluoride of the metal, an oxyfluoride layer, or a mixed layer of these three is formed. Generate. These films all have high corrosion resistance and high insulation.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, the oxyfluoride film is produced by reacting at least one surface of the metal material with an oxidizing gas and a fluorinated gas, and the reaction is performed under a stream of oxidizing gas and fluorinated gas. Alternatively, it may be performed in an atmosphere enclosed in a chamber. When considering the cost of raw materials and environmental impact, it is preferable to perform the reaction in an atmosphere in which an oxidizing gas and a fluorinated gas are sealed in a chamber, but a higher purity metal oxyfluoride film is produced. When it is desired to carry out the reaction, it is particularly preferable to carry out the reaction under a stream of oxidizing gas and fluorinated gas.
[0009]
The purity of the oxidizing gas used in the present invention is not particularly limited, and is preferably 99% or more, more preferably 99.9% or more, and 99.99% or more. It is more preferable that it is 99.999% or more. If the impurity content exceeds 1%, it tends to be difficult to control the metal oxidation or fluorination treatment, which may cause spots on the metal surface. For example, it is difficult to say that the present invention is suitable for applications such as semiconductor materials and capacitor materials that require high reliability.
[0010]
Among impurities, since water tends to cause the above-mentioned problems, its concentration is preferably 1000 ppm or less, more preferably 100 ppm or less, further preferably 50 ppm or less, and 10 ppm or less. It is particularly preferred.
[0011]
The purity of the fluorinated gas used in the present invention is not particularly limited and is preferably 99% or more, more preferably 99.9% or more, and 99.99%. More preferably, it is more preferably 99.999% or more. If the impurity content exceeds 1%, it is difficult to control the metal oxidation or fluorination treatment, and the metal surface may be spotted. For example, high reliability such as semiconductor materials and capacitor materials is required. It becomes difficult to say that it is suitable for application to the intended use.
[0012]
Among impurities, since hydrogen fluoride is likely to cause the above-mentioned problems, the concentration thereof is preferably 1000 ppm or less, more preferably 100 ppm or less, further preferably 50 ppm or less, and more preferably 10 ppm or less. It is particularly preferred that
[0013]
In the present invention, the oxidizing gas and the fluorinated gas can be diluted with an inert gas. Specific examples include gases such as nitrogen, helium, neon, argon, krypton, and xenon. The purity of the inert gas may be based on the purity of the oxidizing gas and the fluorinated gas, and is not particularly limited, but is preferably 99% or more, more preferably 99.9% or more. 99.99% or more, more preferably 99.999% or more. If the impurity content exceeds 1%, it may be difficult to control the metal and control the fluoride film, and the surface may be spotted. For example, the purity of the obtained mixed film of oxide and fluoride is low. Therefore, it is difficult to apply to applications that require high reliability.
[0014]
Among impurities, water is likely to cause the above-mentioned problems. Therefore, its concentration is preferably 1000 ppm or less, more preferably 100 ppm or less, further preferably 10 ppm or less, and 1 ppm or less. It is particularly preferred.
[0015]
In the present invention, it is necessary to oxidize and fluorinate the metal substrate in an atmosphere having a temperature equal to or higher than the melting point of the metal fluoride produced by the reaction between the metal material and the fluoride gas. When the treatment is performed at a temperature lower than the melting point, the oxidation reaction is inhibited, so that only metal fluoride is formed on the metal surface.
[0016]
In the present invention, the metal substrate is treated as described above, and the film formed on the surface of the metal substrate by this treatment is as follows. That is, [0017]
(1) Mixed layer of metal fluoride and metal oxide (2) Metal oxyfluoride layer (3) A mixed layer of (1) and (2) above.
In any case, the films (1) to (3) have excellent corrosion resistance and insulation resistance.
[0018]
The metal material used in the present invention is not particularly limited, and lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, lead, scandium, titanium, vanadium, Examples include chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, silver, cadmium and the like.
[0019]
Among these, those having a melting point of the metal material fluoride of 500 ° C. or less are preferable, 200 ° C. or less is more preferable, and 150 ° C. or less is particularly preferable. For this reason, niobium, tantalum, molybdenum, bismuth and the like are preferably exemplified. In the case where the melting point of the fluoride is high, such as calcium (calcium fluoride; melting point = 1360 ° C.), barium (barium fluoride; melting point≈1353 ° C.), etc., a reaction at a high temperature is required, so that the processing cost is increased. In addition, there is a problem that the chamber and the like are easily deteriorated.
[0020]
On the other hand, the melting point of the fluoride of the metal material is low, for example, arsenic (arsenic pentafluoride; melting point = −80 ° C.), antimony (antimony pentafluoride; melting point = 8 ° C.), molybdenum (molybdenum hexafluoride; In the case of tungsten (melting point = 17.5 ° C.), tungsten (tungsten hexafluoride; melting point = 2.3 ° C.), etc., it is preferable to take care that the reaction temperature does not exceed the melting point of the corresponding fluoride.
[0021]
In the present invention, various metal materials as described above can be preferably used, but at least one alloy thereof can also be used. Also in the case of this alloy, it is preferable that the melting point of the fluoride as the alloy falls within the above range.
In the present invention, the reaction temperature is equal to or higher than the melting point of the fluoride, but is preferably 20 to 350 ° C. higher than the melting point. Particularly preferred is a temperature 20 to 150 ° C. higher. Moreover, reaction time is 0.5 to 5 hours normally, Preferably it is 0.5 to 3 hours.
[0022]
Thus, the thickness of the metal oxyfluoride film obtained by the present invention is generally in the range of 0.01 to 100 μm. When it is necessary to adjust the thickness of the film, a film having a desired thickness can be obtained by controlling the reaction temperature, the concentration of the fluorinated gas and the oxidizing gas, and the reaction time.
[0023]
Is the reaction vessel used in the present invention coated with a material that does not discharge impurities in the presence of fluorine gas, such as a fluororesin film such as PFA or PTFE, or a metal fluoride film that has been subjected to a fluorination passivation treatment? In addition, it is desirable that the entire structure is manufactured from the viewpoint of preventing impurities from being mixed into the obtained film and preventing the occurrence of surface spots.
[0024]
In the present invention, the oxyfluoride film is formed on at least one surface of the metal material. Of course, it may be formed on the entire surface, or only the front surface (excluding the back surface). Furthermore, only a part of the surface may be used.
[0025]
【Example】
The present invention is specifically illustrated below. The present invention is not limited to these.
[0026]
The evaluation in Examples and Comparative Examples was performed by the following methods (a) to (c).
[0027]
(B) Film composition: Metal, fluorine and oxygen contents were evaluated by X-ray photoelectron spectroscopy.
[0028]
(B) Film thickness: The thickness of the film was evaluated by a scanning electron microscope.
[0029]
(C) Corrosion resistance: After immersion in a 5% aqueous hydrochloric acid solution at room temperature for 24 hours, the presence or absence of changes in the surface state was evaluated by a microscope and visual observation. When the surface did not change, it was judged that the corrosion resistance was good, and when the change was observed, the corrosion resistance was insufficient.
[0030]
[Example 1]
A niobium plate (5 cm × 1 cm) having a thickness of 1 mm was placed in a chamber having an inner surface of 100 μm coated with PTFE, and the chamber was sufficiently depressurized, and then purged with nitrogen having a purity of 99.99% or more. Once the inside of the chamber is sufficiently reduced in pressure once more, a mixed gas of 9% purity fluorine 1%, purity 99.99% purity oxygen 10%, purity 99.99% purity nitrogen 89% is put into the chamber. When the mixture returned to normal pressure, the supply of the mixed gas was stopped and left at 200 ° C. for 1 hour. Thereafter, the temperature was returned to room temperature while purging with nitrogen to obtain a niobium oxyfluoride film having a thickness of 10 μm. The composition of the obtained film was Nb = 32%, F = 16%, O = 52%, and the corrosion resistance was good.
[0031]
[Examples 2 to 5]
Respectively, the same as Example 1 except that the fluorine concentration was changed from 1% to 5% [Example 2], and the same as Example 1 except that tantalum was used instead of niobium [Example 3]. [Example 4], except that the mixed gas was flowed while maintaining the normal pressure [Example 4], except that argon having a purity of 99.99% or more was used instead of nitrogen having a purity of 99.99% or more. Were treated in the same manner as in Example 1 [Example 5] to produce metal oxyfluoride films. As a result, in Example 2, a metal oxyfluoride film having a film thickness of 15 μm and a composition of Nb = 32%, F = 16%, O = 52%, and in Example 3, a film thickness of 1 μm and a composition of Ta = 32%. , F = 16%, O = 52% metal oxyfluoride film, in Example 4, the film thickness is 10 μm and the composition is Nb = 32%, F = 16%, O = 52% However, in Example 5, metal oxyfluoride films having a film thickness of 10 μm and compositions of Nb = 32%, F = 16%, and O = 52% were obtained. Moreover, all the metal oxyfluoride films obtained in Examples 2 to 5 had good corrosion resistance.
[0032]
[Comparative Example 1]
When stainless steel (SUS316L) was treated in the same manner as in Example 1, a film having a thickness of 0.1 μm was obtained. However, when this film was evaluated, oxygen was not detected, and it was found that the film was a metal fluoride.
[0033]
[Comparative Example 2]
Stainless steel (SUS316L) that was not oxidized and fluorinated was insufficient in corrosion resistance.
[0034]
[Example 6]
A metal oxyfluoride film was produced in the same manner as in Example 1 except that nitrogen having a purity of 99% and a water content of 5000 ppm was used instead of nitrogen having a purity of 99.99% or more. The obtained metal oxyfluoride film had a film thickness of 10 μm and a composition of Nb = 32%, F = 16%, O = 52%, and some color spots were generated on the surface. However, the corrosion resistance was good.
[0035]
[Example 7]
A metal oxyfluoride film was produced in the same manner as in Example 1 except that the temperature was changed to 400 ° C. instead of 200 ° C. After the reaction, it was confirmed that PTFE and the like covering the chamber used for the reaction were deformed due to high temperature. The obtained metal oxyfluoride film had a film thickness of 100 μm and a composition of Nb = 32%, F = 16%, and O = 52%. However, the corrosion resistance was good.
[0036]
From the above result, it was confirmed that Examples 1-7 according to the present invention have a metal oxyfluoride film formed on the metal surface. Moreover, it was confirmed that Examples 1-5 which satisfy | fill the suitable conditions of this invention among these can manufacture a metal oxyfluoride film | membrane especially favorably.
[0037]
[Effect of the present invention]
The method of the present invention is a method capable of forming a metal oxyfluoride film on the surface of a metal material for the first time, more specifically, a mixed film of oxide and fluoride layers, a film made of oxyfluoride, or a mixed film of these. It has been developed and its industrial effect is extremely large.

Claims (5)

金属フッ化物の融点が2.3〜500℃の範囲内である金属材料を、該金属材料とフッ化ガスとの反応により生成する金属フッ化物の融点以上の温度雰囲気において、フッ化ガス及び酸化ガスと接触させることを特徴とする、その表面の少なくとも一部に酸化物とフッ化物との混合被膜が形成された金属材料の製造方法。A metal material having a melting point of the metal fluoride in the range of 2.3 to 500 ° C. is subjected to a fluorination gas and an oxidation in an atmosphere having a temperature higher than the melting point of the metal fluoride generated by the reaction between the metal material and the fluorination gas. A method for producing a metal material, wherein a mixed film of an oxide and a fluoride is formed on at least a part of the surface, wherein the metal material is brought into contact with a gas. 前記酸化物とフッ化物との混合被膜が、酸フッ化物、またはこれと酸化物及びフッ化物との混合被膜である請求項1に記載の製造方法。The manufacturing method according to claim 1, wherein the mixed film of oxide and fluoride is an acid fluoride or a mixed film of oxide, fluoride, and fluoride. 金属材料とフッ化ガスとの反応により生成する金属フッ化物の融点以上の温度雰囲気において、金属材料をフッ化ガス及び酸化ガスと接触させる請求項1又は2に記載の製造方法。The manufacturing method of Claim 1 or 2 which makes a metal material contact with fluoride gas and oxidizing gas in the temperature atmosphere more than melting | fusing point of the metal fluoride produced | generated by reaction with a metal material and fluoride gas. 前記反応の温度は、前記融点から20〜350℃高い温度である請求項1〜3のいずれかに記載の製造方法。The production method according to any one of claims 1 to 3, wherein the temperature of the reaction is 20 to 350 ° C higher than the melting point. 金属材料がニオブ、タンタル、モリブデン、ビスマスの少なくとも1つ以上を含有するものである請求項1〜3のいずれかに記載の製造方法。The manufacturing method according to claim 1, wherein the metal material contains at least one of niobium, tantalum, molybdenum, and bismuth.
JP2002209037A 2002-07-18 2002-07-18 Method for producing metal material in which mixed film of oxide and fluoride is formed on at least part of its surface Expired - Fee Related JP3995548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209037A JP3995548B2 (en) 2002-07-18 2002-07-18 Method for producing metal material in which mixed film of oxide and fluoride is formed on at least part of its surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209037A JP3995548B2 (en) 2002-07-18 2002-07-18 Method for producing metal material in which mixed film of oxide and fluoride is formed on at least part of its surface

Publications (2)

Publication Number Publication Date
JP2004052024A JP2004052024A (en) 2004-02-19
JP3995548B2 true JP3995548B2 (en) 2007-10-24

Family

ID=31932991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209037A Expired - Fee Related JP3995548B2 (en) 2002-07-18 2002-07-18 Method for producing metal material in which mixed film of oxide and fluoride is formed on at least part of its surface

Country Status (1)

Country Link
JP (1) JP3995548B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008096618A1 (en) * 2007-02-09 2010-05-20 コニカミノルタエムジー株式会社 Ink jet head, ink jet printer, ink jet recording method
JP5956806B2 (en) * 2012-04-03 2016-07-27 三協立山株式会社 Method for producing magnesium alloy extruded material

Also Published As

Publication number Publication date
JP2004052024A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US11387120B2 (en) Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US4469581A (en) Electrolytic electrode having high durability
US4062679A (en) Embrittlement-resistant tantalum wire
US4554176A (en) Durable electrode for electrolysis and process for production thereof
JP5932028B2 (en) Oxygen generating anode
US4484999A (en) Electrolytic electrodes having high durability
US11028027B2 (en) Process for producing 2-chloro-3,3,3-trifluoropropene
SE436897B (en) ELECTRONIC CELL CATHOD
JP5803288B2 (en) Semiconductor material and photocatalyst, photoelectrode and solar cell using the same
WO2017169712A1 (en) Titanium alloy material, separator, cell and fuel cell
WO2018105220A1 (en) High-purity tungsten pentachloride and method for producing same
JP4476759B2 (en) Method for producing electrode for electrolysis, and method for producing aqueous quaternary ammonium hydroxide solution using this electrode for electrolysis
US4770949A (en) Surface activated amorphous and supersaturated solid solution alloys for electrodes in the electrolysis of solutions and the method for their surface activation
TWI810469B (en) Treatment liquid for semiconductor of ruthenium and production method thereof
JP3031474B2 (en) Method for manufacturing high-purity tantalum material, tantalum target, thin film, and semiconductor device
JP3995548B2 (en) Method for producing metal material in which mixed film of oxide and fluoride is formed on at least part of its surface
JP3995546B2 (en) Metal material with metal oxyfluoride coating
JPH11302892A (en) Electrolytic electrode and its production
JP2010533792A (en) Calcium ruthenate electrode material
US20040085707A1 (en) Electrolytic capacitor and a fabrication method therefor
Cramer et al. Corrosion of tantalum and tantalum alloys
JPWO2019188030A1 (en) Substrate processing gas, storage container and substrate processing method
HAMPEL Corrosion properties of tantalum, columbium, molybdenum and tungsten
TW202000995A (en) Anode for electrolytic evolution of chlorine
KR20240031248A (en) Method for removing pentafluoride from monofluoride of molybdenum and method for manufacturing semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050401

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees