JP3992320B2 - Thermal protector - Google Patents

Thermal protector Download PDF

Info

Publication number
JP3992320B2
JP3992320B2 JP09484697A JP9484697A JP3992320B2 JP 3992320 B2 JP3992320 B2 JP 3992320B2 JP 09484697 A JP09484697 A JP 09484697A JP 9484697 A JP9484697 A JP 9484697A JP 3992320 B2 JP3992320 B2 JP 3992320B2
Authority
JP
Japan
Prior art keywords
plate
fixed
thermally responsive
heat
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09484697A
Other languages
Japanese (ja)
Other versions
JPH10275544A (en
Inventor
伊佐男 東方
武男 榊原
秀樹 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ubukata Industries Co Ltd
Original Assignee
Ubukata Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubukata Industries Co Ltd filed Critical Ubukata Industries Co Ltd
Priority to JP09484697A priority Critical patent/JP3992320B2/en
Priority to CA002208910A priority patent/CA2208910C/en
Priority to US08/886,546 priority patent/US6005471A/en
Priority to KR1019970030709A priority patent/KR100236901B1/en
Priority to CNB97113734XA priority patent/CN1146934C/en
Priority to FR9708401A priority patent/FR2750793B1/en
Priority to IT97TO000584A priority patent/IT1293403B1/en
Publication of JPH10275544A publication Critical patent/JPH10275544A/en
Application granted granted Critical
Publication of JP3992320B2 publication Critical patent/JP3992320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は密閉形電動圧縮機に使用される電動機、特に三相用電動機を焼損から保護するのに適したインターナルサーマルプロテクタに関するものである。
【0002】
【従来の技術】
従来この種のサーマルプロテクタ(以下プロテクタと称する)としては、例えば特開昭56−130040号公報の「熱応動スイッチ」や特開昭62−88232号公報の「熱応動スナップスイッチ」がある。これらのプロテクタは単相の電動機に取付けられるものであり、その中央部を皿状に絞り成形されたバイメタルなどの熱応動板の一端に可動接点を固着し他端を弾性板に固着し、両端をそれぞれ固定接点と支持部に当接させて熱応動板の凸となる面の中央付近を所定の圧力で押圧することにより接点間圧力及び動作温度を規定するものである。これらのプロテクタは端子間に電流を流すことにより熱応動板及び周囲の発熱体が発熱し、電動機の異常等による温度上昇や過電流による過熱状態で熱応動板が反転することによってその一端に取付けられた可動接点を固定接点から開離し電路を遮断するように構成されている。
【0003】
また特に三相用プロテクタとしては例えば特開昭57−34623号公報や特開平1−105435号公報、特開平6−96649号公報の「三相用サーマルプロテクタ」等がある。これらの三相用プロテクタにおいては、その中央部を皿状に絞り成形されたほぼ円形の熱応動板に2個の可動接点及び弾性板の固着点がほぼ正三角形になるように配設し、それぞれ固定接点と支持部に当接させて熱応動板の凸となる面の中央付近、つまり前述の正三角形の中心付近を所定の圧力で押圧することにより接点間圧力及び動作温度を規定するものである。これらの三相用プロテクタは所謂Y結線の電動機の中点に取付けられ、電動機の異常時などには前述の単相用プロテクタと同様に熱応動板が反転することによって、この中点を開放し各相間の電路を遮断するように構成されている。これらのものにおいてはバイメタルなどの熱応動板に電流を流すことによって主に熱応動板自身の発熱を利用して熱応動板を動作させる構造とされており、熱応動板上の各相間の発熱のバランスを取るためにほぼ円形の熱応動板に接点及び固定部の位置関係が概ね正三角形になるように配設されたものを使用し平面形状の縦横寸法がほぼ等しく断面形状が扁平な形状とされている。
【0004】
上述した各プロテクタにおいては熱応動板の自由端に可動接点を固着し、他端を弾性板に固着する構造としたことにより、固着点に必要以上の応力がかかることを防いでいる。この弾性板は熱応動板の発熱量を補うためのヒーターとしての役割も有している。しかしながら、特に定格電流が大きいものや熱応動板の動作温度を高く設定してある場合等において弾性板がヒーターとして高温になると所謂焼鈍効果を生じ、弾性板としての性能が低下することがあるため、比較的高出力のものには使用できないという問題があった。この問題を回避するために弾性板の代りに剛体のヒーターを使用すると、熱応動板の固着点に必要以上の応力がかかり動作温度が変化してしまう可能性がある。
【0005】
また弾性板を使用した場合には三相用プロテクタにおいては組付時に若干熱応動板が接点に対して傾いていても弾性板の方が捩れることにより熱応動板の傾きを補正するので二組の接点間圧力を平衡させることができるが、熱応動板を剛体で保持するとこのような平衡化調整が行なわれないために各接点間に個別の圧力調整機構を設けたり非常に高い精度で組付けて2組の接点が同時に開閉するように且つ同一接点圧力になるようにしなければならない。
【0006】
さらに従来の三相用プロテクタはほぼ円形の熱応動板を使用した縦横寸法のほぼ等しい形状をしているため、特に電動機巻線いわゆるコイルエンド上に縛り紐などで取付ける場合には、コイルエンドの幅よりもプロテクタの幅が広くなってしまうので取付けが困難になるという問題があった。近時、電動圧縮機全体が小形化され電動機の直径が小さくなる傾向にあり、従来の構造のままでプロテクタの幅をコイルエンドの幅よりも小さくしようとすると全体を小形化せねばならず、電流容量が小さくなったり製造が困難になったりする。
【0007】
従来の三相用プロテクタは縦横寸法のほぼ等しい形状であることによって、プロテクタに絶縁の為の絶縁被覆を取付ける作業も面倒であった。これはプロテクタの容器が通常充電部になっているために、他の導電部などに接触すると短絡等の不具合を生ずるためにポリエステルチューブ等の絶縁被覆を被せる必要があるからである。通常は、プロテクタの外周よりも若干大きい内周のポリエステルチューブを被せて熱収縮によりプロテクタ表面に固定する方法が取られている。この場合、ポリエステルフィルムの熱収縮率はあまり大きいものではないためプロテクタの外周とポリエステルチューブの内周との差は少ない。従って前述のプロテクタの如く縦横寸法のほぼ等しい扁平断面形状であると、プロテクタをほぼ円筒状のポリエステルチューブに挿入する時にチューブを大きく変形させる必要があり、位置決めも困難で作業は煩雑で面倒な手間のかかるものになる。
【0008】
本出願人はこれらの問題点を解決するために、特願平8−195634号及び特願平8−297543号において新規なサーマルプロテクタを提案した。このサーマルプロテクタは熱応動板の皿状絞り中心に対してほぼ対称に2個の可動接点を取付けたものであり、熱応動板を従来のものよりも細長くし更にこの熱応動板に対して各部品をほぼ平行に重ねる様にして配置することにより、従来の縦横寸法のほぼ等しい形状を有したプロテクタと比較して全体の構造も細長くすることができ電動機のコイルエンド上への取付けが容易になる。
【0009】
この従来のプロテクタを図16の縦断面図及びそのC−C断面図である図17を参照して説明する。このプロテクタ101は金属製のハウジング3と蓋板2によって気密容器を構成しており、そのハウジング3の内側には熱応動板支持体110が接続固定され、この熱応動板支持体110には弾性板11の一端が固定される。更に弾性板11の他端には可動接点14A,14Bを有した浅い皿状に絞り成形された熱応動板12が固着片13を介して固定されている。この様な構造とすることにより組付時に若干熱応動板12が接点に対して傾いていても、弾性板が捩れてその傾きを補正するので二組の接点間圧力を平衡させることができる。また熱応動板12には弾性板11により、常に後述する押圧片115に押し付けられる方向、即ち図17において固着片13を中心に時計回り方向の偏倚力が付与されている。このため熱応動板12の反転時にはこの偏倚力が可動接点14A,14Bの引き放し力としてはたらき可動接点を固定接点8A,8Bから開離することができる。
【0010】
蓋板2は金属板4とこれにガラス等の充填材6により気密に絶縁固定されたリード端子ピン5A,5Bとからなり、金属板4を貫通したリード端子ピン5A,5Bの内側端部には固定接点支持体7A,7Bを介して固定接点8A,8Bが接続固定されている。ハウジング3の内側には温度較正用の金属製の押圧片115が固着されており、その先端部115Aが熱応動板12の通常時に凸となる絞り中心近傍に当接している。このプロテクタ101はハウジング3の押圧片固着部付近を変形して熱応動板12への押圧力を調整する事により動作温度が較正される。また熱応動板支持体110と固定接点支持体7A,7Bはそれぞれ発熱体とされ、それぞれが熱応動板12に与える熱がほぼ均等になるように調整されている。
【0011】
【発明が解決しようとする課題】
例えば、この様なプロテクタにおいては内部での電流による発熱量を増やすために発熱部である熱応動板支持体110の材質にニッケル−クロム合金や鉄−クロム合金等の固有抵抗値が高いものを使用することがある。ここでプロテクタ101に於ては、熱応動板12の中央部に温度較正部材である金属製の押圧片115が直接接触しているため、この押圧片115を介して流れるバイパス電流が問題になる。つまり熱応動板支持体110の抵抗値が低い場合には押圧片と熱応動板との間の接触抵抗の方が充分に高いためバイパス電流はあまり流れないが、熱応動板支持体110の抵抗値を高くすると相対的に前記接触抵抗が低くなるために本来熱応動板支持体110を流れるべき電流が押圧片115を介してバイパス電流として流れてしまい、熱応動板支持体110の抵抗値を上げた効果が充分には得られないという問題があった。
【0012】
【課題を解決するための手段】
そこで本発明のサーマルプロテクタは、蓋板と概ね長ドーム型のハウジングとで構成された密閉容器を有し、蓋板に絶縁固定された2本のリード端子ピンの前記密閉容器内側には固定接点が固定接点支持体を介して導電的に固着され、ハウジングの内側面には動作温度較正用の押圧片が固着され、さらに金属製の熱応動板支持体がハウジング内側面に固着され、熱応動板支持体には浅い皿状に絞り成形したことによって異なる温度に応じてスナップ的に湾曲方向を変える熱応動板が弾性板を介して導電的に接続固定されている。このプロテクタにおいて熱応動板は前記皿状絞り中心に対してほぼ対称に2個の可動接点が前記固定接点に対応して開閉可能に取付けられており、前記押圧片は熱応動板の通常凸となる側に絞り中心近傍で押圧片と熱応動板との間に流れるバイパス電流が実質的に問題にならないような状態で当接すると共に少なくとも熱応動板と弾性板との固定部近傍において近接または前述のバイパス電流が実質的に問題にならないような状態で当接していることを特徴とする。そのため発熱体としての熱応動板支持体に確実に所定の発熱をさせることができ、その抵抗値の選定に於て自由度が広がる。
【0013】
また他の特徴は押圧片と熱応動板との間にポリアミド紙の如き電気絶縁物が挿入されていることにある。
【0014】
さらに他の特徴は押圧片は金属のベース部分に電気絶縁物を一体に固着していることにある。
【0015】
また他の特徴は熱応動板と弾性板との接続部から各可動接点を結ぶ仮想線が90°以上の角度をなし接続部と各可動接点の3点でほぼ二等辺三角形を構成していることによって、従来の比較的縦横寸法の等しい形状を有したプロテクタよりもその形状を細長くして電動機の巻線上への取付けを容易にしたことにある。
【0016】
また他の特徴は蓋板の金属板と固定接点支持体との間に両者の距離を規定するための位置決め部材を配置することにより、固定接点支持体を発熱体とするために薄い材料を使っても金属板と固定接点支持体との距離が近くなったり両者が接触したりすることがないようにしたことにある。
【0017】
さらに他の特徴は位置決め部材を固定接点支持体と蓋板により弾性的に挟持することにより、絶縁板としての位置決め部材を蓋板に取付けるための特別な作業を不要にしたことにある。
【0018】
またさらに他の特徴は熱応動板支持体と弾性板と熱応動板とは互いに概ね平行になるとともに、熱応動板支持体と弾性板、及び弾性板と熱応動板がそれぞれ所定の間隔で対向するように配置され、熱応動板支持体が弾性板を間に介して熱応動板の一部平面が弾性板に設けられた開口部より熱応動板支持体からの輻射熱を直接熱応動板に達するようにしたことにある。
【0019】
さらに他の特徴は熱応動板支持体と弾性板と熱応動板とは互いに概ね平行になるとともに、熱応動板支持体と弾性板、及び熱応動板支持体と熱応動板がそれぞれ所定の間隔で対向するように配置され、弾性板が熱応動板支持体と熱応動板との間に介在せず熱応動板支持体の背面側に配設されることにより、熱応動板支持体からの輻射熱が遮られることなく熱応動板に達するようにしたことにある。
【0020】
また他の特徴は押圧片の熱応動板への当接位置を皿状絞りの中心乃至中心から熱応動板の固定端たる突起部寄りに配設したことにより、熱応動板の力を有効に使い接点溶着の可能性を低減したことにある。
【0021】
【発明の実施の形態】
以下、発明の実施の形態を実施例に基づき図面を参照して説明する。図1乃至図7に示す第1の実施例のサーマルプロテクタ1は蓋板2とハウジング3によって気密容器を構成している。蓋板2はほぼ長円形の金属板4の両端に貫通孔4A,4Bが設けられており、この貫通孔に導電性のリード端子ピン5A,5Bがガラス等の充填材6により気密に絶縁固定されている。本実施例においてはこの蓋板2の金属板4は充分な厚さを有し、その周縁部にはハウジング3との溶接性を良くするために厚さを薄くしたフランジ部4Cが外周に一定の寸法縁取られるように設けられている。
【0022】
ハウジング3は蓋板2と比較して薄い金属板より成り、図4の斜視図及び図6の平面図等に示すように上面に平面部3Aを有したドーム形状とされている。この平面部3Aの中間部からは後述の動作温度較正において変形される較正部3Bが図7に示す如く平面部3Aとほぼ同一平面で側方に突出して設けられている。その為ハウジング3の平面形状は図6に示す如く較正部3Bを有する側がやや膨らんだ形状となっている。このハウジング3の開口端部を蓋板の周縁部のフランジ部4Cと突合せてリングプロジェクション溶接等で気密に固定することにより前述の気密容器が構成される。
【0023】
リード端子ピン5A,5Bの密閉容器内側の各先端には固定接点支持体7A,7Bの一端が溶接等の方法で固着され、これらの固定接点支持体7A,7Bの他端には各々固定接点8A,8Bが固着されている。本実施例においては各固定接点8A,8Bの可動接点と接触する面は少なくとも固定接点支持体への固定後にプレス等により平面状に塑性変形し、その高さを揃える事が好ましい。こうすれば温度較正前の両固定接点の高さが製品毎に高い精度で揃い、温度較正作業が容易になる。また各固定接点8A,8Bの可動接点との接触面が平面状とされていれば、後述の可動接点14A,14Bの接触位置が水平方向に若干ずれても曲面接点同士の場合の様に接触圧力が変化しないのでより安定した性能のプロテクタを得ることができる。
【0024】
本実施例においては固定接点支持体7A,7Bと金属板4との間には、両者の間の距離を規定するための位置決め部材9A,9Bとしてセラミックス等で作られた絶縁板が装着されている。さらに本実施例においては位置決め部材9A,9Bはそれぞれ固定接点支持体により弾性的に挟持されており、非金属である位置決め部材を蓋板2に固定するために必要な作業を容易にしている。またこの位置決め部材9A,9Bに熱伝導性の良いアルミナ等の材質を選定することにより、接点間が開放した時に発生するアーク等により加熱された固定接点から熱を速やかに金属板4に逃がして温度を下げ、固定接点の消耗のみならずアークを速やかに終息させプロテクタの寿命を長くすることができる。
【0025】
さらに位置決め部材を介して接点及び固定接点支持体の熱をハウジングへ良好に伝導する構造とすることにより、連続運転可能な電流値においてはプロテクタ内部での発熱量とプロテクタ外部への放熱量の差が比較的少なくなるため連続運転電流値を引き上げても熱応動体の温度はあまり変らなくなり、従来のものより最大限界運転電流値(Ultimate Trip Current:U.T.C.)を引き上げる事ができる。また電動機の回転子が拘束されたときに生ずる如き過大電流時には前記発熱量は放熱量に対して比較して充分に大きいので熱応動板に伝えられる熱の方が圧倒的に大きいため動作時間は短く、位置決め部材を介して接点及び固定接点支持体の熱をハウジングへ伝導する構造としても接点を開放する迄の時間(Short Time Trip:S/T)はあまり長くならず過電流時には速やかにプロテクタは動作する。このように位置決め部材に熱伝導率の良いものを選定する事により接点を開放する迄の時間(S/T)を常温に於て所定の時間、例えば10秒とする電流値と定格運転電流値(U.T.C.)とを近づける事ができ、電動機の運転性能を充分に引き出す事ができる。
【0026】
この位置決め部材9A,9Bは実施例に於ては図5に示すように固定接点支持体7A,7Bをリード端子ピン5A,5Bに固着した後に側方から挿入できるようリード端子ピンに接する部分がU字形にされているが、例えば貫通孔を設けた位置決め部材をリード端子ピンに挿入した後に固定接点支持体をリード端子ピンに固定するようにしてもよい。またこの位置決め部材9A,9Bは固定接点支持体7A,7Bと金属板4との間の電気絶縁を確実にすると共に、両固定接点支持体を発熱体とするために比較的薄くした場合にその剛性が低くなっても固定接点の位置を規定するに必要なものであるが、例えば固定接点支持体にリブ等を形成し、剛性を充分持たせ且つ金属板との絶縁距離を必要な寸法に設定するならばこの位置決め部材9A,9Bは省略することもできる。
【0027】
ハウジング3の内側の面には熱応動板支持体10が固定されている。この熱応動板支持体10は充分な剛性を有した金属板で、その両端に階段状に曲げられた固定部10Aをハウジング3の両端近傍に位置する固着部3Cに溶接固定することにより全体を支える構造とされている。また中間部10Bは後述する温度調整機構と干渉しないように迂回した形状にされるとともに、これも後述する弾性板との干渉を避けるために若干の段差を設けている。さらに熱応動板支持体10は全体の形状がこの中間部10Bに対して左右対称になるように構成されている。この部分は実施例の様な形状の他、中心部に貫通穴を設けて動作温度較正用の押圧片15との干渉を避ける形状であればよいことは言うまでも無い。
【0028】
熱応動板支持体10の固定部10Aを両端部に設けた理由は、較正部3Bと充分な間隔をおくことにより後述する温度調整作業において較正部3Bが変形されても変形の影響が少ない部分に熱応動板支持体を固定するためである。また固定部10Aを熱応動板支持体10の両端の2ヵ所とする事により、もしなんらかの原因で固定部が若干変位した時にも、熱応動板支持体が片持ち梁状に支持された場合と比較して後述の弾性板が固定される中間部10Bの変位量を少なくする事ができるという利点があるためである。
【0029】
この熱応動板支持体の中間部10Bには、概ね長円形で中央部に開口部11Dを有した環状板の一側面を開放した形状とされた弾性板11がその中間部11Aを溶接等により固定されている。なお弾性板11の両端部11B,11Cは実施例では分離されているが、分離しないで環状の弾性板を使用してもよい。実施例においては開口部11Dを設けたことによって、この開口部11Dを通して発熱体となる熱応動板支持体10と後述する熱応動板12が直接向かい合うようにされている。また弾性板11は熱応動板に図2に示す固着片13を中心とする時計方向の偏倚力を付与し、且つ熱応動板の可動接点の平衡作用を司どるしなやかさを必要とするので断面積が大きくとれず、材質によっては通電電流により高温になった場合にバネ性及びしなやかさが変化してしまいプロテクタとしての特性が変化する不具合があるので、固有抵抗の低い材質でバネ性の良い金属板が好ましい。例えば固有抵抗の低い銅板とバネ性の優れた鋼板を貼り合せて製作したクラッド材を使用すれば発熱を抑えた弾性板としてより好ましい。
【0030】
熱応動板12はバイメタルやトリメタルの如く熱によって変形する部材を浅い皿状に絞り加工等をすることによって所定の温度によって急跳反転及び急跳復帰するようにしたものであり、その平面形状はほぼ長円形で長手方向両端に前記皿状絞り中心に対してほぼ対称に2個の可動接点14A,14Bを固着し、且つ中央の片側には熱応動板と弾性板11との実質的接続部であり固定部となる突起部12Aを設けた形状とされている。この突起部12Aには固着片13が溶接等により取付けられており、この状態で熱応動板12には前記所定の温度で反転及び復帰するように皿状に絞り加工等が施されている。さらに固着片13と弾性板11とは溶接などで固着される。そのため熱応動板12を他の部材、実施例においては弾性板に接続固定するときに発生する熱や応力等の影響を熱応動板はほとんど受けず、予め調整された動作温度はほとんど変化しない。なお、熱応動板12を弾性板等の他の部材に固定する時に発生する熱応動板の動作温度変化が問題にならないよう例えばレーザーによる微小多点スポット溶接などを用いて行なう場合には固着片13を省略することができる。
【0031】
また可動接点14A,14Bの固着位置は、接続部となる突起部12Aから各可動接点を結ぶ仮想線が90°以上の角度をなすように設定され、この突起部12Aと可動接点14A,14Bの3点でほぼ二等辺三角形が構成される。このような位置関係とする事によって熱応動板の形状を幅方向に細長い例えば概ね長円形にする事ができ、その結果、プロテクタの形状を細長くして電動機の巻線上への取付けを容易にするものである。
【0032】
熱応動板12は固着片13を介して弾性板11の両端部11B,11Cに接続固定されている。固着片13はその中央の平面部に熱応動板の突起部12Aを、またその両端に縦方向に延びる溶接部13A,13Bの端面に弾性板11を溶接等の方法で固定されている。熱応動板支持体10と弾性板11、熱応動板12は互いにほぼ平行に配置されており、また蓋板2及び固定接点支持体7A,7Bともほぼ平行にされる。可動接点14A,14Bは各々固定接点8A,8Bと対向しており、熱応動板12の反転及び復帰に従い互いに開離及び接触することにより電路を開閉可能に構成されている。また熱応動板12は前述の弾性板11によって弾性的に保持されているため、熱応動板12が若干傾いて取付けられるなどして二組の接点間に接触圧力のばらつきが発生しても弾性板11が撓んで両接点間の接触圧力をほぼ同一にすることができる。
【0033】
ハウジング3に設けられた前述の較正部3Bの内側面には温度調整機構としての押圧片15の長手方向の一端が溶接部15Cで固着されている。この押圧片15は充分な剛性を有した金属製であり、熱応動板12の常温時に凸となる面に前記可動接点を対称に分ける中心線上で図2に示す如くその先端部15Aから後端部15Bのほぼ全面に亘って当接または近接しており、後述する如き方法で所定の押圧力が付与される。
【0034】
本実施例に於ては押圧片15と熱応動板12との間には、押圧片を介してバイパス電流が流れることを防止するために電気絶縁物である挿入片16が挟まれている。この挿入片16の材質としては例えばポリアミド紙の様に充分な電気絶縁性と耐熱性と強度を有しており可撓性のあるものが好ましいが、熱応動板12の動作を妨げなければこの限りではない。
【0035】
本実施例の挿入片16は例えばT字形の平面形状をしており、組立時にその1辺16Aを熱応動板12と弾性板11と固着片13の溶接部13A,13Bによって囲まれた空間に挿入することにより位置が決まる。また挿入片16をT字形形状の様に挿入端に対して他端を幅広くすることによって、挿入片が必要以上に深く挿入されることはない。さらに挿入後にハウジング3に熱応動板支持体10を固着することによって挿入片の他端を熱応動板等とハウジングとの間に位置させることになるので、挿入片16に対して特別の抜け止めの処置をしなくても挿入片はハウジング3と当接する以上の位置にまでずれることはなく、従って完全に脱落することはない。挿入片16にはしなやかさのあるものが適しており、ハウジング3と接触しても熱応動板等の動作に影響を与えないようにする事が好ましい。
【0036】
プロテクタ1の動作温度の較正は気密容器が完成された後、図2に示す如く蓋板2の金属板4とハウジング3を挟み込むような治具G1及びG2により、ハウジング3の較正部3Bをつぶし変形して行なう。本実施例では治具G2で蓋板2のフランジ部4Cのほぼ全周を受け、治具G1で較正部3Bを矢印G方向に押圧変形させることにより押圧片15を変位させ、その先端部15Aを介して熱応動板12の常温時に凸となる側に加減しながら押圧力を与える。この押圧位置は可動接点14Aと14Bの中間点であり、押圧力はこれらの可動接点14A,14Bを介して固定接点8A及び8Bによって支承される。このハウジング3の変形作業によりその接点圧力を増加させ適当に加減することによって所望の動作温度で熱応動板12が図3に示す如くその湾曲方向をスナップ的に反転するように調整する。
【0037】
ここで較正部3Bに押圧片15の長手方向の一端である後端部15B側を固着してあるため、動作温度較正作業において較正部3Bを変形させる量は僅かであっても押圧片の他端である先端部15Aの変位は梃子の原理により拡大され充分な値となる。また前述したように熱応動板支持体10はその固定部10Aをハウジング3の両端近傍に位置する固着部3Cに固定されているため、動作温度較正作業において中央付近の較正部3Bを僅かに変形してもその影響を受ける事はない。従って熱応動板支持体10の変形は実質的に無いものとされる。このとき熱応動板12には弾性板11により、常に押圧片15に押し付けられる方向、即ち図2において固着片13を中心に時計回り方向の偏倚力が付与されている。このため熱応動板12の反転時には確実にその方向に傾動し可動接点を固定接点から開離することができ、また熱応動板のスナップ的反転動作により可動接点を固定接点から開離するときのチャタリングをなくすと共に、所定の動作温度に較正することができる。
【0038】
以上の如く構成されたプロテクタ1は所望の第一の温度、例えば130℃雰囲気中において図3に示す如く熱応動板12がスナップ的に急跳反転すると固定接点8A,8Bから可動接点14A,14Bを同時に開離し、第一の温度より低い所定の第二の温度例えば90℃になると急跳復帰して図1に示す状態に戻りそれぞれの接点間を同時に閉じる。
【0039】
この様なプロテクタに於いて長期にわたり使用を続けると、接点開閉時に発生するアークなどにより接点表面が荒れてきて溶着を起こす可能性がある。通常軽度の溶着であれば熱応動板の反転時の動きと弾性板によって付与される引き離し力によって解除される。
【0040】
本実施例に於いては、図2に示す如く通常時において押圧片15が先端部15Aで熱応動板12の絞り中心近傍に当接するとともに、この先端部15Aから後端部15Bにかけて熱応動板と当接若しくは近接するように構成した。こうする事により熱応動板12は、図3に示す反転時に於て熱応動板12と弾性板11との固定部近傍である固着片13との固着部、すなわち突起部12Aを押圧片の後端部15Bに当接してそれ以上の移動を阻止される。こうして通常時には熱応動板12の可動接点側がより大きく移動し接点間距離を大きく取ることができる。また接点間に軽い溶着が起きた場合にも固着片13が固定された突起部12Aが押圧片後端部15Bに当接することにより、熱応動板12が反転する時の作用力は可動接点14A、14Bに有効に与えられるため、反転時の力は有効に接点を開離するための力となり、確実に接点間を開離することができる。
【0041】
熱応動板12の突起部12Aと押圧片後端部15Bとは通常時から極めて弱い力で当接しているか、熱応動板12の反転時に当接可能なように近接させているのが良く、その近接距離は熱応動板の可動接点を固定したと仮定した時に突起部12Aが接触可能な位置、特に突起部12Aの反転時の移動量の1/2以下の距離とされている事が好ましい。
【0042】
また本実施例に於いては押圧片15の端面をほぼ平面状として後端部が熱応動板12と当接若しくは近接したものを示しているが、その形状はこれに限るものではなく熱応動板の通常凸となる側に絞り中心近傍で先端部が当接すると共に少なくとも熱応動板と弾性板との固定部近傍において近接または当接するものであれば、例えば図12に示す押圧片35の如くその先端部35Aと後端部35Bに突起を設けた形状としてもよい。
【0043】
また押圧片が図17に示したようなL字形のものであっても、先端部と後端部との高さの差が少なく熱応動板12の反転時に突起部12Aが押圧片後端部と当接するものであればよい。具体例としては図8に示す押圧片45の様に、押圧片先端部45Aの背面に対する高さh1と後端部45Bの高さh2を比較して、その差h3が熱応動板12の絞り中心から突起部先端までの距離に対して1/20以下である事が好ましい。実験によれば、熱応動板の絞り中心から突起部先端までの距離が8.5mm程度の時に押圧片先端部と後端部との高さの差を0.4mm以下としたものにおいて効果が認められた。
【0044】
第1の実施例では押圧片に金属片を使用し熱応動板との間に挿入片16を挟んでいる。そのため押圧片と熱応動板との接触部に熱応動板支持体に流れるべき電流がバイパスすることが防止され、例えばプロテクタを定格電流値の低い電動機等に使用する場合、プロテクタ内部の発熱量を増やすために発熱部となる熱応動板支持体の抵抗値を高くすることにより確実に発熱量を増やすことができる。またそれ以外の場合でも押圧片と熱応動板との接触部を電気絶縁物で絶縁することはさらに好ましいことである。さらに本実施例では電気絶縁物としてポリアミド紙の如く充分な強度と耐熱性及び可撓性を有する挿入片を使用したものを例に説明したが、熱応動板等の動作を妨げない様に配設すれば各種耐熱樹脂やセラミックス等を使用してもよい。
【0045】
さらには押圧片として少なくともその一部に電気絶縁物もしくは高抵抗材料を使用して押圧片と熱応動板との間に流れるバイパス電流が実質的に問題にならないような状態にすることにより、前述の様な挿入片の使用を省くことができる。例えば押圧片に金属とセラミックス等を複合させた傾斜機能材料を使用すればよい。図9を参照しながら、この押圧片について説明する。押圧片55はその一方の面を金属のベース層55Aとし、他方の面をアルミナ等のセラミックスによる電気絶縁物層55Bとされた傾斜機能材料である。その中間層55Cは段階的にセラミックスと金属との混合割合が変化している。この押圧片55は抵抗溶接を行なおうとすると図示上下端部間では通電しないので、金属層55Aの側部に通電電極を接触させると共に上下方向から加圧電極で加圧することにより溶接部55Dでハウジングに溶接固着する。
【0046】
この押圧片55は熱応動板との接触面が電気絶縁物層55Bであるため、直接接触してもバイパス電流が流れることはない。またこの電気絶縁物層55Bは必ずしも完全な絶縁物である必要はなく、熱応動板支持体に対して充分に抵抗値が高く前記バイパス電流が実質的に問題にならないのであれば導電性があってもよい。
【0047】
さらに押圧片として金属製のベースに電気絶縁物を接着や機械的な手段等で固着したものを使用してもよい。この例について図10を参照して説明する。押圧片65は金属製のベース65Aとセラミックスの如き電気絶縁物65Bにより構成されている。ベース65Aにはその一端の長手方向に沿って溝が設けられており電気絶縁物65Bがその側面がベースより高くなるようにしてはめ込まれている。実施例においてはベース65Aの両端側面65A1には所謂かしめ加工がされており、電気絶縁物65Bが脱落しないように機械的に固着されている。この押圧片65においても金属製のベース65Aの溶接部65Dでハウジングに固着することができると共に、熱応動板とは電気絶縁物65Bが接触するので直接接触してもバイパス電流が流れることはない。
【0048】
またこの場合の電気絶縁物としてはアルミナ等の非導電性セラミックスが好ましいが、導電性があっても固有抵抗値の比較的高い導電性セラミック、例えばチタン酸バリウム系のもの、又は窒化ホウ素(BN)、炭化珪素(SiC)の如き非酸化性セラミックス等を使用することもできる。また使用温度の低いもの等においては所謂エンジニアリングプラスチック等を使用してもよく、この場合には金属製のベースと電気絶縁物とを一体成形することも可能になる。
【0049】
このプロテクタ1は三相電動機のY結線の中点に接続し得るものである。即ちY結線の場合にはリード端子ピン5A,5B及び金属板4(又はハウジング3)がそれぞれ電動機の中点部となるコイル端に接続される。保護するべき電動機になんらかの異常が発生してその電流が増加した場合には各電路となる部材の発熱が増し、プロテクタが動作温度に達して熱応動板が急跳反転し両接点間を開離し電動機への通電を遮断する。ここで熱応動板12自身に可動接点14A,14B間を介して通電された場合と、各可動接点と固着片13とを介して通電された場合とではそれぞれの抵抗値、つまり発熱量が異なっている。そこで本実施例においては三相電源の各相間で動作条件を揃えるために、発熱体である固定接点支持体7A,7Bや熱応動板支持体10の抵抗値及びそれらの発熱体と熱応動板との熱交換関係を調整することにより、各々の電路への通電時の熱応動板12の温度上昇条件を実質的に揃えるように加減することができる。
【0050】
このように本発明では、従来のプロテクタにおいては接点及び固定部が概ね正三角形になるように配設され熱応動板上の各電路間がほぼ等距離となるようにされていたのに対して、熱応動板自身の発熱の不釣り合いを他の発熱体で補完して実質的に釣り合わせる。さらに熱応動板12と押圧片15との接触部に挿入片16の如き電気絶縁物を挿入して絶縁しているため、発熱体、特に熱応動板支持体10の抵抗値の選定に於て自由度が広がる。
【0051】
また熱応動板上の可動接点及び固定部の位置関係をほぼ直角二等辺三角形若しくは鈍角の二等辺三角形とする事を可能とし、更にこの熱応動板に対して各部品をほぼ平行に重ねる様にして配置することにより、従来の縦横の長さがほぼ等しい形状を有したプロテクタと比較して全体の構造を細長くすることができ電動機の巻線上への取付けが容易になる。さらに本実施例のプロテクタ1の平面形状は較正部を有する側がやや膨らんだ形状となっているが、この膨出側の曲線形状を含めてプロテクタを取付ける電動機の固定巻線の外周部の形状に合致させるようにしておくことにより電動機巻線上への取付作業はより容易になる。
【0052】
また実施例のプロテクタ1の押圧片15の先端部15Aの熱応動板12への当接位置は可動接点14A,14B間のほぼ中央となる皿状絞り加工の中心部とされるが、好ましくはその当接位置を前記皿状絞りの中心乃至中心から熱応動板の固定端たる突起部寄りに設定する事により、接点溶着の可能性を低減できることが実験によって認められた。この様に、押圧片の熱応動板への当接位置を前記絞り加工の中心乃至中心から熱応動板の固定端たる突起部寄りに設定する事により、熱応動板の力を有効に使い接点溶着の可能性を低減することができる。
【0053】
次に第2の実施例について説明する。第1の実施例に於ては発熱体である熱応動板支持体と熱応動板との間に位置する弾性板が、熱応動板支持体と熱応動板とを部分的に遮蔽する構造になっており熱応動板へ熱の伝わる効率が不充分なことが有る。この場合、熱応動板支持体の発熱量を増やすことができればよいが、その役割上ある程度の強度が必要なため断面積を狭くする方法を取ることが難しく、また材質の変更で対処するには溶接性の関係等から限界がある。そこで図11乃至図13に示す第2の実施例のプロテクタ21に於ては、熱応動板支持体と熱応動板との熱交換関係を向上させるために、弾性板31が熱応動板支持体30とハウジング3との間を通るように構成され発熱体である熱応動板支持体と熱応動板とを直接対向させている。
【0054】
この図11乃至図13に示すプロテクタ21においては、前述の実施例と同様の部分には同一の符号を付けてそれぞれについての詳細な説明は省略する。熱応動板支持体30は両端部に設けられた固定部30Aをそれぞれハウジング3に溶接固定されている。また中間部30Bは押圧片35と干渉しないように迂回した形状にされ、且つ弾性板31との干渉を避けるために若干の段差を前述の実施例とは逆にハウジング方向に突出するように設けられている。この熱応動板支持体30には押圧片35と干渉しないように熱応動板支持体の固定部30A間に収るよう全体の幅を選定された弾性板31が中間部30Bに溶接等により固定され、弾性板の他端には熱応動板12が固着片13を介して固定されている。
【0055】
ここで弾性板31はハウジング3と熱応動板支持体30の間を通して接続されている。そのため発熱体である熱応動板支持体30が直接熱応動板12と対向する構造とされるので、熱応動板支持体の抵抗値、つまり発熱量が上げられない場合にも熱応動板支持体からの熱が伝わりやすくなり3相電源の各相間の過電流等に対するプロテクタの応答性を揃えることができる。
【0056】
押圧片35は前述した如くその先端部と後端部に熱応動板と当接する突起を設けた形状とし、ハウジング3の較正部3B内側に溶接などにより固定されており、通常は先端部35Aで熱応動板12の両可動接点14A,14Bを対称に分ける中心線上で絞り中心近傍に当接すると共に、後端部35Bが熱応動板12と弾性板11との固定部である突起部12A近傍において近接している。熱応動板12の反転時にはこの突起部12Aが押圧片後端部35Bに当接し、この部分の移動を抑制する。そのため熱応動板の反転時の力による移動量は確実に可動接点14A、14Bに付与され、反転時の力が有効に接点の開離力として作用し、軽度の溶着が起きても接点間を開離することができる。
【0057】
以上述べた本発明のプロテクタの電動機巻線への取付けについて図14及び図15を参照して説明する。このプロテクタ1のリード端子ピン5A,5B及び金属板4には夫々リード線51A,51B,51Cの一端が接続固定される。これらのリード線の他端は各々後述する電動機の各相巻線に接続される。プロテクタ1にはポリエステルやポリアミド等の絶縁被覆52が被せられ、熱収縮や超音波溶接等の方法で固定される。本発明では三相用サーマルプロテクタとしての構造を持ちながらプロテクタ全体を細長い形状となし得たことにより、絶縁被覆としてポリエステルチューブの様な熱収縮チューブを使用する場合においても、チューブへのプロテクタの挿入作業が従来の幅が広い形状のプロテクタと比較して容易になり作業性が向上する。
【0058】
こうして絶縁被覆を被せられたプロテクタ1は、図15に示すようにハウジング3の上面を電動機61のコイルエンド61A上に密着させ、且つハウジング3の膨らみを有する側をコイルエンド61Aの外周に沿わせるように配置して縛り紐等により固定される。この電動機61はY結線の三相用電動機であり、前述の様にリード線51A,51B,51Cの他端はこの電動機の各相巻線に接続され、電動機の中点をプロテクタ1が開閉するようにされている。
【0059】
この様にして取付けた場合、従来の三相用プロテクタの様にほぼ円形の熱応動板を使用した縦横寸法のほぼ等しい形状をしたものにおいては、コイルエンドの幅よりもプロテクタの幅が広くなってしまうので取付けが困難になるという問題があった。しかしながら本発明においては従来のプロテクタと比較して細長く且つ電動機固定子巻線のコイルエンドの円弧形状に沿わせて収めるためにプロテクタの幅を巻線の幅と同等若しくは細くすることが容易になり電動機のコイルエンド上への取付け作業が楽になる。
【0060】
【発明の効果】
本発明のサーマルプロテクタは、押圧片が熱応動板の通常凸となる側に絞り中心近傍で押圧片と熱応動板との間に流れるバイパス電流が実質的に問題にならないような状態で当接することにより、発熱体としての熱応動板支持体に確実に所定の発熱をさせることができ、その抵抗値の選定に於て自由度が広がる。
【0061】
また電気絶縁物や高抵抗材料を挿入片等として押圧片と熱応動板の接触部間に挿入したり、押圧片と一体に固定することによって、押圧片と熱応動板との間に流れるバイパス電流が実質的に問題にならないような状態とすることができる。
【0062】
また本発明のサーマルプロテクタは、従来の縦横寸法のほぼ等しい形状を有したプロテクタと比較して熱応動板を横方向に細長くしたことにより全体の構造も細長い形状にされたプロテクタの動作温度較正用の押圧片を少なくとも熱応動板と弾性板との固定部近傍において近接または当接させることによって、熱応動板反転時の力が可動接点部側に働かなくなることを防ぎ接点が溶着した場合にも接点を開離する力として有効に使うことができる。またこの様な構造とすることにより、構造上弾性板によって与えられる引き離し力をあまり大きく設定できない場合に於て溶着による力が前記引き離し力を上回っていても、熱応動板の反転時の力が接点間の溶着力に勝っていれば確実に接点間を開離する事ができる。
【0063】
また蓋板の金属板と固定接点支持体との間に両者の距離を規定するための位置決め部材を挿入したことにより、発熱体とするために固定接点支持体の厚さを薄くしてもその先端を確実に所定の位置で保持することができ、金属板と固定接点支持体との耐電圧性を確保すると共に電流による固定接点支持体の発熱量を大きくすることができる。
【0064】
さらに位置決め部材を固定接点支持体と蓋板とで弾性的に挟持する構造としたことにより、位置決め部材の取付けが容易になるとともに、接点及び固定接点支持体の熱をハウジングへ良好に伝導して過大電流時の接点を開放する迄の時間(S/T)を所定の時間とする電流値と最大限界運転電流値(U.T.C.)とを電動機の運転性能を充分に発揮する方向に近づける特長を有する。
【0065】
またさらに熱応動板支持体と弾性板と熱応動板とを互いに平行且つ所定の間隔で対向するように配置し、熱応動板支持体が弾性板を間に介して熱応動板の一部平面が弾性板に設けられた開口部より直接向かい合うようにして熱応動板支持体と熱応動板との熱交換関係を調整することにより、発熱体である固定接点支持体または熱応動板支持体を通る各々の電路への通電時の熱応動板の温度上昇条件を実質的に揃えるように加減することができる。
【0066】
さらに熱応動板支持体と弾性板と熱応動板とを互いに概ね平行で且つ所定の間隔で対向するように配置し、弾性板を熱応動板支持体と熱応動板との間に介在しないように熱応動板支持体の背面側に配設して熱応動板支持体からの輻射熱が遮られることなく熱応動板に達するようにすることにより、熱応動板支持体の抵抗値を高く設定できない場合にも発熱体である固定接点支持体または熱応動板支持体を通る各々の電路への通電時の熱応動板の温度上昇条件を実質的に揃えるように加減することができる。
【0067】
また組付上の誤差によって突起部とは逆の側に押圧片が当接する事を防ぐために、押圧片の熱応動板への当接位置を絞り加工の中心乃至中心から熱応動板の固定端たる突起部寄りに設定する事により、熱応動板の力を有効に使うことができ接点溶着の可能性を低減することができる。
【図面の簡単な説明】
【図1】本発明のサーマルプロテクタの一例の縦断面図
【図2】図1のサーマルプロテクタのA−A断面矢視図
【図3】図1のサーマルプロテクタの接点開放状態を示す縦断面図
【図4】図1のサーマルプロテクタの斜視図
【図5】図1のサーマルプロテクタのハウジングを除いた分解斜視図
【図6】図1のサーマルプロテクタの平面図
【図7】図1のサーマルプロテクタの側面図
【図8】本発明に使用される押圧片の一実施例
【図9】本発明に使用される押圧片の他の実施例
【図10】本発明に使用される押圧片の他の実施例
【図11】本発明のサーマルプロテクタの他の実施例の断面図
【図12】図11のサーマルプロテクタのB−B断面矢視図
【図13】図11のサーマルプロテクタの内部構造を説明するための斜視図
【図14】図1のサーマルプロテクタに絶縁被覆を被せた状態を示す斜視図
【図15】図1のサーマルプロテクタの取付け状態を示す斜視図
【図16】従来のサーマルプロテクタの一例の縦断面図
【図17】図16のサーマルプロテクタのC−C断面矢視図
【符号の説明】
1,21:サーマルプロテクタ
2:蓋板
3:ハウジング
4:金属板
5A,5B:リード端子ピン
6:充填材
7A,7B:固定接点支持体
8A,8B:固定接点
9A,9B:位置決め部材
10,30:熱応動板支持体
10A,30A:固定部
10B:中間部
11,31:弾性板
11A:中間部
11B,11C:両端部
11D:開口部
12:熱応動板
12A:突起(接続部)
13:固着片
14A,14B:可動接点
15,35,45,55,65:押圧片(温度調整機構)
15A,35A,45A:押圧片先端部
15B,35B,45B:押圧片後端部
16:挿入片(電気絶縁物)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal thermal protector suitable for protecting a motor used in a hermetic electric compressor, in particular, a three-phase motor from burning.
[0002]
[Prior art]
Conventional thermal protectors of this type (hereinafter referred to as protectors) include, for example, “thermally responsive switch” disclosed in Japanese Patent Application Laid-Open No. 56-130040 and “thermally responsive snap switch” disclosed in Japanese Patent Application Laid-Open No. 62-88232. These protectors are attached to a single-phase electric motor. The central part of the protector is fixed to one end of a thermally responsive plate such as a bimetal drawn into a dish shape, and the other end is fixed to an elastic plate. The pressure between the contacts and the operating temperature are regulated by pressing the vicinity of the center of the convex surface of the thermally responsive plate at a predetermined pressure with the fixed contact and the support part in contact with each other. These protectors are attached to one end of the thermal reaction plate and the surrounding heating element when the current flows between the terminals. The movable contact is separated from the fixed contact and the electric circuit is interrupted.
[0003]
In particular, three-phase protectors include, for example, “three-phase thermal protectors” disclosed in Japanese Patent Application Laid-Open Nos. 57-34623, 1-105435, and 6-96649. In these three-phase protectors, the central part of the three-phase protector is arranged on a substantially circular thermo-responsive plate drawn into a dish shape so that the fixing points of the two movable contacts and the elastic plate are substantially equilateral triangles, The pressure between the contacts and the operating temperature are regulated by pressing the fixed contact and the support part in the vicinity of the center of the convex surface of the thermally responsive plate, that is, in the vicinity of the center of the equilateral triangle described above with a predetermined pressure. It is. These three-phase protectors are attached to the middle point of the so-called Y-connected motor, and when the motor is abnormal, the midpoint is opened by reversing the thermal response plate in the same way as the single-phase protector described above. It is comprised so that the electric circuit between each phase may be interrupted | blocked. In these products, a structure is used in which the thermal reaction plate is operated mainly by using the heat generated by the thermal reaction plate itself by passing an electric current through the thermal reaction plate such as a bimetal. In order to maintain a good balance, a flat plate with a substantially flat vertical and horizontal dimension and a flat cross-sectional shape is used. It is said that.
[0004]
In each of the protectors described above, a structure in which the movable contact is fixed to the free end of the thermally responsive plate and the other end is fixed to the elastic plate prevents unnecessary stress from being applied to the fixing point. This elastic plate also has a role as a heater for supplementing the amount of heat generated by the thermally responsive plate. However, especially when the rated current is large or the operating temperature of the thermally responsive plate is set high, the so-called annealing effect may occur when the elastic plate becomes a high temperature as a heater, and the performance as the elastic plate may deteriorate. There was a problem that it could not be used for a relatively high output. If a rigid heater is used instead of the elastic plate in order to avoid this problem, the operating temperature may change due to an excessive stress applied to the fixing point of the thermally responsive plate.
[0005]
When an elastic plate is used, the three-phase protector corrects the inclination of the thermal response plate by twisting the elastic plate even if the thermal response plate is slightly inclined with respect to the contact point during assembly. Although the pressure between the contacts of a set can be balanced, if such a balancing plate is not held if the thermal plate is held by a rigid body, an individual pressure adjustment mechanism is provided between the contacts or with very high accuracy. It must be assembled so that the two contacts open and close at the same time and have the same contact pressure.
[0006]
Furthermore, the conventional three-phase protector has a shape that is almost equal in vertical and horizontal dimensions using a substantially circular heat-responsive plate. Therefore, especially when attaching to a coil end on a motor winding, so-called coil end, the coil end Since the width of the protector becomes wider than the width, there is a problem that the mounting becomes difficult. Recently, the whole electric compressor tends to be downsized and the diameter of the electric motor tends to be small, and if the width of the protector is made smaller than the width of the coil end with the conventional structure, the whole must be downsized. The current capacity becomes small and the manufacture becomes difficult.
[0007]
Since the conventional three-phase protector has substantially the same vertical and horizontal dimensions, the work of attaching an insulating coating for insulation to the protector has been troublesome. This is because the protector's container is normally a charging part, and when it comes into contact with other conductive parts, it is necessary to cover with an insulating coating such as a polyester tube in order to cause problems such as a short circuit. Usually, a method is adopted in which a polyester tube having an inner circumference slightly larger than the outer circumference of the protector is covered and fixed to the surface of the protector by heat shrinkage. In this case, since the heat shrinkage rate of the polyester film is not so large, the difference between the outer periphery of the protector and the inner periphery of the polyester tube is small. Therefore, if the protector has a flat cross-sectional shape with almost the same vertical and horizontal dimensions as the above-mentioned protector, it is necessary to greatly deform the tube when the protector is inserted into a substantially cylindrical polyester tube, and positioning is difficult and cumbersome and cumbersome. It will take something.
[0008]
In order to solve these problems, the present applicant has proposed a novel thermal protector in Japanese Patent Application No. 8-195634 and Japanese Patent Application No. 8-297543. This thermal protector has two movable contacts attached almost symmetrically with respect to the center of the plate-like diaphragm of the thermal reaction plate. The thermal response plate is made longer than the conventional one and each By arranging the parts so that they are almost stacked in parallel, the overall structure can be elongated compared to a conventional protector with almost the same vertical and horizontal dimensions, making it easy to mount on the coil end of the motor. Become.
[0009]
The conventional protector will be described with reference to FIG. 17 which is a longitudinal sectional view of FIG. 16 and a CC sectional view thereof. The protector 101 forms an airtight container with a metal housing 3 and a cover plate 2, and a heat responsive plate support 110 is connected and fixed to the inside of the housing 3, and the heat responsive plate support 110 is elastic to the heat responsive plate support 110. One end of the plate 11 is fixed. Further, the other end of the elastic plate 11 is fixed with a heat-responsive plate 12 drawn in a shallow dish shape having movable contacts 14 </ b> A and 14 </ b> B via a fixing piece 13. By adopting such a structure, even when the thermally responsive plate 12 is slightly inclined with respect to the contacts at the time of assembly, the elastic plate is twisted to correct the inclination, so that the pressure between the two sets of contacts can be balanced. Further, the elastic plate 11 is applied with a biasing force in a clockwise direction around the fixing piece 13 in FIG. For this reason, when the thermally responsive plate 12 is reversed, this biasing force acts as a pulling force of the movable contacts 14A and 14B, and the movable contacts can be separated from the fixed contacts 8A and 8B.
[0010]
The lid plate 2 is composed of a metal plate 4 and lead terminal pins 5A and 5B which are airtightly insulated and fixed to the metal plate 4 with a filler 6 such as glass. The lid plate 2 is formed at the inner end of the lead terminal pins 5A and 5B penetrating the metal plate 4. The fixed contacts 8A and 8B are connected and fixed via fixed contact supports 7A and 7B. A metal pressure piece 115 for temperature calibration is fixed to the inside of the housing 3, and the tip 115 </ b> A is in contact with the vicinity of the center of the diaphragm that is convex in the normal state of the thermally responsive plate 12. The protector 101 has its operating temperature calibrated by deforming the vicinity of the pressing piece fixing portion of the housing 3 and adjusting the pressing force to the thermally responsive plate 12. Further, each of the thermally responsive plate support 110 and the fixed contact supports 7A and 7B is a heating element, and each is adjusted so that heat applied to the thermally responsive plate 12 is substantially equal.
[0011]
[Problems to be solved by the invention]
For example, in such a protector, a material having a high specific resistance value such as nickel-chromium alloy or iron-chromium alloy is used as the material of the heat-responsive plate support 110, which is a heat generating portion, in order to increase the amount of heat generated by an internal current. May be used. Here, in the protector 101, the metal pressing piece 115 which is a temperature calibration member is in direct contact with the central portion of the thermally responsive plate 12, so that the bypass current flowing through the pressing piece 115 becomes a problem. . That is, when the resistance value of the thermally responsive plate support 110 is low, the contact resistance between the pressing piece and the thermally responsive plate is sufficiently high so that the bypass current does not flow so much, but the resistance of the thermally responsive plate support 110 is low. When the value is increased, the contact resistance is relatively lowered, so that the current that should flow through the thermally responsive plate support 110 flows as a bypass current through the pressing piece 115, and the resistance value of the thermally responsive plate support 110 is reduced. There was a problem that the increased effect could not be obtained sufficiently.
[0012]
[Means for Solving the Problems]
Therefore, the thermal protector of the present invention has a sealed container composed of a lid plate and a generally long dome-shaped housing, and a fixed contact is provided inside the sealed container of the two lead terminal pins insulated and fixed to the lid plate. Is fixed conductively through a fixed contact support, a pressure piece for operating temperature calibration is fixed to the inner surface of the housing, and a metal heat-sensitive plate support is fixed to the inner surface of the housing. A thermally responsive plate that changes its bending direction in a snap manner according to different temperatures by being drawn into a shallow dish shape is connected and fixed to the plate support through an elastic plate. In this protector, the thermally responsive plate is mounted so that two movable contacts can be opened and closed correspondingly to the fixed contact substantially symmetrically with respect to the center of the dish-shaped diaphragm, and the pressing piece is a normal convex of the thermally responsive plate. The bypass current flowing between the pressing piece and the thermal reaction plate in the vicinity of the center of the diaphragm in a state that does not substantially cause a problem, and at least in the vicinity of the fixing portion between the thermal reaction plate and the elastic plate It is characterized in that the contact is made in such a manner that the bypass current is not substantially problematic. Therefore, the heat-responsive plate support as a heat generating body can surely generate a predetermined heat, and the degree of freedom is widened in selecting the resistance value.
[0013]
Another feature is that an electrical insulator such as polyamide paper is inserted between the pressing piece and the thermally responsive plate.
[0014]
Yet another feature is that the pressing piece has an electric insulator integrally fixed to a metal base portion.
[0015]
Another feature is that an imaginary line connecting each movable contact point from the connection portion between the thermally responsive plate and the elastic plate forms an angle of 90 ° or more, and an approximately isosceles triangle is formed by three points of the connection portion and each movable contact point. Accordingly, the shape of the protector having a shape having relatively equal vertical and horizontal dimensions is made longer than that of the conventional protector, so that the motor can be easily mounted on the winding.
[0016]
Another feature is that a thin material is used to make the fixed contact support as a heating element by placing a positioning member between the metal plate of the cover plate and the fixed contact support to define the distance between them. However, the distance between the metal plate and the fixed contact support is not reduced or the two are not in contact with each other.
[0017]
Still another feature is that a special operation for attaching the positioning member as an insulating plate to the lid plate is eliminated by elastically holding the positioning member between the fixed contact support and the lid plate.
[0018]
Still another feature is that the thermally responsive plate support, the elastic plate, and the thermally responsive plate are substantially parallel to each other, and the thermally responsive plate support and the elastic plate, and the elastic plate and the thermally responsive plate face each other at a predetermined interval. The radiant heat from the thermally responsive plate support is directly applied to the thermally responsive plate through an opening in which the thermally responsive plate support is interposed between the elastic plate and the partial plane of the thermally responsive plate is provided in the elastic plate. It is to have reached.
[0019]
Still another feature is that the thermal reaction plate support, the elastic plate, and the thermal reaction plate are substantially parallel to each other, and the thermal reaction plate support and the elastic plate, and the thermal reaction plate support and the thermal reaction plate are set at predetermined intervals, respectively. The elastic plate is not interposed between the thermal reaction plate support and the thermal reaction plate, and is disposed on the back side of the thermal reaction plate support. This is because the radiant heat reaches the heat responsive plate without being blocked.
[0020]
Another feature is that the position of contact of the pressing piece with the heat-responsive plate is arranged from the center of the plate-shaped diaphragm to the protrusion that is the fixed end of the heat-responsive plate, thereby effectively using the force of the heat-responsive plate. This is because the possibility of using contact welding has been reduced.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on examples with reference to the drawings. The thermal protector 1 according to the first embodiment shown in FIGS. 1 to 7 forms an airtight container with a cover plate 2 and a housing 3. The cover plate 2 is provided with through holes 4A and 4B at both ends of a substantially oval metal plate 4, and conductive lead terminal pins 5A and 5B are hermetically insulated and fixed to the through holes by a filler 6 such as glass. Has been. In the present embodiment, the metal plate 4 of the lid plate 2 has a sufficient thickness, and a flange portion 4C having a small thickness for improving the weldability with the housing 3 is constant on the outer periphery thereof. It is provided so that it may be edged.
[0022]
The housing 3 is made of a metal plate that is thinner than the lid plate 2, and has a dome shape with a flat surface 3A on the upper surface as shown in the perspective view of FIG. 4 and the plan view of FIG. From the intermediate part of the flat part 3A, a calibration part 3B which is deformed in an operating temperature calibration described later is provided so as to protrude sideways in the same plane as the flat part 3A as shown in FIG. Therefore, the planar shape of the housing 3 is a shape in which the side having the calibration part 3B is slightly swollen as shown in FIG. The above-mentioned airtight container is configured by abutting the opening end portion of the housing 3 with the flange portion 4C at the peripheral edge portion of the cover plate and airtightly fixing by ring projection welding or the like.
[0023]
One end of a fixed contact support 7A, 7B is fixed to each end of the lead terminal pins 5A, 5B inside the sealed container by a method such as welding, and the other fixed contact support 7A, 7B is fixed to the other end. 8A and 8B are fixed. In the present embodiment, it is preferable that the surfaces of the fixed contacts 8A and 8B that are in contact with the movable contacts are plastically deformed into a planar shape by pressing or the like after being fixed to at least the fixed contact support, and the heights thereof are made uniform. By doing so, the heights of the two fixed contacts before temperature calibration are aligned with high accuracy for each product, and the temperature calibration work becomes easy. Further, if the contact surfaces of the fixed contacts 8A and 8B with the movable contacts are flat, even if the contact positions of the movable contacts 14A and 14B described later are slightly shifted in the horizontal direction, they are in contact as in the case of curved contact points. Since the pressure does not change, a protector with more stable performance can be obtained.
[0024]
In this embodiment, an insulating plate made of ceramics or the like is mounted between the fixed contact supports 7A and 7B and the metal plate 4 as positioning members 9A and 9B for defining the distance between the two. Yes. Further, in this embodiment, the positioning members 9A and 9B are elastically sandwiched by the fixed contact supports, respectively, to facilitate the work necessary for fixing the non-metallic positioning member to the lid plate 2. Further, by selecting a material such as alumina having good thermal conductivity for the positioning members 9A and 9B, heat can be quickly released to the metal plate 4 from the fixed contact heated by an arc or the like generated when the contact is opened. The temperature can be lowered, the arc can be quickly terminated as well as the fixed contact is consumed, and the life of the protector can be extended.
[0025]
Furthermore, by adopting a structure that conducts the heat of the contact and the fixed contact support to the housing through the positioning member, the difference between the amount of heat generated inside the protector and the amount of heat released to the outside of the protector at the current value at which continuous operation is possible. Therefore, even if the continuous operation current value is increased, the temperature of the thermally actuated body does not change much, and the maximum limit operation current value (U.T.C.) can be increased compared to the conventional one. . In addition, when the electric motor rotor is constrained, the heat generation amount is sufficiently large compared to the heat dissipation amount when the current is excessive. Even if the structure is short and the heat of the contact and the fixed contact support is conducted to the housing through the positioning member, the time until the contact is opened (Short Time Trip: S / T) is not so long, and the protector is quickly activated when overcurrent occurs. Works. In this way, by selecting a positioning member having a good thermal conductivity, the current value and rated operating current value at which the time (S / T) until the contact is opened is set to a predetermined time, for example, 10 seconds, at room temperature. (UTC) can be brought close to each other, and the driving performance of the electric motor can be sufficiently brought out.
[0026]
As shown in FIG. 5, the positioning members 9A and 9B have portions in contact with the lead terminal pins so that the fixed contact supports 7A and 7B can be inserted from the side after being fixed to the lead terminal pins 5A and 5B. Although it is U-shaped, for example, the fixed contact support may be fixed to the lead terminal pin after a positioning member provided with a through hole is inserted into the lead terminal pin. Further, the positioning members 9A and 9B ensure electrical insulation between the fixed contact supports 7A and 7B and the metal plate 4, and when the both fixed contact supports are relatively thin so as to be heating elements, Although it is necessary to define the position of the fixed contact even if the rigidity is lowered, for example, a rib etc. is formed on the fixed contact support body so that the rigidity is sufficient and the insulation distance from the metal plate is set to a necessary dimension. If set, the positioning members 9A and 9B can be omitted.
[0027]
A thermally responsive plate support 10 is fixed to the inner surface of the housing 3. The thermally responsive plate support 10 is a metal plate having sufficient rigidity, and is fixed by welding and fixing the fixed portions 10A bent at the both ends to the fixing portions 3C located near the both ends of the housing 3. It is supposed to be a supporting structure. Further, the intermediate portion 10B has a detoured shape so as not to interfere with a temperature adjusting mechanism which will be described later, and is also provided with a slight step to avoid interference with an elastic plate which will be described later. Furthermore, the thermally responsive plate support 10 is configured such that the overall shape is symmetrical with respect to the intermediate portion 10B. Needless to say, this portion may have any shape as in the embodiment as long as it has a through hole in the central portion to avoid interference with the operating temperature calibration pressing piece 15.
[0028]
The reason why the fixing portions 10A of the thermoresponsive plate support 10 are provided at both ends is a portion that is less affected by deformation even if the calibration portion 3B is deformed in a temperature adjustment operation described later by providing a sufficient distance from the calibration portion 3B. This is to fix the thermally responsive plate support to the surface. In addition, by setting the fixed portion 10A at two positions on both ends of the thermally responsive plate support 10, the thermally responsive plate support is supported in a cantilever shape even if the fixed portion is slightly displaced for some reason. This is because there is an advantage that the amount of displacement of the intermediate portion 10B to which an elastic plate, which will be described later, is fixed can be reduced.
[0029]
The intermediate portion 10B of the thermally responsive plate support is formed by an elastic plate 11 having a substantially oval shape and having an open side surface of an annular plate having an opening portion 11D at the center portion. It is fixed. Although both end portions 11B and 11C of the elastic plate 11 are separated in the embodiment, an annular elastic plate may be used without separation. In the embodiment, by providing the opening 11D, the heat-responsive plate support 10 serving as a heating element and the heat-responsive plate 12 described later are directly opposed through the opening 11D. Further, the elastic plate 11 gives the thermal reaction plate a clockwise biasing force centered on the fixing piece 13 shown in FIG. 2, and requires flexibility to control the balance action of the movable contact of the thermal reaction plate. The area is not large, and depending on the material, there is a problem that the characteristics as a protector change when the temperature becomes high due to the energizing current, and the characteristics as a protector change. A metal plate is preferred. For example, the use of a clad material produced by bonding a copper plate having a low specific resistance and a steel plate having excellent spring properties is more preferable as an elastic plate that suppresses heat generation.
[0030]
The thermally responsive plate 12 is such that a member that is deformed by heat, such as a bimetal or a trimetal, is drawn into a shallow dish shape, etc., so as to suddenly reverse and return suddenly at a predetermined temperature. The two movable contacts 14A and 14B are fixed substantially symmetrically with respect to the center of the plate-like diaphragm at both ends in the longitudinal direction, and substantially connected portions between the thermally responsive plate and the elastic plate 11 on one central side. It is the shape which provided 12 A of protrusion parts used as a fixing | fixed part. A fixed piece 13 is attached to the protruding portion 12A by welding or the like, and in this state, the thermally responsive plate 12 is subjected to a drawing process or the like in a dish shape so as to reverse and return at the predetermined temperature. Further, the fixing piece 13 and the elastic plate 11 are fixed by welding or the like. Therefore, the thermally responsive plate is hardly affected by heat or stress generated when the thermally responsive plate 12 is connected and fixed to another member, in the embodiment, an elastic plate, and the operation temperature adjusted in advance is hardly changed. When the thermal reaction plate 12 is fixed to another member such as an elastic plate, a fixed piece is used in order to prevent a change in the operating temperature of the thermal reaction plate from becoming a problem. 13 can be omitted.
[0031]
Further, the fixed positions of the movable contacts 14A and 14B are set so that an imaginary line connecting the movable contacts from the projecting portion 12A serving as the connecting portion forms an angle of 90 ° or more, and the projecting portion 12A and the movable contacts 14A and 14B are connected to each other. Three points form an isosceles triangle. By adopting such a positional relationship, the shape of the thermally responsive plate can be elongated in the width direction, for example, approximately oval, and as a result, the shape of the protector can be elongated to facilitate mounting on the winding of the motor. Is.
[0032]
The thermally responsive plate 12 is connected and fixed to both end portions 11B and 11C of the elastic plate 11 through fixing pieces 13. The fixing piece 13 is fixed by a method such as welding with a projection 12A of a thermally responsive plate at a central plane portion and an elastic plate 11 at the end surfaces of welded portions 13A and 13B extending in the longitudinal direction at both ends thereof. The thermally responsive plate support 10, the elastic plate 11, and the thermally responsive plate 12 are arranged substantially parallel to each other, and the cover plate 2 and the fixed contact supports 7A and 7B are also substantially parallel. The movable contacts 14A and 14B are opposed to the fixed contacts 8A and 8B, respectively, and are configured to be able to open and close the electric circuit by being separated from and brought into contact with each other in accordance with the reversal and return of the thermally responsive plate 12. Further, since the thermal reaction plate 12 is elastically held by the elastic plate 11, the thermal reaction plate 12 is attached to the thermal reaction plate 12 with a slight inclination, so that even if the contact pressure varies between the two sets of contacts, the thermal reaction plate 12 is elastic. The plate 11 is bent and the contact pressure between the two contacts can be made substantially the same.
[0033]
One end of the pressing piece 15 as a temperature adjusting mechanism in the longitudinal direction is fixed to the inner side surface of the calibration part 3B provided in the housing 3 by a welding part 15C. This pressing piece 15 is made of a metal having sufficient rigidity, and on the center line that symmetrically divides the movable contact to the convex surface at the normal temperature of the thermally responsive plate 12, as shown in FIG. The part 15B is in contact with or close to almost the entire surface, and a predetermined pressing force is applied by a method as described later.
[0034]
In the present embodiment, an insertion piece 16, which is an electrical insulator, is sandwiched between the pressing piece 15 and the thermally responsive plate 12 in order to prevent a bypass current from flowing through the pressing piece. The material of the insert piece 16 is preferably a flexible material having sufficient electrical insulation, heat resistance and strength, such as polyamide paper, but it does not hinder the operation of the thermally responsive plate 12. Not as long.
[0035]
The insertion piece 16 of the present embodiment has, for example, a T-shaped planar shape, and one side 16A is assembled into a space surrounded by the heat-responsive plate 12, the elastic plate 11, and the welded portions 13A and 13B of the fixing piece 13 during assembly. The position is determined by insertion. Further, by making the insertion piece 16 wider at the other end with respect to the insertion end like a T-shape, the insertion piece is not inserted deeper than necessary. Further, by fixing the heat-responsive plate support 10 to the housing 3 after insertion, the other end of the insert piece is positioned between the heat-responsive plate or the like and the housing. Even if the above treatment is not performed, the inserted piece does not shift to a position beyond the contact with the housing 3, and therefore does not fall off completely. A flexible one is suitable for the insertion piece 16, and it is preferable not to affect the operation of the thermally responsive plate or the like even if it comes into contact with the housing 3.
[0036]
The calibration of the operating temperature of the protector 1 is performed after the airtight container is completed, and the calibration part 3B of the housing 3 is crushed by jigs G1 and G2 that sandwich the metal plate 4 of the cover plate 2 and the housing 3 as shown in FIG. Deformed. In this embodiment, the jig G2 receives almost the entire circumference of the flange portion 4C of the cover plate 2, and the jig G1 presses and deforms the calibration portion 3B in the direction of arrow G, thereby displacing the pressing piece 15 and its tip portion 15A. A pressing force is applied to the side of the thermally responsive plate 12 that protrudes at room temperature via the. This pressing position is an intermediate point between the movable contacts 14A and 14B, and the pressing force is supported by the fixed contacts 8A and 8B via these movable contacts 14A and 14B. The contact pressure is increased and appropriately adjusted by the deformation operation of the housing 3 so that the thermal reaction plate 12 is adjusted so as to reverse the bending direction in a snap manner as shown in FIG. 3 at a desired operating temperature.
[0037]
Here, since the rear end 15B side, which is one end in the longitudinal direction of the pressing piece 15, is fixed to the calibration unit 3B, the amount of deformation of the calibration unit 3B in the operation temperature calibration operation is small even if the amount of deformation is small. The displacement of the tip portion 15A which is the end is enlarged by the lever principle and becomes a sufficient value. Further, as described above, since the fixed portion 10A of the thermally responsive plate support 10 is fixed to the fixing portions 3C located near both ends of the housing 3, the calibration portion 3B near the center is slightly deformed in the operation temperature calibration operation. But it will not be affected. Therefore, the deformation of the thermally responsive plate support 10 is substantially absent. At this time, the elastic plate 11 is applied with a biasing force in the clockwise direction around the fixing piece 13 in FIG. Therefore, when the thermally responsive plate 12 is reversed, it can be surely tilted in that direction to separate the movable contact from the fixed contact, and when the movable contact is separated from the fixed contact by the snap inverting operation of the thermally responsive plate. Chattering can be eliminated and calibrated to a predetermined operating temperature.
[0038]
The protector 1 configured as described above is moved from the fixed contacts 8A and 8B to the movable contacts 14A and 14B when the heat-responsive plate 12 snaps and snaps in a desired first temperature, for example, at 130 ° C. as shown in FIG. Are simultaneously released, and when a predetermined second temperature lower than the first temperature, for example, 90 ° C. is reached, sudden jumping is resumed to return to the state shown in FIG. 1 and the contacts are simultaneously closed.
[0039]
If such a protector is used for a long period of time, the contact surface may be roughened due to an arc or the like generated when the contact is opened or closed, causing welding. Usually, if the welding is mild, it is released by the reversing movement of the thermally responsive plate and the pulling force applied by the elastic plate.
[0040]
In the present embodiment, as shown in FIG. 2, the pressing piece 15 abuts in the vicinity of the center of the diaphragm of the thermally responsive plate 12 at the front end portion 15A, and the thermally responsive plate extends from the front end portion 15A to the rear end portion 15B. It was comprised so that it might contact | abut or adjoin. In this way, the thermally responsive plate 12 is attached to the fixed portion of the fixed piece 13 that is in the vicinity of the fixed portion between the thermally responsive plate 12 and the elastic plate 11 at the time of inversion shown in FIG. Further movement is prevented by contacting the end 15B. In this way, at the normal time, the movable contact side of the thermally responsive plate 12 moves more greatly, and the distance between the contacts can be increased. Further, even when light welding occurs between the contacts, the projecting portion 12A to which the fixing piece 13 is fixed contacts the pressing piece rear end portion 15B, so that the acting force when the thermally responsive plate 12 is reversed is the movable contact 14A. 14B, the force at the time of reversal becomes a force for effectively separating the contacts, and the contacts can be reliably separated.
[0041]
The protrusion 12A of the heat responsive plate 12 and the pressing piece rear end 15B are in contact with each other with a very weak force from the normal time, or close so that they can be contacted when the heat responsive plate 12 is reversed, The proximity distance is preferably a position where the protrusion 12A can come into contact when it is assumed that the movable contact point of the thermally responsive plate is fixed, in particular, a distance of ½ or less of the movement amount when the protrusion 12A is reversed. .
[0042]
In the present embodiment, the end face of the pressing piece 15 is substantially flat and the rear end is in contact with or close to the heat responsive plate 12. However, the shape is not limited to this, and the heat responsive is shown. For example, a pressing piece 35 shown in FIG. 12 may be used as long as the front end of the plate comes into contact with the normal convex side of the plate in the vicinity of the center of the diaphragm and comes close to or comes into contact at least in the vicinity of the fixed portion between the thermally responsive plate and the elastic plate. It is good also as a shape which provided the processus | protrusion in the front-end | tip part 35A and the back end part 35B.
[0043]
Further, even if the pressing piece is L-shaped as shown in FIG. 17, there is little difference in height between the front end portion and the rear end portion, and the protrusion 12 </ b> A is formed at the rear end portion of the pressing piece when the thermally responsive plate 12 is reversed. What is necessary is just to contact | abut. As a specific example, like the pressing piece 45 shown in FIG. 8, the height h1 of the pressing piece front end portion 45A with respect to the back surface is compared with the height h2 of the rear end portion 45B. It is preferable that it is 1/20 or less with respect to the distance from the center to the tip of the protrusion. According to experiments, when the distance from the center of the diaphragm of the thermally responsive plate to the tip of the protrusion is about 8.5 mm, the effect is recognized when the difference in height between the tip of the pressing piece and the rear end is 0.4 mm or less. It was.
[0044]
In the first embodiment, a metal piece is used as the pressing piece, and the insertion piece 16 is sandwiched between the heat-responsive plate. For this reason, it is possible to prevent the current that should flow to the thermal plate support from bypassing the contact portion between the pressing piece and the thermal plate.For example, when the protector is used for an electric motor having a low rated current value, the amount of heat generated inside the protector is reduced. In order to increase the amount of heat generation, the amount of heat generation can be reliably increased by increasing the resistance value of the thermally responsive plate support serving as a heat generating portion. In other cases, it is further preferable to insulate the contact portion between the pressing piece and the thermally responsive plate with an electrical insulator. Furthermore, in this embodiment, an example in which an insertion piece having sufficient strength, heat resistance, and flexibility, such as polyamide paper, is used as an electrical insulator has been described as an example, but it is arranged so as not to hinder the operation of the thermal reaction plate and the like. Various heat resistant resins and ceramics may be used if provided.
[0045]
Furthermore, by using an electrical insulator or a high-resistance material as at least a part of the pressing piece so that the bypass current flowing between the pressing piece and the thermally responsive plate does not substantially become a problem, It is possible to omit the use of an insertion piece such as For example, a functionally gradient material in which metal and ceramics are combined in the pressing piece may be used. The pressing piece will be described with reference to FIG. The pressing piece 55 is a functionally graded material having one surface as a metal base layer 55A and the other surface as an electric insulator layer 55B made of ceramics such as alumina. In the intermediate layer 55C, the mixing ratio of the ceramic and the metal changes stepwise. Since the pressing piece 55 is not energized between the upper and lower ends in the drawing when resistance welding is performed, the energizing electrode is brought into contact with the side portion of the metal layer 55A and is pressed by the pressing electrode from above and below at the welding portion 55D. It is welded to the housing.
[0046]
Since the pressing piece 55 has a contact surface with the thermally responsive plate as the electric insulator layer 55B, no bypass current flows even if it directly contacts. Further, the electrical insulator layer 55B does not necessarily need to be a complete insulator. If the resistance value is sufficiently high with respect to the thermally responsive plate support and the bypass current does not cause a problem, the electrical insulator layer 55B has conductivity. May be.
[0047]
Further, as the pressing piece, an electric insulator fixed to a metal base by bonding or mechanical means may be used. This example will be described with reference to FIG. The pressing piece 65 includes a metal base 65A and an electric insulator 65B such as ceramics. The base 65A is provided with a groove along the longitudinal direction of one end thereof, and the electric insulator 65B is fitted so that its side surface is higher than the base. In the embodiment, so-called caulking is performed on both side surfaces 65A1 of the base 65A, and the electrical insulator 65B is mechanically fixed so as not to drop off. This pressing piece 65 can also be fixed to the housing by the welded portion 65D of the metal base 65A, and since the electrical insulator 65B is in contact with the thermally responsive plate, no bypass current flows even if it is in direct contact. .
[0048]
In this case, a non-conductive ceramic such as alumina is preferable as the electrical insulator. However, a conductive ceramic having a relatively high specific resistance value, such as barium titanate or boron nitride (BN), is preferable. ), Non-oxidizing ceramics such as silicon carbide (SiC) can also be used. In addition, so-called engineering plastics or the like may be used for those having a low operating temperature, and in this case, a metal base and an electrical insulator can be integrally formed.
[0049]
This protector 1 can be connected to the midpoint of the Y connection of the three-phase motor. That is, in the case of Y connection, the lead terminal pins 5A and 5B and the metal plate 4 (or the housing 3) are respectively connected to the coil ends that are the midpoints of the electric motor. If any abnormality occurs in the motor to be protected and its current increases, the heat generated by the members that form each circuit path increases, the protector reaches the operating temperature, the heat-responsive plate suddenly reverses, and the two contacts are separated. Shut off the power to the motor. Here, the resistance value, that is, the calorific value, is different between when the thermally responsive plate 12 itself is energized through the movable contacts 14A and 14B and when it is energized through each movable contact and the fixed piece 13. ing. Therefore, in the present embodiment, in order to make the operating conditions uniform between the phases of the three-phase power source, the resistance values of the fixed contact supports 7A and 7B and the heat-responsive plate support 10 which are heat-generating members, and the heat-generating members and the heat-sensitive plates. By adjusting the heat exchange relationship with each other, the temperature rise conditions of the thermally responsive plate 12 when energizing each electric circuit can be adjusted so as to be substantially uniform.
[0050]
As described above, in the present invention, in the conventional protector, the contact and the fixing portion are arranged so as to be substantially equilateral triangles, and the electric paths on the thermal reaction plate are made to be substantially equidistant. The heat generating plate itself compensates for the unbalanced heat generation with another heating element, and is substantially balanced. Furthermore, since an electrical insulator such as the insertion piece 16 is inserted into the contact portion between the thermal reaction plate 12 and the pressing piece 15 for insulation, the resistance value of the heating element, particularly the thermal reaction plate support 10 is selected. Increases freedom.
[0051]
In addition, it is possible to make the positional relationship between the movable contact and the fixed part on the thermally responsive plate an approximately right-angled isosceles triangle or an obtuse angle isosceles triangle, and each component is overlapped substantially parallel to this thermally responsive plate. Accordingly, the overall structure can be made elongated compared to a protector having a shape having substantially the same vertical and horizontal lengths, and mounting on the windings of the motor is facilitated. Furthermore, although the planar shape of the protector 1 of the present embodiment is a shape in which the side having the calibration portion is slightly swollen, the shape of the outer peripheral portion of the fixed winding of the motor to which the protector is mounted is included including the curved shape on the bulging side. By making it match, the mounting work on the motor winding becomes easier.
[0052]
Further, the contact position of the tip 15A of the pressing piece 15 of the protector 1 of the embodiment with the thermally responsive plate 12 is the center of the plate-like drawing process, which is substantially the center between the movable contacts 14A and 14B. Experiments have shown that the possibility of contact welding can be reduced by setting the abutment position from the center of the plate-shaped diaphragm to the protrusion near the fixed end of the thermally responsive plate. In this way, by setting the contact position of the pressing piece to the heat-responsive plate from the center to the center of the drawing process and closer to the protrusion that is the fixed end of the heat-driven plate, the contact of the heat-responsive plate can be used effectively. The possibility of welding can be reduced.
[0053]
Next, a second embodiment will be described. In the first embodiment, the elastic plate located between the heat-responsive plate support and the heat-responsive plate, which is a heat generating element, has a structure that partially shields the heat-sensitive plate support and the heat-sensitive plate. Therefore, the efficiency of heat transfer to the heat responsive plate may be insufficient. In this case, it is only necessary to increase the amount of heat generated by the thermally responsive plate support. However, it is difficult to take a method of reducing the cross-sectional area because some strength is required for its role, and it is also necessary to deal with changes in the material There are limitations due to weldability and other factors. Therefore, in the protector 21 of the second embodiment shown in FIGS. 11 to 13, the elastic plate 31 is provided with the heat responsive plate support to improve the heat exchange relationship between the heat responsive plate support and the heat responsive plate. The heat-responsive plate support that is configured to pass between the housing 30 and the housing 3 and that is a heat generating member is directly opposed to the heat-responsive plate.
[0054]
In the protector 21 shown in FIGS. 11 to 13, the same reference numerals are given to the same parts as those in the above-described embodiment, and the detailed description thereof will be omitted. The thermoresponsive plate support 30 is fixed to the housing 3 by fixing portions 30A provided at both ends. Further, the intermediate portion 30B has a detoured shape so as not to interfere with the pressing piece 35, and is provided with a slight step so as to protrude toward the housing, contrary to the above-described embodiment, in order to avoid interference with the elastic plate 31. It has been. The elastic plate 31 having an overall width selected so as not to interfere with the pressing piece 35 is fixed to the intermediate portion 30B by welding or the like so as not to interfere with the pressing piece 35. The thermally responsive plate 12 is fixed to the other end of the elastic plate via a fixing piece 13.
[0055]
Here, the elastic plate 31 is connected between the housing 3 and the thermally responsive plate support 30. Therefore, since the heat-responsive plate support 30 that is a heat generating member is directly opposed to the heat-responsive plate 12, the heat-responsive plate support is provided even when the resistance value of the heat-sensitive plate support, that is, the amount of heat generated cannot be increased. It becomes easy for heat from the heat to be transmitted, and the response of the protector to the overcurrent between the phases of the three-phase power supply can be made uniform.
[0056]
As described above, the pressing piece 35 has a shape in which protrusions that come into contact with the thermally responsive plate are provided at the front end portion and the rear end portion thereof, and is fixed to the inside of the calibration portion 3B of the housing 3 by welding or the like. The movable contact points 14A and 14B of the thermally responsive plate 12 are in contact with the vicinity of the center of the diaphragm on a center line that symmetrically divides, and the rear end portion 35B is in the vicinity of the protrusion 12A that is a fixed portion between the thermally responsive plate 12 and the elastic plate 11. It is close. When the thermally responsive plate 12 is reversed, the protrusion 12A comes into contact with the pressing piece rear end portion 35B to suppress the movement of this portion. Therefore, the amount of movement caused by the reversing force of the thermally responsive plate is reliably applied to the movable contacts 14A and 14B, and the reversing force effectively acts as a contact opening force. Can be separated.
[0057]
The attachment of the protector of the present invention described above to the motor winding will be described with reference to FIGS. One end of each of the lead wires 51A, 51B, 51C is connected and fixed to the lead terminal pins 5A, 5B and the metal plate 4 of the protector 1, respectively. The other ends of these lead wires are connected to respective phase windings of an electric motor, which will be described later. The protector 1 is covered with an insulating coating 52 such as polyester or polyamide, and is fixed by a method such as heat shrinkage or ultrasonic welding. In the present invention, the entire protector can be formed into an elongated shape while having a structure as a three-phase thermal protector, so that even when a heat-shrinkable tube such as a polyester tube is used as an insulation coating, the protector is inserted into the tube. The work becomes easier and the workability is improved as compared with a conventional protector having a wide shape.
[0058]
As shown in FIG. 15, the protector 1 thus covered with the insulation coating has the upper surface of the housing 3 in close contact with the coil end 61A of the electric motor 61, and the side of the housing 3 that has the bulge extends along the outer periphery of the coil end 61A. It arrange | positions so that it may be fixed with a tied string etc. This motor 61 is a Y-connected three-phase motor. As described above, the other ends of the lead wires 51A, 51B, 51C are connected to the respective phase windings of the motor, and the protector 1 opens and closes the midpoint of the motor. Has been.
[0059]
When mounted in this way, the width of the protector is wider than the width of the coil end in the case where the shape is almost the same in vertical and horizontal dimensions using a substantially circular thermal reaction plate like the conventional three-phase protector. As a result, there is a problem that the mounting becomes difficult. However, in the present invention, it is easier to make the width of the protector equal to or thinner than the width of the winding in order to be elongated and fit along the arc shape of the coil end of the motor stator winding in comparison with the conventional protector. Easy installation on the coil end of the motor.
[0060]
【The invention's effect】
The thermal protector of the present invention abuts on the side where the pressing piece is normally convex on the side of the thermally responsive plate in a state in which bypass current flowing between the pressing piece and the thermally responsive plate is not substantially problematic in the vicinity of the center of the throttle. As a result, the heat-responsive plate support as a heating element can surely generate a predetermined amount of heat, and the degree of freedom is widened in selecting the resistance value.
[0061]
In addition, a bypass that flows between the pressing piece and the thermal reaction plate by inserting an electrical insulator or a high resistance material as an insertion piece or the like between the contact portions of the pressing piece and the thermal reaction plate, or by being fixed integrally with the pressing piece. A state where the current does not substantially become a problem can be obtained.
[0062]
In addition, the thermal protector of the present invention is used to calibrate the operating temperature of a protector whose overall structure is also elongated by making the thermally responsive plate elongated in the horizontal direction compared to a protector having a shape having substantially the same vertical and horizontal dimensions. Even when the contact is welded, the pressing piece of the heat-sensitive plate is brought close to or in contact with at least the fixed portion between the heat-responsive plate and the elastic plate to prevent the force at the time of reversing the heat-sensitive plate from acting on the movable contact portion side. It can be used effectively as a force to open the contact. In addition, by adopting such a structure, even when the pulling force provided by the elastic plate cannot be set very large due to the structure, even when the force due to welding exceeds the pulling force, the force at the time of reversal of the thermally responsive plate is If the welding force between the contacts is superior, the contacts can be surely separated.
[0063]
In addition, by inserting a positioning member for defining the distance between the metal plate of the lid plate and the fixed contact support, even if the thickness of the fixed contact support is reduced in order to obtain a heating element The tip can be reliably held at a predetermined position, the voltage resistance between the metal plate and the fixed contact support can be ensured, and the amount of heat generated by the fixed contact support by the current can be increased.
[0064]
Furthermore, the structure in which the positioning member is elastically sandwiched between the fixed contact support and the cover plate facilitates the mounting of the positioning member and also conducts heat from the contact and the fixed contact support well to the housing. A direction in which the current value with the predetermined time being the time until the contact is opened (S / T) at the time of excessive current and the maximum limit operating current value (UTC) are fully exhibited. It has the feature that comes close to.
[0065]
Further, the heat responsive plate support, the elastic plate, and the heat responsive plate are arranged so as to be parallel to each other and face each other at a predetermined interval, and the heat responsive plate support is partially flat with the elastic plate interposed therebetween. By adjusting the heat exchange relationship between the thermally responsive plate support and the thermally responsive plate so as to face each other directly from the opening provided on the elastic plate, the fixed contact support or the thermally responsive plate support that is a heating element is adjusted. It can be adjusted so as to substantially equalize the temperature rise conditions of the thermally responsive plate at the time of energizing each electric path that passes.
[0066]
Further, the thermal reaction plate support, the elastic plate, and the thermal response plate are arranged so as to be substantially parallel to each other and face each other at a predetermined interval, so that the elastic plate is not interposed between the thermal reaction plate support and the thermal reaction plate. It is not possible to set the resistance value of the heat responsive plate support high by arranging it on the back side of the heat responsive plate support so that the radiant heat from the heat responsive plate support reaches the heat responsive plate without being blocked. Even in this case, the temperature rise conditions of the thermal reaction plate when energizing each electric path passing through the fixed contact support or the thermal response plate support, which is a heating element, can be adjusted so as to be substantially uniform.
[0067]
In addition, in order to prevent the pressing piece from coming into contact with the opposite side of the projection due to an error in assembly, the contact position of the pressing piece with the heat-responsive plate is changed from the center of drawing to the fixed end of the heat-responsive plate. By setting it closer to the protruding portion, the force of the thermally responsive plate can be used effectively and the possibility of contact welding can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an example of a thermal protector according to the present invention.
FIG. 2 is a cross-sectional view of the thermal protector of FIG.
3 is a longitudinal sectional view showing a contact open state of the thermal protector of FIG. 1. FIG.
4 is a perspective view of the thermal protector of FIG. 1. FIG.
5 is an exploded perspective view of the thermal protector of FIG. 1 with a housing removed. FIG.
6 is a plan view of the thermal protector of FIG. 1. FIG.
7 is a side view of the thermal protector of FIG. 1. FIG.
FIG. 8 shows an example of a pressing piece used in the present invention.
FIG. 9 shows another embodiment of the pressing piece used in the present invention.
FIG. 10 shows another embodiment of the pressing piece used in the present invention.
FIG. 11 is a sectional view of another embodiment of the thermal protector of the present invention.
12 is a cross-sectional view of the thermal protector of FIG. 11 taken along the line B-B.
13 is a perspective view for explaining the internal structure of the thermal protector of FIG.
14 is a perspective view showing a state in which the thermal protector of FIG. 1 is covered with an insulating coating.
15 is a perspective view showing a mounting state of the thermal protector of FIG. 1. FIG.
FIG. 16 is a longitudinal sectional view of an example of a conventional thermal protector.
17 is a cross-sectional view of the thermal protector of FIG. 16 taken along the line CC.
[Explanation of symbols]
1,21: Thermal protector
2: Lid plate
3: Housing
4: Metal plate
5A, 5B: Lead terminal pin
6: Filler
7A, 7B: Fixed contact support
8A, 8B: Fixed contact
9A, 9B: positioning member
10, 30: Thermally responsive plate support
10A, 30A: fixed part
10B: Intermediate part
11, 31: elastic plate
11A: Intermediate part
11B, 11C: both ends
11D: opening
12: Thermally responsive plate
12A: Protrusion (connection part)
13: Adhering piece
14A, 14B: movable contact
15, 35, 45, 55, 65: Pressing piece (temperature adjustment mechanism)
15A, 35A, 45A: the tip of the pressing piece
15B, 35B, 45B: rear end of pressing piece
16: Insertion piece (electrical insulator)

Claims (9)

金属板の長手方向両端近傍に各々貫通孔を設けこれらの貫通孔に導電性のリード端子ピンを電気絶縁性の充填材により気密に貫通固定した蓋板と、
この蓋板の周縁部に開口端面が気密に溶接され密閉容器を構成する概ね長ドーム型のハウジングとを有し、
各リード端子ピンの前記密閉容器内側には固定接点が固定接点支持体を介して導電的に固着されており、
ハウジングの内側面には動作温度較正用の押圧片が溶接等の方法で固着され、
さらに金属製の熱応動板支持体が前記押圧片と干渉しないように長手方向に充分な間隔をおいて二ヶ所でハウジング内側面に固着され、
熱応動板支持体には浅い皿状に絞り成形したことによって異なる温度に応じてスナップ的に湾曲方向を変える熱応動板が弾性板を介して導電的に接続固定され、
この熱応動板は前記皿状絞り中心に対してほぼ対称に2個の可動接点が前記固定接点に対応して開閉可能に取付けられており、
前記押圧片は熱応動板の通常凸となる側の絞り中心近傍に押圧片と熱応動板との間に流れるバイパス電流が実質的に問題にならないような状態で当接すると共に少なくとも熱応動板と弾性板との固定部近傍において近接または前述のバイパス電流が実質的に問題にならないような状態で当接しており、
前記ハウジングの押圧片固着部近傍を外面側から外力を加えて変形し押圧片により熱応動板への押圧力を調整することにより可動接点と固定接点との接点圧力を加減し所定の温度に於いて可動接点が固定接点から開離するように動作温度の較正ができることを特徴とするサーマルプロテクタ。
A lid plate in which through holes are provided in the vicinity of both ends in the longitudinal direction of the metal plate, and conductive lead terminal pins are hermetically penetrated and fixed to these through holes by an electrically insulating filler,
A generally long dome-shaped housing that is hermetically sealed with an open end face hermetically welded to the peripheral edge of the lid plate,
A fixed contact is conductively fixed to the inside of the sealed container of each lead terminal pin via a fixed contact support,
A pressure piece for operating temperature calibration is fixed to the inner surface of the housing by a method such as welding,
Further, the metal heat-responsive plate support is fixed to the inner surface of the housing at two locations with a sufficient interval in the longitudinal direction so as not to interfere with the pressing piece,
The heat-responsive plate support is electrically conductively connected and fixed via an elastic plate, and the heat-responsive plate that changes the bending direction in a snap manner according to different temperatures by being drawn into a shallow dish shape.
The thermally responsive plate is mounted so that two movable contacts can be opened and closed correspondingly to the fixed contact, approximately symmetrically with respect to the center of the plate-like diaphragm.
The pressing piece abuts in the vicinity of the center of the diaphragm on the normally convex side of the thermal reaction plate in a state in which bypass current flowing between the pressing piece and the thermal reaction plate does not substantially cause a problem, and at least the thermal reaction plate and In proximity to the elastic plate and in the vicinity of the fixed part, or in a state where the aforementioned bypass current is not substantially problematic,
By applying an external force from the outer surface side to deform the vicinity of the pressing piece fixing part of the housing, and adjusting the pressing force to the thermally responsive plate by the pressing piece, the contact pressure between the movable contact and the fixed contact is adjusted and adjusted at a predetermined temperature. The thermal protector is characterized in that the operating temperature can be calibrated so that the movable contact is separated from the fixed contact.
押圧片と熱応動板との接触部間には電気絶縁物が挿入されていることを特徴とする請求項1に記載のサーマルプロテクタ。The thermal protector according to claim 1, wherein an electrical insulator is inserted between contact portions of the pressing piece and the thermally responsive plate. 押圧片は金属のベース部分に電気絶縁物を一体に固着していることを特徴とする請求項1に記載のサーマルプロテクタ。The thermal protector according to claim 1, wherein the pressing piece has an electric insulator integrally fixed to a metal base portion. 熱応動板と弾性板との接続部から各可動接点を結ぶ仮想線が90°以上の角度をなし接続部と各可動接点の3点でほぼ二等辺三角形を構成していることを特徴とする請求項1乃至請求項3のいずれか1項に記載のサーマルプロテクタ。An imaginary line connecting each movable contact point from the connection portion between the thermally responsive plate and the elastic plate forms an angle of 90 ° or more, and an approximately isosceles triangle is constituted by three points of the connection portion and each movable contact point. The thermal protector of any one of Claim 1 thru | or 3. 蓋板の金属板と固定接点支持体との間には両者の距離を規定するための位置決め部材が配置されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載のサーマルプロテクタ。  The positioning member for prescribing the distance between the metal plate of the lid plate and the fixed contact support is disposed. Thermal protector. 位置決め部材は固定接点支持体と蓋板により弾性的に挟持されていることを特徴とする請求項5に記載のサーマルプロテクタ。  6. The thermal protector according to claim 5, wherein the positioning member is elastically held between the fixed contact support and the cover plate. 熱応動板支持体と弾性板と熱応動板とは互いに概ね平行になるとともに、熱応動板支持体と弾性板、及び弾性板と熱応動板がそれぞれ所定の間隔で対向するように配置され、熱応動板支持体が弾性板を間に介して熱応動板の一部平面が弾性板に設けられた開口部より熱応動板支持体からの輻射熱を直接熱応動板に達するようにしたことを特徴とする請求項1乃至請求項6のいずれか1項に記載のサーマルプロテクタ。The thermally responsive plate support, the elastic plate, and the thermally responsive plate are substantially parallel to each other , and are disposed so that the thermally responsive plate support and the elastic plate, and the elastic plate and the thermally responsive plate face each other at a predetermined interval , The thermal reaction plate support is such that the radiant heat from the thermal response plate support reaches the thermal response plate directly through the opening provided in the elastic plate with the elastic plate in between the partial plane of the thermal response plate. The thermal protector of any one of Claims 1 thru | or 6 characterized by the above-mentioned. 熱応動板支持体と弾性板と熱応動板とは互いに概ね平行になるとともに、熱応動板支持体と弾性板、及び熱応動板支持体と熱応動板がそれぞれ所定の間隔で対向するように配置され、弾性板が熱応動板支持体と熱応動板との間に介在せず熱応動板支持体の背面側に配設されることにより、熱応動板支持体からの輻射熱が遮られることなく熱応動板に達するようにした事を特徴とする請求項1乃至請求項6のいずれか1項に記載のサーマルプロテクタ。The thermally responsive plate support, the elastic plate, and the thermally responsive plate are substantially parallel to each other , and the thermally responsive plate support and the elastic plate, and the thermally responsive plate support and the thermally responsive plate face each other at a predetermined interval. Arranged and the elastic plate is not interposed between the thermal reaction plate support and the thermal reaction plate, and is disposed on the back side of the thermal reaction plate support, so that the radiant heat from the thermal reaction plate support is blocked. The thermal protector according to any one of claims 1 to 6, wherein the thermal protector is not reached. 押圧片の熱応動板への当接位置を皿状絞りの中心乃至中心から熱応動板の固定端たる突起部寄りに配設したことを特徴とする請求項1乃至請求項8のいずれか1項に記載のサーマルプロテクタ。  9. The contact position of the pressing piece with the heat responsive plate is arranged from the center of the plate-shaped diaphragm to the protrusion portion which is the fixed end of the heat responsive plate. The thermal protector according to item.
JP09484697A 1996-07-04 1997-03-28 Thermal protector Expired - Fee Related JP3992320B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP09484697A JP3992320B2 (en) 1997-03-28 1997-03-28 Thermal protector
CA002208910A CA2208910C (en) 1996-07-04 1997-06-27 Thermal protector for electric motors
US08/886,546 US6005471A (en) 1996-07-04 1997-07-01 Thermal protector for electric motors
KR1019970030709A KR100236901B1 (en) 1996-07-04 1997-07-02 Thermal protector
CNB97113734XA CN1146934C (en) 1996-07-04 1997-07-03 Thermal protector
FR9708401A FR2750793B1 (en) 1996-07-04 1997-07-03 THERMAL PROTECTION DEVICE FOR ELECTRIC MOTORS
IT97TO000584A IT1293403B1 (en) 1996-07-04 1997-07-03 THERMAL PROTECTION DEVICE FOR ELECTRIC MOTORS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09484697A JP3992320B2 (en) 1997-03-28 1997-03-28 Thermal protector

Publications (2)

Publication Number Publication Date
JPH10275544A JPH10275544A (en) 1998-10-13
JP3992320B2 true JP3992320B2 (en) 2007-10-17

Family

ID=14121406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09484697A Expired - Fee Related JP3992320B2 (en) 1996-07-04 1997-03-28 Thermal protector

Country Status (1)

Country Link
JP (1) JP3992320B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301434B1 (en) * 2006-05-12 2007-11-27 Sensata Technologies, Inc. Thermally responsive electrical switch

Also Published As

Publication number Publication date
JPH10275544A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
US6005471A (en) Thermal protector for electric motors
US7075403B2 (en) Motor protector particularly useful with hermetic electromotive compressors
JP2519530B2 (en) Thermal switch
US7298239B2 (en) Thermal protector
US5939970A (en) Thermally responsive switch
JPH01105435A (en) Three-phase thermal protector
JP2599797B2 (en) Sealed three-phase protection device
KR100947519B1 (en) Low current electric motor protector
US5107241A (en) Thermally responsive switch
JP3992320B2 (en) Thermal protector
JP3829882B2 (en) Thermal protector
US4914414A (en) Thermally responsive switch
JP3046767B2 (en) Thermal protector
JP2002352685A (en) Thermal protector
US4013988A (en) Hermetically sealed motor protector
JP3849387B2 (en) Thermal protector
EP4216406A1 (en) Motor protector
JP2882768B2 (en) Three-phase thermal protector
KR920006261Y1 (en) Thermally responsive switch
KR930000089Y1 (en) Thermally resonsive switch
JPH0696649A (en) Thermal protector for three phase
JPH0316727B2 (en)
JP2651002B2 (en) Motor overload protection device
JPH0677426B2 (en) Thermal switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees