JP3990739B2 - Method for manufacturing electromagnetic induction element - Google Patents

Method for manufacturing electromagnetic induction element Download PDF

Info

Publication number
JP3990739B2
JP3990739B2 JP27641693A JP27641693A JP3990739B2 JP 3990739 B2 JP3990739 B2 JP 3990739B2 JP 27641693 A JP27641693 A JP 27641693A JP 27641693 A JP27641693 A JP 27641693A JP 3990739 B2 JP3990739 B2 JP 3990739B2
Authority
JP
Japan
Prior art keywords
soft magnetic
core
electromagnetic induction
coil
induction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27641693A
Other languages
Japanese (ja)
Other versions
JPH07130553A (en
Inventor
一雅 山田
晃次 高橋
信之 川村
由郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP27641693A priority Critical patent/JP3990739B2/en
Publication of JPH07130553A publication Critical patent/JPH07130553A/en
Application granted granted Critical
Publication of JP3990739B2 publication Critical patent/JP3990739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、チョークコイルやトランス等の電磁誘導素子の製造およびその製造方法に関し、特に、複数のコアを当接して接合部を有する閉磁路磁心を備えた電磁誘導素子に関するものである。
【0002】
【従来の技術】
従来、この種の電磁誘導素子には、複数の軟磁性コアを閉磁路を構成するように当接した接合部を有する閉磁路磁心型のものがあり、図6に示すように、閉磁路磁心を構成するための1対の軟磁性U形コア11,12と、閉磁路磁心の接合部を取り囲んで装着され、両鍔を持つ筒状のコイルボビン13と、コイルボビン13に巻回されるコイル(誘導線)14と、これら部品を組み立てたものを挾持するためのコアホルダ15とを備え、例えば、高周波チョークコイルに適用される。
【0003】
【発明が解決しようとする課題】
しかしながら、軟磁性体コア11,12の当接面には工程で発生する微視的な凹凸や亀裂が存在しやすく、これら凹凸や亀裂にもとづいて空気層、即ち、エアギャップが閉磁路中に存在することになる。このエアギャップは空気の比透磁率が殆ど1であり、軟磁性体コアの比透磁率に比べ相対的に極めて小さい。
【0004】
従って、エアギャップの磁気抵抗は、ギャップ距離が微小であっても軟磁性体コアに比較して無視できないものとなり、これによって閉磁路を構成しているコア全体の閉磁路磁心は、透磁率が大きく低下する。
【0005】
例えば、エアギャップが存在しない閉磁路コア全体の磁路長さが50(mm)、比透磁率が4000のものに、X(μm)のギャップ距離の空気が入れば、全体の比透磁率の変化率Y(%)は、次に示す数1式より求めることができる。
【0006】
【数1】

Figure 0003990739
【0007】
図6を参照して、数1式によるギャップ距離Xと比透磁率μs の変化率Yとの関係により、ギャップ距離Xが15μmの場合、比透磁率μs は約50%程度まで低下する。比透磁率μs は、インダクタンス値に直接関係する因子であり、この比透磁率μs の低下は、電磁誘導素子のインダクタンス特性の低下をもたらすことになる。
【0008】
そこで、本発明の技術的課題は、透磁率の低下を防止でき、優れたインダクタンス特性を有する電磁誘導素子を得ることにある。
【0009】
【課題を解決するための手段】
本発明によれば、複数の軟磁性体コアを、閉磁路を構成するように当接した接合部を有する閉磁路磁心と、該磁心に装着されたコイルボビンと、該コイルボビンに巻回されたコイルとを有する電磁誘導素子を製造する方法において、複数の前記軟磁性体コアの当接面の中央部に凹部を形成する工程と、前記凹部の周囲を平滑平面とする工程と、前記凹部に、充填材として比透磁率が1より大きな軟磁性金属材料を含む材料をメッキ法によって施すことにより前記凹部をメッキ層で充満する工程と、前記メッキ層の表面を研磨する工程と、前記コイルを巻回したコイルボビンを前記軟磁性体コアに組み合わせ、前記当接面を接合する工程と、を有することを特徴とする電磁誘導素子の製造方法が得られる。
【0010】
また、本発明によれば、複数の軟磁性体コアを、閉磁路を構成するように当接した接合部を有する閉磁路磁心と、該磁心に装着されたコイルボビンと、該コイルボビンに巻回されたコイルとを有する電磁誘導素子を製造する方法において、複数の前記軟磁性体コアの当接面の中央部に凹部を形成する工程と、前記凹部の周囲を平滑平面とする工程と、前記凹部に、前記充填材として比透磁率が1より大きなセラミック材料および軟磁性金属材料の一方を含む材料をスパッタリング法によって施すことにより前記凹部をスパッタリング層で充満する工程と、前記スパッタリング層の表面を研磨する工程と、前記コイルを巻回したコイルボビンを前記軟磁性体コアに組み合わせ、前記当接面を接合する工程と、を有することを特徴とする電磁誘導素子の製造方法が得られる。
【0011】
【作用】
比透磁率が1より大きな軟磁性材料を主体とする充填材は、軟磁性体コアの当接面の凹部に充満される。充填材は当接面の空気と置換され軟磁性体コア同士が接合される。この結果、エアギャップのない完全な閉磁路磁心が形成される。
【0012】
【実施例】
本発明の一実施例による電磁誘導素子を図面を用いて説明する。
【0013】
図1及び図2に示すように、本発明の一実施例による電磁誘導素子は、1対の軟磁性U形コア11,12と、両端に鍔を持ち中空の筒状のボビン13と、ボビン13に巻回されるコイル14と、比透磁率μsiの充填材25とを備えている。この電磁誘導素子は、当接面が互いに接合されるコア接合部を有する閉磁路磁心を備えている。
【0014】
図3(a)、(b)、(c)に示すように、1対の軟磁性U形コア11,12の当接面の中央部11−1,12−1には、充填材25が充満される凹部11a,12aが形成されている。ボビン13の中空の穴の中央には、閉磁路磁心の接合部が配される。コア接合部には、凹部11a,12aによって一定体積の空気を保持する間隙、即ち、エアギャップが形成されるが、この間隙中の空気は前述の充填材25で置換されている。
【0015】
本実施例の電磁誘導素子を製造するには、まず、閉磁路磁心を構成する複数の軟磁性U形コア11,12を用意する。軟磁性U形コア11,12の当接面の中央部11−1,12−1に凹部11a,12aを形成する。
【0016】
一方、別に、コイル14を巻回したコイルボビン13を用意する。
【0017】
また、当接面周囲の外周部11−2,12−1には、当接面の相互接触が十分行われるようにコア材と同じものをすり合わせ処理を施して平滑平面にする。
【0018】
軟磁性U形コア11,12の当接面の凹部11a,12aに比透磁率が1より大きな軟磁性材料を主体とする充填材25を充満する。
【0019】
その後、コイル14を巻回したコイルボビン13がコア接合部で取り囲むように、コイルボビン13の穴の中央で当接面を接合してコア接合部を形成する。この結果、閉磁路磁心が形成され、電磁誘導素子を得ることがきる。
【0020】
次に、図4(a)、(b)を参照して、エアギャップの空気と置換させるための充填材25について述べる。
【0021】
充填材25は、空気の置換材料として、比透磁率が1より大で、かつ周波数特性の良好な、(I)金属又は合金材料、(II)セラミックス材料、(III) (I)の金属又は合金材料、(II)のセラミックス材料の一方に接着効果の有る材料を混合させたもののいずれかを用いる。
【0022】
これらの材料の形状、状態は、以下のように列挙される。
【0023】
材料(I):(1)微細粉末状、(2)メッキ状、(3)スパッタリング法による薄膜状
材料(II):(4)微細粉末状、(5)スパッタリング法による薄膜状
材料(III):(6)微細粉末、有機バインダー及び溶剤が混合されたペースト状
以上、(1)〜(6)のいずれかの材料を充填材25として用いる。
【0024】
これら、(I)〜(III)材料における(1)〜(6)の状態の比透磁率は、各々のバルク状態に比べ小さいが、図5に示すように、充填材25の比透磁率μsiの値が、閉磁路磁心の比透磁率を大きく左右するからである。
【0025】
さらに、いずれの挿入材料も空気と置換する前後でエアギャップの体積を増加させないことが必要である。何故なら、エアギャップの体積の増加は、図7に示すように閉磁路磁心の比透磁率μscが著しい低下をもたらすからである。
【0026】
その上、充填材は、比透磁率が1より大きな軟磁性材料と接着効果を示す接着性材料との混合物であっても良い。
【0027】
接着力を得るために接着性材料を使用しないで、図6のコアホルダ15をバネ材部品として使用することによりコア同士を挾持し機械的に接合したり、テープ材でコア同士を巻回して接合したり、弾性を有する開閉式の樹脂ケースを開けてその内にコア同士を入れてから閉じてコア同士を接合しても良い。
【0028】
尚、当接面を接合して閉磁路磁心を形成する際に、当接面に直交する方向に磁場を印加して当接面における充填材中の軟磁性材を配向させながら硬化させる方法を用いても良い。
【0029】
以上説明したように、エアギャップの空気を比透磁率が1より大きい材料に置換させる操作により、本発明による実施例の電磁誘導素子は比透磁率μscが一定量上昇する。仮に、接合部に凹部11a,12aを有しない、単純な平面状であれば、充填材25の挿入量は一定をなさず、不純物の混入は、接合面間の距離を増大させ、閉磁路磁心の比透磁率μscのばらつきは大きくなってしまう。
【0030】
図5を参照して、充填材25の比透磁率μsiと閉磁路磁心のコア比透磁率μscの回復率との関係が示されている。
【0031】
このように、本発明は、閉磁路磁心における一定量の比透磁率を増加させ、かつ、そのばらつきを抑えるという製造上重要な2つの特徴を有する。
【0032】
これにより、従来例とインダクタンスの値が同じ電磁誘導素子では、図1のコイル14の巻数を相対的に少なくすることができる。巻数が少なくなれば、コイル14に生じる分布容量や電気抵抗を少なくでき、優れたインダクタンス特性の電磁誘導素子が得られるという効果がある。
【0033】
また、材料(III)を用いれば、挿入材料自体の接着力で、複数個のコア同士を密着固定することができる。これによって、従来必須であったコアホルダ15を省略することができ、コスト低減が図れる。
【0034】
次に、本発明の実施例による電磁誘導素子の充填材置換方法を具体例で説明するが、以下のものに限定されないことはいうまでもない。
【0035】
(具体例1)
充填材25としてフェライト粉末に接着効果を示す材料を混合させたものを用いた場合を説明する。
【0036】
予めボビン13にコイル14を機械巻したものを準備する。一方、ボビン13の穴に嵌挿するための1対の軟磁性U形コア11,12を加工する。即ち、これら軟磁性U形コア11,12の当接面に凹部11a,12aを形成してから、外周部11−2,12−2をコア材と同じものですり合わせて平滑平面にする。
【0037】
その後、定量吐出器を用いて、比透磁率が1より大きな材料を主体とする充填材25を粘性度を適切に定めて滴下させる。その後、これら軟磁性U形コア11,12の当接面同士を接合し一定量の押圧を加え、連結する。
【0038】
この電磁誘導素子に適切な交流又は直流電流を流すことにより、コイル14の周りに磁束が発生し閉磁路磁心の中央を通過する。この結果、充填材25中の軟磁性体粉末材料が閉磁路磁心の中央の閉磁路に沿って配向され硬化し、電磁誘導素子を得ることができる。軟磁性体粉末材料を配向・硬化することにより、乱雑で非接触な配列を透磁率が極めて高い直列接触配列とすることができる。
【0039】
また、0.1〜40μmの粒度分布を持たせれば、粒径大の隙間に粒径小のものを充填し、高い充填密度を得ることができる結果、高い比透磁率μscを保つことができる。
【0040】
(具体例2)
図4(a)に示すように、軟磁性U形コア11,12がフェライト製であって一方の軟磁性U形コア12の当接面の凹部12aの空気をメッキ層で置換するメッキ法を使用する場合を説明する。一方の軟磁性U形コア12の当接面に凹部12aを形成した後、外周部12−2をコア材と同じものですり合わせて平滑平面にする。
【0041】
次に、比透磁率が1より大きな軟磁性金属材料を用いて厚みが50μmのメッキ層25を凹部12aに充満させる。その後、図4(b)に示すように、メッキ層25を研磨して研磨面25bを形成してから、この研磨面25bに他方の軟磁性U形コア11の接合面を接合する。
【0042】
研磨面25bとなる金属は、コア材のフェライトに比べ硬度が低く一般に加工性が良いものを用い、メッキ層25のみを研磨するので、コア当接面の凹凸や割れの空気を充填材で充分置換できる。
【0043】
ところで、軟磁性U形コア11,12の両方をメッキ処理を施す場合には、エアギャップ中の空気の占める体積を大幅に少なくすることができる。この結果、閉磁路磁心の比透磁率μscの回復率を高めることができる。
【0044】
(具体例3)
コア当接面の凹部の空気を充填材で置換する方法として具体例2のメッキ法の代わりにスパッタリング法を用いる場合、緻密なスパッタリング薄膜を形成でき、スパッタリング薄膜を研磨して研磨面を形成できる。
【0045】
この結果、コア当接面の凹部の空気を充填材で完全に置換され、図5で示すように、具体例2の場合に比べて閉磁路磁心の比透磁率μscの回復率をより高めることができる。
【0046】
【発明の効果】
以上示したように本発明によれば、比透磁率が1より高い充填材を接合部の凹部に充満させたので、従来例より、閉磁路磁心の比透磁率は増加し、インダクタンスを増加できる。しかも、インダクタンスの値が従来例と同じものを得る場合には、コイルの巻数を減少できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施例による電磁誘導素子の製造方法を説明するための分解図である。
【図2】図1の本発明の一実施例による電磁誘導素子を組み立てた図である。
【図3】図2の電磁誘導素子の接合部を説明するための図である。
【図4】メッキ法やスパッタリング法による軟磁性U形コアの当接面処理を説明するための図である。
【図5】本発明の一実施例による電磁誘導素子に関し、重点剤25の比透磁率μsiを変えたときの、比透磁率μsiとコア比透磁率μscの回復率との関係が示されている。この実施例による電磁誘導素子は、磁路長L:50mm、コア比透磁率μsc:400、コアギャップ距離X:15μmであり、回復率100%は、コアギャップなしに対応する。
【図6】電磁誘導素子の従来例を示す図である。
【図7】磁路長L:50mm、コア比透磁率μsc:4000、空気の比透磁率μsa:1の電磁誘導素子の従来例に関し、ギャップ距離Xと比透磁率μs の相対変化率との関係が示されている。ここで、相対変化率100%は、コアギャップなしに対応する。
【符号の説明】
11、12 軟磁性U形コア
11a、12a 凹部
11−1、12−1 中央部
11−2、12−2 外周部
13 ボビン
14 コイル
15 コアホルダ
25 充填材[0001]
[Industrial application fields]
The present invention relates to manufacturing of electromagnetic induction elements such as choke coils and transformers and a manufacturing method thereof, and more particularly to an electromagnetic induction element having a closed magnetic path magnetic core having a joint portion in contact with a plurality of cores.
[0002]
[Prior art]
Conventionally, this type of electromagnetic induction element includes a closed magnetic circuit core type having a joint portion in which a plurality of soft magnetic cores are in contact with each other so as to form a closed magnetic circuit. As shown in FIG. A pair of soft magnetic U-shaped cores 11 and 12 and a cylindrical coil bobbin 13 which is mounted so as to surround a joint portion of a closed magnetic path magnetic core, and a coil wound around the coil bobbin 13 ( (Guide wire) 14 and a core holder 15 for holding an assembly of these components, and is applied to, for example, a high-frequency choke coil.
[0003]
[Problems to be solved by the invention]
However, the contact surfaces of the soft magnetic cores 11 and 12 are likely to have microscopic irregularities and cracks generated in the process, and the air layer, that is, the air gap is formed in the closed magnetic circuit based on these irregularities and cracks. Will exist. This air gap has an air relative permeability of almost 1, and is relatively small compared to the relative permeability of the soft magnetic core.
[0004]
Therefore, even if the gap distance is small, the magnetic resistance of the air gap is not negligible compared to the soft magnetic core. As a result, the closed core magnetic core of the entire core constituting the closed magnetic path has a magnetic permeability. Decrease significantly.
[0005]
For example, if air with a gap distance of X (μm) enters a magnetic path length of the entire closed magnetic path core having no air gap of 50 (mm) and a relative permeability of 4000, the overall relative permeability of The rate of change Y (%) can be obtained from the following equation (1).
[0006]
[Expression 1]
Figure 0003990739
[0007]
Referring to FIG. 6, due to the relationship between the gap distance X and the change rate Y of the relative permeability μ s according to Equation 1, when the gap distance X is 15 μm, the relative permeability μ s decreases to about 50%. . The relative permeability μ s is a factor directly related to the inductance value, and the decrease in the relative permeability μ s results in a decrease in the inductance characteristics of the electromagnetic induction element.
[0008]
Therefore, a technical problem of the present invention is to obtain an electromagnetic induction element that can prevent a decrease in magnetic permeability and has excellent inductance characteristics.
[0009]
[Means for Solving the Problems]
According to the present invention, a closed magnetic path magnetic core having a joining portion in which a plurality of soft magnetic cores are in contact so as to form a closed magnetic path, a coil bobbin attached to the magnetic core, and a coil wound around the coil bobbin A step of forming a recess at the center of the contact surfaces of the plurality of soft magnetic cores, a step of making the periphery of the recess a smooth flat surface, and Filling the concave portion with a plating layer by applying a material containing a soft magnetic metal material having a relative permeability greater than 1 as a filler by plating, polishing the surface of the plating layer, winding the coil And a step of combining the rotated coil bobbin with the soft magnetic core and joining the contact surfaces.
[0010]
Further, according to the present invention, a plurality of soft magnetic cores are wound around the coil bobbin, a closed magnetic circuit core having a joint that abuts to form a closed magnetic circuit, a coil bobbin attached to the magnetic core, and the coil bobbin. In the method of manufacturing an electromagnetic induction element having a coil, a step of forming a recess at the center of the contact surface of the plurality of soft magnetic cores, a step of making the periphery of the recess a smooth flat surface, and the recess And applying a material containing one of a ceramic material having a relative permeability greater than 1 and a soft magnetic metal material as the filler by a sputtering method, and polishing the surface of the sputtering layer. And combining the coil bobbin around which the coil is wound with the soft magnetic core and joining the contact surface. Method of manufacturing a child can be obtained.
[0011]
[Action]
A filler mainly composed of a soft magnetic material having a relative permeability greater than 1 is filled in the concave portion of the contact surface of the soft magnetic core. The filler is replaced with air on the contact surface, and the soft magnetic cores are joined together. As a result, a complete closed magnetic circuit core without an air gap is formed.
[0012]
【Example】
An electromagnetic induction device according to an embodiment of the present invention will be described with reference to the drawings.
[0013]
As shown in FIGS. 1 and 2, an electromagnetic induction device according to an embodiment of the present invention includes a pair of soft magnetic U-shaped cores 11 and 12, a hollow cylindrical bobbin 13 having ridges at both ends, and a bobbin. 13 is provided with a coil 14 wound around 13 and a filler 25 having a relative magnetic permeability μ si . This electromagnetic induction element includes a closed magnetic path magnetic core having a core joint portion whose contact surfaces are joined to each other.
[0014]
As shown in FIGS. 3A, 3 </ b> B, and 3 </ b> C, the filler 25 is provided in the center portions 11-1 and 12-1 of the contact surfaces of the pair of soft magnetic U-shaped cores 11 and 12. The filled recesses 11a and 12a are formed. In the center of the hollow hole of the bobbin 13, a joint portion of the closed magnetic path magnetic core is disposed. A gap for holding a constant volume of air, that is, an air gap, is formed in the core joint by the recesses 11a and 12a. The air in the gap is replaced with the filler 25 described above.
[0015]
In order to manufacture the electromagnetic induction element of this embodiment, first, a plurality of soft magnetic U-shaped cores 11 and 12 constituting a closed magnetic path magnetic core are prepared. Concave portions 11a and 12a are formed in the central portions 11-1 and 12-1 of the contact surfaces of the soft magnetic U-shaped cores 11 and 12, respectively.
[0016]
On the other hand, a coil bobbin 13 around which the coil 14 is wound is prepared.
[0017]
In addition, the outer peripheral portions 11-2 and 12-1 around the contact surface are subjected to a rubbing process so as to make a smooth flat surface so that the contact surfaces are sufficiently brought into mutual contact.
[0018]
The recesses 11 a and 12 a on the contact surfaces of the soft magnetic U-shaped cores 11 and 12 are filled with a filler 25 mainly composed of a soft magnetic material having a relative permeability larger than 1.
[0019]
Thereafter, the contact surface is joined at the center of the hole of the coil bobbin 13 so that the coil bobbin 13 around which the coil 14 is wound is surrounded by the core joint, thereby forming the core joint. As a result, a closed magnetic path magnetic core is formed, and an electromagnetic induction element can be obtained.
[0020]
Next, with reference to FIGS. 4A and 4B, the filler 25 for replacing air in the air gap will be described.
[0021]
The filler 25 is, as a replacement material for air, (I) a metal or alloy material, (II) a ceramic material, (III) a metal of (I), which has a relative permeability greater than 1 and good frequency characteristics. Either alloy material or (II) ceramic material mixed with a material having an adhesive effect is used.
[0022]
The shape and state of these materials are listed as follows.
[0023]
Material (I): (1) Fine powder, (2) Plating, (3) Thin film material by sputtering (II): (4) Fine powder, (5) Thin film material by sputtering (III) : (6) Paste or higher in which fine powder, organic binder and solvent are mixed. Any material of (1) to (6) is used as filler 25.
[0024]
Although the relative magnetic permeability in the states (1) to (6) in these materials (I) to (III) is smaller than the respective bulk states, the relative magnetic permeability μ of the filler 25 as shown in FIG. This is because the value of si greatly affects the relative permeability of the closed magnetic circuit core.
[0025]
Furthermore, it is necessary that any insert material does not increase the volume of the air gap before and after replacing it with air. This is because an increase in the volume of the air gap causes a significant decrease in the relative permeability μ sc of the closed magnetic circuit core as shown in FIG.
[0026]
In addition, the filler may be a mixture of a soft magnetic material having a relative permeability greater than 1 and an adhesive material exhibiting an adhesive effect.
[0027]
By using the core holder 15 of FIG. 6 as a spring material part without using an adhesive material to obtain an adhesive force, the cores are held and mechanically joined, or the cores are wound with a tape material and joined together. Alternatively, the openable resin case having elasticity may be opened, the cores may be put in the resin case, and the cores may be closed to be joined.
[0028]
When joining the contact surfaces to form a closed magnetic path core, a method of applying a magnetic field in a direction perpendicular to the contact surfaces and curing the soft magnetic material in the filler on the contact surfaces is cured. It may be used.
[0029]
As described above, the operation of replacing the air gap air with a material having a relative permeability greater than 1 increases the relative permeability μ sc of the electromagnetic induction element according to the embodiment of the present invention by a certain amount. If it is a simple planar shape that does not have the recesses 11a and 12a at the joint, the amount of filler 25 inserted will not be constant, and the incorporation of impurities will increase the distance between the joint surfaces and cause a closed magnetic circuit core. The variation of the relative permeability μ sc becomes large.
[0030]
Referring to FIG. 5, the relationship between the relative permeability μ si of the filler 25 and the recovery rate of the core relative permeability μ sc of the closed magnetic path core is shown.
[0031]
As described above, the present invention has two important features in manufacturing that increase a specific amount of relative permeability in a closed magnetic path magnetic core and suppress variation thereof.
[0032]
Thereby, in the electromagnetic induction element having the same inductance value as that of the conventional example, the number of turns of the coil 14 in FIG. 1 can be relatively reduced. If the number of turns is reduced, the distributed capacity and electrical resistance generated in the coil 14 can be reduced, and an electromagnetic induction element having excellent inductance characteristics can be obtained.
[0033]
In addition, when the material (III) is used, the plurality of cores can be firmly fixed to each other by the adhesive force of the insertion material itself. As a result, the core holder 15 which has been essential in the past can be omitted, and the cost can be reduced.
[0034]
Next, a method for replacing the filler of the electromagnetic induction element according to the embodiment of the present invention will be described with a specific example, but it is needless to say that the method is not limited to the following.
[0035]
(Specific example 1)
A case where a material obtained by mixing a ferrite powder with a material exhibiting an adhesive effect is used as the filler 25 will be described.
[0036]
A bobbin 13 having a coil 14 wound mechanically in advance is prepared. On the other hand, a pair of soft magnetic U-shaped cores 11 and 12 for fitting into the holes of the bobbin 13 are processed. That is, after the concave portions 11a and 12a are formed on the contact surfaces of the soft magnetic U-shaped cores 11 and 12 , the outer peripheral portions 11-2 and 12-2 are rubbed together with the same core material to form a smooth plane.
[0037]
Thereafter, the filler 25 mainly composed of a material having a relative permeability greater than 1 is dripped with a viscosity determined appropriately using a fixed amount dispenser. Thereafter, the contact surfaces of the soft magnetic U-shaped cores 11 and 12 are joined to each other, and a certain amount of pressure is applied to connect them.
[0038]
By supplying an appropriate alternating current or direct current to the electromagnetic induction element, a magnetic flux is generated around the coil 14 and passes through the center of the closed magnetic circuit core. As a result, the soft magnetic powder material in the filler 25 is oriented and cured along the closed magnetic path at the center of the closed magnetic path core, and an electromagnetic induction element can be obtained. By aligning and curing the soft magnetic powder material, a random and non-contact arrangement can be made into a series contact arrangement with extremely high magnetic permeability.
[0039]
Further, if a particle size distribution of 0.1 to 40 μm is provided, a gap having a large particle size can be filled with a small particle size, and a high packing density can be obtained. As a result, a high relative permeability μ sc can be maintained. it can.
[0040]
(Specific example 2)
As shown in FIG. 4A, a plating method is used in which the soft magnetic U-shaped cores 11 and 12 are made of ferrite, and the air in the recess 12a on the contact surface of one soft magnetic U-shaped core 12 is replaced with a plating layer. The case of using will be described. After the concave portion 12a is formed on the contact surface of one soft magnetic U-shaped core 12, the outer peripheral portion 12-2 is rubbed with the same material as the core material to form a smooth plane.
[0041]
Next, the plating layer 25 having a thickness of 50 μm is filled in the concave portion 12 a using a soft magnetic metal material having a relative permeability larger than 1. Thereafter, as shown in FIG. 4B, after the plated layer 25 is polished to form the polished surface 25b, the bonded surface of the other soft magnetic U-shaped core 11 is bonded to the polished surface 25b.
[0042]
The metal used as the polishing surface 25b is a metal having a hardness lower than that of the ferrite of the core material and generally good workability, and only the plated layer 25 is polished. Can be replaced.
[0043]
By the way, when both the soft magnetic U-shaped cores 11 and 12 are plated, the volume of air in the air gap can be greatly reduced. As a result, the recovery rate of the relative permeability μ sc of the closed magnetic path core can be increased.
[0044]
(Specific example 3)
When the sputtering method is used instead of the plating method of Example 2 as a method of replacing the air in the concave portion of the core contact surface with the filler, a dense sputtering thin film can be formed, and the sputtering thin film can be polished to form a polished surface. .
[0045]
As a result, the air in the concave portion of the core contact surface is completely replaced with the filler, and as shown in FIG. 5, the recovery rate of the relative permeability μ sc of the closed magnetic path magnetic core is further increased as compared with the case of the specific example 2. be able to.
[0046]
【The invention's effect】
As described above, according to the present invention, since the filler having a relative permeability higher than 1 is filled in the concave portion of the joint, the relative permeability of the closed magnetic path core can be increased and the inductance can be increased as compared with the conventional example. . Moreover, when the inductance value is the same as that of the conventional example, the number of turns of the coil can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded view for explaining a method of manufacturing an electromagnetic induction device according to an embodiment of the present invention.
2 is an assembled view of an electromagnetic induction device according to an embodiment of the present invention of FIG. 1;
FIG. 3 is a view for explaining a joint portion of the electromagnetic induction element of FIG. 2;
FIG. 4 is a view for explaining a contact surface treatment of a soft magnetic U-shaped core by a plating method or a sputtering method.
It relates electromagnetic induction device according to an embodiment of the present invention; FIG, when changing the relative permeability mu si priority agent 25, the relationship between the relative magnetic permeability mu si and the core relative permeability mu sc recovery rate It is shown. The electromagnetic induction element according to this example has a magnetic path length L: 50 mm, a core relative permeability μ sc : 400, a core gap distance X: 15 μm, and a recovery rate of 100% corresponds to no core gap.
FIG. 6 is a diagram showing a conventional example of an electromagnetic induction element.
FIG. 7 shows a relative change in the gap distance X and the relative permeability μ s for a conventional example of an electromagnetic induction element having a magnetic path length L: 50 mm, a core relative permeability μ sc : 4000, and an air relative permeability μ sa : 1. The relationship with rate is shown. Here, a relative change rate of 100% corresponds to no core gap.
[Explanation of symbols]
11, 12 Soft magnetic U-shaped cores 11a, 12a Recesses 11-1, 12-1 Central portion 11-2, 12-2 Outer peripheral portion 13 Bobbin 14 Coil 15 Core holder 25 Filler

Claims (2)

複数の軟磁性体コアを、閉磁路を構成するように当接した接合部を有する閉磁路磁心と、該磁心に装着されたコイルボビンと、該コイルボビンに巻回されたコイルとを有する電磁誘導素子を製造する方法において、
複数の前記軟磁性体コアの当接面の中央部に凹部を形成する工程と、
前記凹部の周囲を平滑平面とする工程と、
前記凹部に、充填材として比透磁率が1より大きな軟磁性金属材料を含む材料をメッキ法によって施すことにより前記凹部をメッキ層で充満する工程と、
前記メッキ層の表面を研磨する工程と、
前記コイルを巻回したコイルボビンを前記軟磁性体コアに組み合わせ、前記当接面を接合する工程と、
を有することを特徴とする電磁誘導素子の製造方法。
An electromagnetic induction element having a closed magnetic path magnetic core having a joint portion in which a plurality of soft magnetic cores are contacted so as to form a closed magnetic path, a coil bobbin mounted on the magnetic core, and a coil wound around the coil bobbin In the method of manufacturing
Forming a recess in the center of the contact surface of the plurality of soft magnetic cores;
A step of making the periphery of the recess a smooth plane;
Filling the concave portion with a plating layer by applying a material containing a soft magnetic metal material having a relative permeability larger than 1 as a filler to the concave portion by a plating method;
Polishing the surface of the plating layer;
Combining the coil bobbin around which the coil is wound with the soft magnetic core, and joining the contact surface;
The manufacturing method of the electromagnetic induction element characterized by having.
複数の軟磁性体コアを、閉磁路を構成するように当接した接合部を有する閉磁路磁心と、該磁心に装着されたコイルボビンと、該コイルボビンに巻回されたコイルとを有する電磁誘導素子を製造する方法において、
複数の前記軟磁性体コアの当接面の中央部に凹部を形成する工程と、
前記凹部の周囲を平滑平面とする工程と、
前記凹部に、前記充填材として比透磁率が1より大きなセラミック材料および軟磁性金属材料の一方を含む材料をスパッタリング法によって施すことにより前記凹部をスパッタリング層で充満する工程と、
前記スパッタリング層の表面を研磨する工程と、
前記コイルを巻回したコイルボビンを前記軟磁性体コアに組み合わせ、前記当接面を接合する工程と、
を有することを特徴とする電磁誘導素子の製造方法。
An electromagnetic induction element having a closed magnetic path magnetic core having a joint portion in which a plurality of soft magnetic cores are contacted so as to form a closed magnetic path, a coil bobbin mounted on the magnetic core, and a coil wound around the coil bobbin In the method of manufacturing
Forming a recess in the center of the contact surface of the plurality of soft magnetic cores;
A step of making the periphery of the recess a smooth plane;
Filling the recess with a sputtering layer by applying a material containing one of a ceramic material having a relative permeability greater than 1 and a soft magnetic metal material as the filler to the recess by a sputtering method;
Polishing the surface of the sputtering layer;
Combining the coil bobbin around which the coil is wound with the soft magnetic core, and joining the contact surface;
The manufacturing method of the electromagnetic induction element characterized by having.
JP27641693A 1993-11-05 1993-11-05 Method for manufacturing electromagnetic induction element Expired - Fee Related JP3990739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27641693A JP3990739B2 (en) 1993-11-05 1993-11-05 Method for manufacturing electromagnetic induction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27641693A JP3990739B2 (en) 1993-11-05 1993-11-05 Method for manufacturing electromagnetic induction element

Publications (2)

Publication Number Publication Date
JPH07130553A JPH07130553A (en) 1995-05-19
JP3990739B2 true JP3990739B2 (en) 2007-10-17

Family

ID=17569108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27641693A Expired - Fee Related JP3990739B2 (en) 1993-11-05 1993-11-05 Method for manufacturing electromagnetic induction element

Country Status (1)

Country Link
JP (1) JP3990739B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI362047B (en) * 2007-09-28 2012-04-11 Cyntec Co Ltd Inductor and manufacture method thereof

Also Published As

Publication number Publication date
JPH07130553A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US11225720B2 (en) Magnetic powder, and manufacturing method thereof
TWI655646B (en) Inductive element and method of manufacturing the same
US20040135660A1 (en) Low profile high current multiple gap inductor assembly
JP2012238892A (en) Bias gap inductor and manufacturing method of the same
US20160343486A1 (en) Coil electronic component and method of manufacturing the same
CN112185658A (en) Coil component
JP5082293B2 (en) Inductance component and manufacturing method thereof
JP3990739B2 (en) Method for manufacturing electromagnetic induction element
JP3009686B2 (en) Inductor
CN117079952A (en) Magnetic core and magnetic component
JPH1167521A (en) Wire wound electronic component and its manufacture
JPH0636930A (en) Electric device
US11387032B2 (en) Coil component manufacturing method, coil component, and DC-to-DC converter
JPH11176653A (en) Magnetic core and magnetic parts using magnetic core
KR20180013072A (en) Coil componenet and method of fabricating the same
JPH04118905A (en) Induction electromagnetic device
JPS6370406A (en) Chip type coil element
JPH0442906A (en) Inductor
JP2535251Y2 (en) Induction magnet
JPH0670930B2 (en) Method of manufacturing split induction porcelain
JPH0661070A (en) Core for transformer
JP2002217042A (en) Inductance component and manufacturing method thereof
JPH04361505A (en) Inductor and manufacture thereof
JP2002289443A (en) Inductor component
JPH01199417A (en) Inductance element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040728

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees