JP3990213B2 - Bearing parts and rolling bearings - Google Patents

Bearing parts and rolling bearings Download PDF

Info

Publication number
JP3990213B2
JP3990213B2 JP2002194921A JP2002194921A JP3990213B2 JP 3990213 B2 JP3990213 B2 JP 3990213B2 JP 2002194921 A JP2002194921 A JP 2002194921A JP 2002194921 A JP2002194921 A JP 2002194921A JP 3990213 B2 JP3990213 B2 JP 3990213B2
Authority
JP
Japan
Prior art keywords
carbonitriding
rolling
bearing
test
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002194921A
Other languages
Japanese (ja)
Other versions
JP2003227518A (en
Inventor
力 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2002194921A priority Critical patent/JP3990213B2/en
Priority to US10/300,590 priority patent/US7438477B2/en
Priority to KR1020020073071A priority patent/KR100951216B1/en
Priority to DE10254635A priority patent/DE10254635B4/en
Priority to CNB021543194A priority patent/CN1304625C/en
Priority to FR0306034A priority patent/FR2841907B1/en
Publication of JP2003227518A publication Critical patent/JP2003227518A/en
Priority to US11/118,385 priority patent/US8425690B2/en
Application granted granted Critical
Publication of JP3990213B2 publication Critical patent/JP3990213B2/en
Priority to US13/291,839 priority patent/US20120051682A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、減速機、ドライブピニオン、トランスミッション用軸受などに用いられる軸受部品および転がり軸受に関し、転動疲労特性が長寿命で、高度の耐割れ強度や耐経年寸法変化を有する軸受部品および転がり軸受に関するものである。
【0002】
【従来の技術】
軸受部品の転動疲労に対して長寿命を与える熱処理方法として、焼入れ加熱時の雰囲気RXガス中にさらにアンモニアガスを添加するなどして、その軸受部品の表層部に浸炭窒化処理を施す方法がある(たとえば特開平8−4774号公報、特開平11−101247号公報)。この浸炭窒化処理法を用いることにより、表層部を硬化させ、ミクロ組織中に残留オーステナイトを生成させ、転動疲労寿命を向上させることができる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の浸炭窒化処理方法は炭素および窒素を拡散させる拡散処理であるため、長時間高温に保持する必要がある。このため、組織が粗大化する等して耐割れ強度の向上を図ることは困難である。また、残留オーステナイトの増加による経年寸法変化率の増大も問題となる。
【0004】
一方、転動疲労に対して長寿命を確保し、割れ強度を向上させ、経年寸法変化率の増大を防ぐために、鋼の合金設計により組成を調整することによって対処することが可能である。しかし合金設計によると、原材料コストが高くなるなどの問題点が発生する。
【0005】
今後の軸受部品には、使用環境の高荷重化、高温化に伴い、従来よりも、大きな荷重条件でかつより高温で使用できる特性を備えることが要求される。このため、高強度で、転動疲労特性が長寿命で、高度の耐割れ強度と寸法安定性とを有する軸受部品が必要になる。
【0006】
本発明は、高度の耐割れ強度と寸法安定性とを有し、転動疲労寿命に優れた軸受部品および転がり軸受を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の転がり軸受は、内輪、外輪および複数の転動体を有する転がり軸受において、内輪、外輪および転動体のうち少なくともいずれか一つの部材が浸炭窒化層を有当該部材の破壊応力値が2650MPa以上であり、当該部材のオーステナイト結晶粒の粒度番号が10番を超える範囲にあり、当該部材はJIS規格SUJ2からなっていることを特徴とするものである。
【0008】
本願発明者らは、軸受部品用の鋼をA1変態点を超える浸炭窒化処理温度で浸炭窒化処理した後、A1変態点未満の温度に冷却し、その後にA1変態点以上の焼入れ温度域に再加熱し焼入れを行うことにより、浸炭窒化処理層を有する鋼の破壊応力値を、従来では得られなかった2650MPa以上にできることを見出した。これにより、従来よりも破壊応力値に優れ、それにより強度の高い転がり軸受を得ることができる。
【0009】
また、本発明の軸受部品は、転がり軸受に組み込まれる軸受部品であって、浸炭窒化層を有、破壊応力値が2650MPa以上であり、オーステナイト結晶粒の粒度番号が10番を超える範囲にあり、JIS規格SUJ2からなっていることを特徴とするものである。
【0010】
この軸受部品においても、上述の転がり軸受と同様、従来よりも破壊応力値に優れ、それにより割れ強度の高い軸受部品を得ることができる。
【0011】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態について説明する。
【0012】
図1は、本発明の実施の形態における転がり軸受を示す概略断面図である。図1において、この転がり軸受10は、外輪1と、内輪2と、転動体3とを主に有している。図面はラジアル玉軸受を表しているが、玉軸受、円錐ころ軸受、ころ軸受、ニードルころ軸受も同様である。転動体3は、外輪1と内輪2との間に配置された保持器により転動可能に支持されている。
【0013】
これらの外輪1、内輪2および転動体3のうち少なくともいずれか一つの部材は、浸炭窒化層を有する鋼を含み、かつ破壊応力値が2650MPa以上である。
【0014】
また、外輪1、内輪2および転動体3のうち少なくともいずれか一つの部材は、浸炭窒化層を有する鋼を含み、かつ鋼中の水素含有率が0.5ppm以下である。
【0015】
また、外輪1、内輪2および転動体3のうち少なくともいずれか一つの部材は、浸炭窒化層を有する鋼を含み、かつその部材のオーステナイト結晶粒の粒度番号が10番を超える範囲にある。
【0016】
また、外輪1、内輪2および転動体3のうち少なくともいずれか一つの部材は、浸炭窒化層を有する鋼を含み、かつシャルピー衝撃値が6.2J/cm2以上である。
【0017】
次に、これら転がり軸受の外輪、内輪および転動体の少なくとも1つの軸受部品に行う浸炭窒化処理を含む熱処理について説明する。
【0018】
図2および図3に、本発明の実施の形態における熱処理方法を示す。図2は1次焼入れおよび2次焼入れを行なう方法を示す熱処理パターンであり、図3は焼入れ途中で材料をA1変態点温度未満に冷却し、その後、再加熱して最終的に焼入れる方法を示す熱処理パターンである。どちらも本発明の実施の態様例である。これらの図において、処理T1では鋼の素地に炭素や窒素を拡散させ、また炭素の溶け込みを十分に行なった後、A1変態点未満に冷却する。次に、図中の処理T2において、処理T1よりも低温に再加熱し、そこから油焼入れを施す。
【0019】
上記の熱処理を普通焼入れ、すなわち浸炭窒化処理に引き続いてそのまま1回焼入れするよりも、表層部分を浸炭窒化しつつ、割れ強度を向上させ、経年寸法変化率を減少することができる。上述したように、上記の熱処理方法によれば、オーステナイト結晶粒の粒径を従来の2分の1以下となるミクロ組織を得ることができる。上記の熱処理を受けた軸受部品は、転動疲労特性が長寿命であり、割れ強度を向上させ、経年寸法変化率も減少させることができる。
【0020】
上記図2に示す熱処理パターンを適用した軸受鋼のオーステナイト結晶粒度を図4(a)に示す。また、比較のため、従来の熱処理方法による軸受鋼のオーステナイト結晶粒度を図4(b)に示す。また、図5(a)および図5(b)に、上記図4(a)および図4(b)を図解したオーステナイト結晶粒度を示す。これらオーステナイト結晶粒度を示す組織より、従来のオーステナイト粒径はJIS規格の粒度番号で10番であり、また本発明による熱処理方法によれば12番の細粒を得ることができる。また、図4(a)の平均粒径は、切片法で測定した結果、5.6μmであった。
【0021】
【実施例】
次に本発明の実施例について説明する。
【0022】
(実施例1)
JIS規格SUJ2材(1.0重量%C−0.25重量%Si−0.4重量%Mn−1.5重量%Cr)を用いて、本発明の実施例1を行った。表1に示した各試料の製造履歴を以下に示す。
【0023】
【表1】

Figure 0003990213
【0024】
(試料A〜D;本発明例):温度850℃で150分間保持して浸炭窒化処理を施した。その浸炭窒化処理時の雰囲気は、RXガスとアンモニアガスとの混合ガスとした。図2に示す熱処理パターンにおいて、浸炭窒化処理温度850℃から1次焼入れを行ない、次いで浸炭窒化処理温度より低い温度域780℃〜830℃に加熱して2次焼入れを行った。ただし、2次焼入れ温度780℃の試料Aは焼入れ不足のため試験の対象から外した。
(試料E、F;本発明例):浸炭窒化処理は、本発明例A〜Dと同じ履歴で行い、2次焼入れ温度を浸炭窒素処理温度(850℃)以上の850℃〜870℃で行った。
(従来浸炭窒化処理品;比較例):温度850℃で150分間保持して浸炭窒化処理を施した。その浸炭窒化処理時の雰囲気は、RXガスとアンモニアガスとの混合ガスとした。その浸炭窒化処理時の温度からそのまま焼入れを行ない、2次焼入れは行わなかった。
(普通焼入れ品;比較例):浸炭窒化処理を行なわずに、850℃に加熱して焼入れた。2次焼入れは行わなかった。
【0025】
上記の各試料に対して、(1)水素量の測定、(2)結晶粒度の測定、(3)シャルピー衝撃試験、(4)破壊応力値の測定、(5)転動疲労試験、の各々を行った。その結果を表1に合わせて示す。
【0026】
次にこれらの測定方法および試験方法について説明する。
(1)水素量の測定
水素量は、LECO社製DH−103型水素分析装置により、鋼中の非拡散性水素量を分析した。拡散性水素量は測定してない。このLECO社製DH−103型水素分析装置の仕様を下記に示す。
【0027】
分析範囲:0.01〜50.00ppm
分析精度:±0.1ppmまたは±3%H(いずれか大なるほう)
分析感度:0.01ppm
検出方式:熱伝導度法
試料重量サイズ:10mg〜35g(最大:直径12mm×長さ100mm)
加熱炉温度範囲:50℃〜1100℃
試薬:アンハイドロン(Mg(ClO42)、アスカライト(NaOH)
キャリアガス:窒素ガス、ガスドージングガス(水素ガス)、いずれのガスも純度99.99%以上、圧力40PSI(2.8kgf/cm2)である。
【0028】
測定手順の概要は以下のとおりである。専用のサンプラーで採取した試料をサンプラーごとに上記の水素分析装置に挿入する。内部の拡散性水素は窒素キャリアガスによって熱伝導度検出器に導かれる。この拡散性水素は本実施例では測定しない。次に、サンプラーから試料を取出し抵抗加熱炉内で加熱し、非拡散性水素を窒素キャリアガスによって熱伝導度検出器に導く。熱伝導度検出器において熱伝導度を測定することによって非拡散性水素量を知ることができる。
(2)結晶粒度の測定
結晶粒度の測定は、JIS G 0551の鋼のオーステナイト結晶粒度試験方法に基づいて行った。
(3)シャルピー衝撃試験
シャルピー衝撃試験は、JIS Z 2242の金属材料のシャルピー衝撃試験方法に基づいて行った。試験片には、JIS Z 2202に示されたUノッチ試験片(JIS3号試験片)を用いた。なお、シャルピー衝撃値は、次式の吸収エネルギーEを断面積(0.8cm2)で除した値である。
【0029】
吸収エネルギー:E=WgR(cosβ−cosα)
W:ハンマー重量(=25.438kg)
g:重力加速度(=9.80665m/sec2
R:ハンマー回転軸中心から重心までの距離(=0.6569m)
α:ハンマー持ち上げ角度(=146°)、β:ハンマー降り上がり角度
(4)破壊応力値の測定
図6に破壊応力値の測定に用いた試験片を示す。アムスラー万能試験機を用いて図中のP方向に荷重を負荷して試験片が破壊されるまでの荷重を測定する。その後、得られた破壊荷重を、下記に示す曲がり梁の応力計算式により応力値に換算する。なお、試験片は図6に示す試験片に限られず、他の形状の試験片を用いてもよい。
【0030】
図6の試験片の凸表面における繊維応力をσ1、凹表面における繊維応力をσ2とすると、σ1およびσ2は下記の式によって求められる(機械工学便覧A4編材料力学A4−40)。ここで、Nは円環状試験片の軸を含む断面の軸力、Aは横断面積、e1は外半径、e2は内半径を表す。また、κは曲がり梁の断面係数である。
【0031】
σ1=(N/A)+{M/(Aρo)}[1+e1/{κ(ρo+e1)}]
σ2=(N/A)+{M/(Aρo)}[1−e2/{κ(ρo−e2)}]
κ=−(1/A)∫A {η/(ρo+η)}dA
(5)転動疲労試験、
転動疲労寿命試験の試験条件および試験装置の略図を、表2および図7に示す。図7において、転動疲労寿命試験片21は、駆動ロール11によって駆動され、ボール13と接触して回転している。ボール13は、(3/4)”のボールであり、案内ロール12にガイドされて、転動疲労寿命試験片21との間で高い面圧を及ぼし合いながら転動する。
【0032】
次に上記の測定結果および試験結果について説明する。
(1) 水素量
表1より、浸炭窒化処理したままの従来浸炭窒化処理品の鋼中水素量は、0.72ppmと非常に高い値となっている。これは、浸炭窒化処理の雰囲気に含まれるアンモニア(NH3)が分解して水素が鋼中に侵入したためと考えられる。これに対して、試料B〜Fの鋼中水素量は0.37〜0.42ppmとなっており、従来浸炭窒化処理品の半分近くにまで減少している。この鋼中水素量は普通焼入れ品と同じレベルである。
【0033】
上記の鋼中水素量の低減により、水素の固溶に起因する鋼の脆化を軽減することができる。すなわち、水素量の低減により、本発明例の試料B〜Fのシャルピー衝撃値および破壊応力値は大きく改善されている。
(2) 結晶粒度
表1より、結晶粒度は、2次焼入れ温度が浸炭窒化処理時の焼入れ(1次焼入れ)の温度より低い場合、すなわち試料B〜Dの場合、オーステナイト粒は、結晶粒度番号11〜12と顕著に微細化されている。試料EおよびFならびに従来浸炭窒化処理品および普通焼入品のオーステナイト粒は、結晶粒度番号10であり、試料B〜Dより粗大な結晶粒となっている。
(3) シャルピー衝撃値
表1によれば、従来浸炭窒化処理品のシャルピー衝撃値は5.33J/cm2であるのに比して、本発明例の試料B〜Fのシャルピー衝撃値は6.20〜6.65J/cm2と高い値が得られている。この中でも、2次焼入れ温度が低いほうがシャルピー衝撃値が高くなる傾向を示す。なお、普通焼入品のシャルピー衝撃値は6.70J/cm2と高い。
(4) 破壊応力値
上記破壊応力値は、耐割れ強度に相当する。表1によれば、従来浸炭窒化処理品は2330MPaの破壊応力値となっている。これに比して、試料B〜Fの破壊応力値は2650〜2840MPaと改善されている。普通焼入品の破壊応力値は2770MPaであり、試料B〜Fの破壊応力値と同等である。このような、試料B〜Fの改良された耐割れ強度は、オーステナイト結晶粒の微細化と並んで、水素含有率の低減による効果が大きいと推定される。
(5) 転動疲労試験
表1によれば、普通焼入品は浸炭窒化層を表層部に有しないことを反映して、転動疲労寿命L10は最も低い。これに比して従来浸炭窒化処理品の転動疲労寿命は3.1倍となる。試料B〜Dの転動疲労寿命は従来浸炭窒化処理品より大幅に向上する。試料E,Fは、従来浸炭窒化処理品とほぼ同等であった。
【0034】
上記をまとめると、本発明例の試料B〜Fでは、鋼中水素量が低くなり、破壊応力値やシャルピー衝撃値が向上する。しかし、転動疲労寿命まで含めて改良しうるのは、さらにオーステナイト結晶粒度を粒度番号で11番程度以上に微細化した試料B〜Dである。したがって、本発明例に該当するのは試料B〜Fであるが、より望ましい本発明の範囲は、2次焼入れ温度を浸炭窒化処理温度より低くして結晶粒の微細化をさらに図った試料B〜Dの範囲である。
【0035】
(実施例2)
次に実施例2について説明する。
【0036】
下記のA材、B材およびC材について、一連の試験を行った。熱処理用素材には、JIS規格SUJ2材(1.0重量%C−0.25重量%Si−0.4重量%Mn−1.5重量%Cr)を用い、A材〜C材に共通とした。A材〜C材の製造履歴は次のとおりである。
(A材:比較例):普通焼入れのみを行なった(浸炭窒化処理せず)。
(B材:比較例):浸炭窒化処理後にそのまま焼き入れた(従来の浸炭窒化焼入れ)。浸炭窒化処理の温度を845℃とし、保持時間を150分間とした。また浸炭窒化処理の雰囲気を、RXガス+アンモニアガスとした。
(C材:本発明例):軸受鋼に図2の熱処理パターンを施した。浸炭窒化処理の温度を845℃とし、保持時間を150分間とし、雰囲気をRXガス+アンモニアガスとした。また、最終焼入れ温度を800℃とした。
【0037】
(1) 転動疲労寿命
転動疲労寿命試験の試験装置には上述した図7の装置を用い、試験条件は表2に示す条件とした。この転動疲労寿命試験結果を表3に示す。
【0038】
【表2】
Figure 0003990213
【0039】
【表3】
Figure 0003990213
【0040】
表3によれば、浸炭窒化処理を施したB材(比較例)のL10寿命は、普通焼入れのみを施したA材(比較例)のL10寿命(試験片10個中1個が破損する寿命)の3.1倍を示し、浸炭窒化処理による長寿命化の効果が認められる。これに対して、本発明例のC材は、B材の1.74倍、またA材の5.4倍の長寿命を示している。この改良の主因はミクロ組織の微細化によるものと考えられる。
【0041】
(2) シャルピー衝撃試験
シャルピー衝撃試験は、Uノッチ試験片を用いて、上述のJIS Z 2242に準じた方法により行なった。試験結果を表4に示す。
【0042】
【表4】
Figure 0003990213
【0043】
本発明例のC材では、普通焼入れのみを施したA材(比較例)と同等で、かつ浸炭窒化処理を施したB材(比較例)よりも高いシャルピー衝撃値が得られた。
【0044】
(3) 静的破壊靭性値の試験
静的破壊靭性試験の試験片には、図8に示す試験体を用い、亀裂を予め約1mm導入した後に、3点曲げによる静的荷重Pを加え、破壊荷重を求めた。破壊靭性値(KIC値)の算出には次に示す次式を用いた。また、試験結果を表5に示す。
【0045】
IC=(PL√a/BW2){5.8−9.2(a/W)+43.6(a/W)2−75.3(a/W)3+77.5(a/W)4
【0046】
【表5】
Figure 0003990213
【0047】
予め導入した亀裂の深さが浸炭窒化層深さよりも大きくなったため、比較例のA材とB材とには違いはない。しかし、本発明例のC材では比較例のA材およびB材に対して約1.2倍の破壊靭性値(KIC値)を得ることができた。
【0048】
(4) 静圧壊強度試験(破壊応力値の測定)
静圧壊強度試験片には、上述のように図6に示す形状のものを用いた。図中、P方向に荷重を付加して、上記と同様にして静圧壊強度試験を行なった。試験結果を表6に示す。
【0049】
【表6】
Figure 0003990213
【0050】
浸炭窒化処理を施したB材(比較例)の静圧壊強度は普通焼入れのみを施したA材(比較例)の静圧壊強度よりもやや低い値である。しかしながら、本発明例のC材の静圧壊強度は、B材の静圧壊強度よりも向上し、A材の静圧壊強度よりもわずかに高いレベルになっている。
【0051】
(5) 経年寸法変化率
温度130℃で500時間保持した場合の経年寸法変化率を測定した。その測定結果を、表面硬度、残留オーステナイト量(表面から0.1mm深さでの)とともに表7に示す。
【0052】
【表7】
Figure 0003990213
【0053】
残留オーステナイト量の多いB材の寸法変化率に比べて、本発明例のC材の寸法変化率は低く抑えられていることがわかる。
【0054】
(6) 異物混入潤滑下における寿命試験
玉軸受6206を用い、標準異物を所定量混入させた異物混入潤滑下での転動疲労寿命を評価した。試験条件を表8に、また試験結果を表9に示す。
【0055】
【表8】
Figure 0003990213
【0056】
【表9】
Figure 0003990213
【0057】
A材に比べ、浸炭窒化処理を施したB材(比較例)では約2.5倍の、また本発明例のC材では約2.3倍の長寿命が得られた。本発明例のC材では、比較例のB材に比べて残留オーステナイトが少ないものの、窒素の侵入と微細化されたミクロ組織の影響とによりほぼ同等の長寿命が得られている。
【0058】
上記の結果より、本発明例のC材、すなわち本発明の熱処理方法によって製造された軸受部品は、従来の浸炭窒化処理では困難であった転動疲労寿命の長寿命化、割れ強度の向上、経年寸法変化率の低減の3項目を同時に満足することができることがわかった。
【0059】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0060】
【発明の効果】
本発明の軸受部品および転がり軸受を用いることにより、浸炭窒化処理層を形成した上で、これまでにない優れた破壊応力値を得ることができるため、優れた耐割れ強度などを得ることができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態における転がり軸受を示す概略断面図である。
【図2】 本発明の実施の形態における熱処理方法を説明する図である。
【図3】 本発明の実施の形態における熱処理方法の変形例を説明する図である。
【図4】 軸受部品のミクロ組織、とくにオーステナイト粒を示す図である。(a)は本発明例の軸受部品であり、(b)は従来の軸受部品である。
【図5】 (a)は図4(a)を図解したオーステナイト粒界を示し、(b)は図4(b)を図解したオーステナイト粒界を示す。
【図6】 静圧壊強度試験(破壊応力値の測定)の試験片を示す図である。
【図7】 転動疲労寿命試験機の概略図である。(a)は正面図であり、(b)は側面図である。
【図8】 静的破壊靭性試験の試験片を示す図である。
【符号の説明】
1 外輪、2 内輪、3 転動体、10 転がり軸受、11 駆動ロール、12 案内ロール、13 (3/4)”ボール、21 転動疲労寿命試験片、T1 浸炭窒化処理温度、T2 焼入れ加熱温度。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to bearing parts and rolling bearings used for reduction gears, drive pinions, transmission bearings, etc., and relates to bearing parts and rolling bearings that have a long rolling fatigue characteristic and have high cracking resistance and aging-resistant dimensional changes. It is about.
[0002]
[Prior art]
As a heat treatment method that gives a long life against rolling fatigue of a bearing component, a method of performing a carbonitriding process on the surface layer portion of the bearing component by adding ammonia gas to the atmosphere RX gas during quenching heating, etc. (For example, JP-A-8-4774, JP-A-11-101247). By using this carbonitriding treatment method, the surface layer portion can be hardened, retained austenite can be generated in the microstructure, and the rolling fatigue life can be improved.
[0003]
[Problems to be solved by the invention]
However, since the carbonitriding method described above is a diffusion treatment that diffuses carbon and nitrogen, it must be kept at a high temperature for a long time. For this reason, it is difficult to improve the cracking resistance due to the coarsening of the structure. In addition, an increase in the dimensional change rate due to increase in retained austenite is also a problem.
[0004]
On the other hand, in order to ensure a long life against rolling fatigue, improve crack strength, and prevent an increase in the rate of dimensional change over time, it is possible to cope with the problem by adjusting the composition by the alloy design of steel. However, the alloy design causes problems such as an increase in raw material costs.
[0005]
Future bearing parts are required to have characteristics that can be used under larger load conditions and at higher temperatures than in the past as the usage environment increases in load and temperature. For this reason, a bearing component having high strength, long rolling fatigue characteristics, high cracking strength and dimensional stability is required.
[0006]
It is an object of the present invention to provide a bearing component and a rolling bearing that have high cracking resistance and dimensional stability and are excellent in rolling fatigue life.
[0007]
[Means for Solving the Problems]
Rolling bearing of the present invention, the inner ring, the rolling bearing having an outer ring and a plurality of rolling elements, the inner ring, at least one of member of the outer ring and the rolling elements have a carbonitrided layer, the fracture stress value of the member der least 2650MPa is, the grain size number of austenite crystal grains of the member is in the range exceeding number 10, the members are those characterized that you have made a JIS standard SUJ2.
[0008]
The present inventors, after the steel for the bearing parts were carbonitrided in the carbonitriding temperature exceeding the A 1 transformation point, cooled to a temperature below the A 1 transformation point, then the A 1 transformation point or above the hardening temperature It was found that the fracture stress value of the steel having the carbonitriding layer can be increased to 2650 MPa or higher, which has not been obtained conventionally, by reheating and quenching the zone. Thereby, it is possible to obtain a rolling bearing having a higher fracture strength than that of the conventional one and thereby a higher strength.
[0009]
The bearing component of the present invention is a bearing component to be incorporated in the rolling bearing, and have a carbonitrided layer, the fracture stress value of Ri der least 2650 MPa, in a range grain size number of austenite crystal grains exceeds number 10 Yes, it is an feature that you have made from the JIS standard SUJ2.
[0010]
Also in this bearing part, like the above-mentioned rolling bearing, it is possible to obtain a bearing part that has an excellent fracture stress value compared to the conventional one and thereby has a high cracking strength.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a schematic cross-sectional view showing a rolling bearing in an embodiment of the present invention. In FIG. 1, this rolling bearing 10 mainly has an outer ring 1, an inner ring 2, and rolling elements 3. The drawings show radial ball bearings, but the same applies to ball bearings, tapered roller bearings, roller bearings, and needle roller bearings. The rolling element 3 is supported by a cage disposed between the outer ring 1 and the inner ring 2 so as to be able to roll.
[0013]
At least one member of the outer ring 1, the inner ring 2 and the rolling element 3 includes steel having a carbonitriding layer and has a fracture stress value of 2650 MPa or more.
[0014]
In addition, at least one member of the outer ring 1, the inner ring 2 and the rolling element 3 includes steel having a carbonitriding layer, and the hydrogen content in the steel is 0.5 ppm or less.
[0015]
Further, at least one member of the outer ring 1, the inner ring 2 and the rolling element 3 includes steel having a carbonitriding layer, and the grain size number of the austenite crystal grains of the member is in the range exceeding # 10.
[0016]
In addition, at least one member of the outer ring 1, the inner ring 2 and the rolling element 3 includes steel having a carbonitriding layer and has a Charpy impact value of 6.2 J / cm 2 or more.
[0017]
Next, heat treatment including carbonitriding performed on at least one bearing component of the outer ring, the inner ring and the rolling element of the rolling bearing will be described.
[0018]
2 and 3 show a heat treatment method according to the embodiment of the present invention. FIG. 2 is a heat treatment pattern showing a method of performing primary quenching and secondary quenching, and FIG. 3 is a method of cooling the material to below the A 1 transformation point temperature during quenching, and then re-heating and finally quenching. It is the heat processing pattern which shows. Both are exemplary embodiments of the present invention. In these figures, in treatment T 1 , carbon and nitrogen are diffused in the steel base, and after sufficient carbon penetration, the steel is cooled to below the A 1 transformation point. Next, in the process T 2 of the in the figure, than the processing T 1 is reheated to a low temperature, subjected to oil quenching from there.
[0019]
Rather than performing normal quenching, that is, carbonitriding once after the carbonitriding treatment, the crack strength can be improved and the aging change rate can be reduced while carbonitriding the surface layer portion. As described above, according to the above heat treatment method, it is possible to obtain a microstructure in which the grain size of austenite crystal grains is ½ or less of the conventional one. The bearing parts subjected to the above heat treatment have a long rolling fatigue characteristic, can improve the cracking strength, and can also reduce the rate of dimensional change over time.
[0020]
FIG. 4A shows the austenite grain size of the bearing steel to which the heat treatment pattern shown in FIG. 2 is applied. For comparison, FIG. 4B shows the austenite grain size of the bearing steel obtained by the conventional heat treatment method. FIGS. 5 (a) and 5 (b) show the austenite grain sizes illustrated in FIGS. 4 (a) and 4 (b). From the structure showing the austenite crystal grain size, the conventional austenite grain size is No. 10 in the JIS standard grain size number, and according to the heat treatment method of the present invention, No. 12 fine grains can be obtained. Moreover, the average particle diameter of Fig.4 (a) was 5.6 micrometers as a result of measuring by the intercept method.
[0021]
【Example】
Next, examples of the present invention will be described.
[0022]
Example 1
Example 1 of the present invention was performed using JIS standard SUJ2 material (1.0 wt% C-0.25 wt% Si-0.4 wt% Mn-1.5 wt% Cr). The manufacturing history of each sample shown in Table 1 is shown below.
[0023]
[Table 1]
Figure 0003990213
[0024]
(Samples A to D; examples of the present invention): Carbonitriding was performed by holding at a temperature of 850 ° C. for 150 minutes. The atmosphere during the carbonitriding process was a mixed gas of RX gas and ammonia gas. In the heat treatment pattern shown in FIG. 2, primary quenching was performed from a carbonitriding temperature of 850 ° C., and then secondary quenching was performed by heating to a temperature range of 780 ° C. to 830 ° C. lower than the carbonitriding temperature. However, Sample A having a secondary quenching temperature of 780 ° C. was excluded from the test because of insufficient quenching.
(Samples E and F; Example of the present invention): The carbonitriding process is performed with the same history as that of Examples A to D of the present invention, and the secondary quenching temperature is performed at 850 ° C. to 870 ° C. which is equal to or higher than the carburizing nitrogen treatment temperature (850 ° C.) It was.
(Conventional carbonitrided product; comparative example): Carbonitriding was performed by holding at a temperature of 850 ° C. for 150 minutes. The atmosphere during the carbonitriding process was a mixed gas of RX gas and ammonia gas. Quenching was performed as it was from the temperature during the carbonitriding treatment, and secondary quenching was not performed.
(Normally hardened product; comparative example): It was quenched by heating to 850 ° C. without performing carbonitriding. Secondary quenching was not performed.
[0025]
For each of the above samples, (1) measurement of hydrogen content, (2) measurement of crystal grain size, (3) Charpy impact test, (4) measurement of fracture stress value, (5) rolling fatigue test Went. The results are also shown in Table 1.
[0026]
Next, these measurement methods and test methods will be described.
(1) Measurement of hydrogen amount The amount of hydrogen was determined by analyzing the amount of non-diffusible hydrogen in the steel using a DH-103 hydrogen analyzer manufactured by LECO. The amount of diffusible hydrogen is not measured. The specification of this LECO DH-103 type hydrogen analyzer is shown below.
[0027]
Analysis range: 0.01 to 50.00 ppm
Analysis accuracy: ± 0.1 ppm or ± 3% H (whichever is greater)
Analysis sensitivity: 0.01ppm
Detection method: Thermal conductivity method Sample weight size: 10 mg to 35 g (maximum: diameter 12 mm × length 100 mm)
Heating furnace temperature range: 50 ° C to 1100 ° C
Reagents: Anhydrone (Mg (ClO 4 ) 2 ), Ascarite (NaOH)
Carrier gas: Nitrogen gas, gas dosing gas (hydrogen gas), all of which have a purity of 99.99% or more and a pressure of 40 PSI (2.8 kgf / cm 2 ).
[0028]
The outline of the measurement procedure is as follows. Samples collected with a dedicated sampler are inserted into the hydrogen analyzer for each sampler. Internal diffusible hydrogen is directed to the thermal conductivity detector by a nitrogen carrier gas. This diffusible hydrogen is not measured in this example. Next, the sample is taken out from the sampler and heated in a resistance heating furnace, and non-diffusible hydrogen is guided to the thermal conductivity detector by nitrogen carrier gas. The amount of non-diffusible hydrogen can be known by measuring the thermal conductivity with a thermal conductivity detector.
(2) Measurement of crystal grain size The crystal grain size was measured based on the JIS G 0551 steel austenite grain size test method.
(3) Charpy impact test The Charpy impact test was performed based on the Charpy impact test method of a metal material of JIS Z 2242. As a test piece, a U-notch test piece (JIS No. 3 test piece) shown in JIS Z 2202 was used. The Charpy impact value is a value obtained by dividing the absorbed energy E of the following formula by the cross-sectional area (0.8 cm 2 ).
[0029]
Absorbed energy: E = WgR (cosβ-cosα)
W: Hammer weight (= 25.438 kg)
g: Gravitational acceleration (= 9.80665 m / sec 2 )
R: Distance from the center of rotation of the hammer to the center of gravity (= 0.6569m)
α: Hammer lifting angle (= 146 °), β: Hammer descending angle (4) Measurement of fracture stress value FIG. 6 shows a test piece used for measurement of the fracture stress value. Using an Amsler universal testing machine, load is applied in the direction P in the figure and the load until the test piece is broken is measured. Thereafter, the obtained fracture load is converted into a stress value by the following bending beam stress calculation formula. In addition, a test piece is not restricted to the test piece shown in FIG. 6, You may use the test piece of another shape.
[0030]
Assuming that the fiber stress on the convex surface of the test piece of FIG. 6 is σ 1 and the fiber stress on the concave surface is σ 2 , σ 1 and σ 2 are obtained by the following formulas (Mechanical Engineering Handbook A4 Knitting Material Dynamics A4-40) . Here, N is the axial force of the cross section including the axis of the annular specimen, A is the cross-sectional area, e 1 is the outer radius, and e 2 is the inner radius. Further, κ is a section modulus of the curved beam.
[0031]
σ 1 = (N / A) + {M / (Aρ o )} [1 + e 1 / {κ (ρ o + e 1 )}]
σ 2 = (N / A) + {M / (Aρ o )} [1-e 2 / {κ (ρ o −e 2 )}]
κ = − (1 / A) ∫ A {η / (ρ o + η)} dA
(5) Rolling fatigue test,
Table 2 and FIG. 7 show test conditions for the rolling fatigue life test and a schematic diagram of the test apparatus. In FIG. 7, the rolling fatigue life test piece 21 is driven by the drive roll 11 and rotates in contact with the ball 13. The ball 13 is a (3/4) ″ ball, which is guided by the guide roll 12 and rolls while exerting a high surface pressure with the rolling fatigue life test piece 21.
[0032]
Next, the measurement results and test results will be described.
(1) Hydrogen amount From Table 1, the amount of hydrogen in steel of the conventional carbonitrided product as it is carbonitrided is a very high value of 0.72 ppm. This is presumably because ammonia (NH 3 ) contained in the carbonitriding atmosphere decomposed and hydrogen entered the steel. On the other hand, the amount of hydrogen in steel of Samples B to F is 0.37 to 0.42 ppm, which is reduced to nearly half that of the conventional carbonitrided product. The amount of hydrogen in this steel is at the same level as that of ordinary quenched products.
[0033]
By reducing the amount of hydrogen in the steel, embrittlement of the steel due to hydrogen solid solution can be reduced. That is, by reducing the amount of hydrogen, the Charpy impact value and the fracture stress value of the samples BF of the present invention example are greatly improved.
(2) Crystal grain size From Table 1, the crystal grain size is the crystal grain size number when the secondary quenching temperature is lower than the quenching (primary quenching) temperature during carbonitriding, that is, in the case of Samples BD. It is remarkably miniaturized as 11-12. The austenite grains of Samples E and F, the conventional carbonitrided product and the normal quenching product have a crystal grain size number 10, and are coarser than Samples B to D.
(3) Charpy impact value According to Table 1, the Charpy impact value of the samples B to F of the present invention example is 6 compared with the Charpy impact value of the conventional carbonitrided product being 5.33 J / cm 2. A high value of .20 to 6.65 J / cm 2 is obtained. Among these, the lower the secondary quenching temperature, the higher the Charpy impact value tends to be. In addition, the Charpy impact value of the normally quenched product is as high as 6.70 J / cm 2 .
(4) Fracture stress value The above-mentioned fracture stress value corresponds to the crack resistance strength. According to Table 1, the conventional carbonitrided product has a fracture stress value of 2330 MPa. Compared to this, the fracture stress values of Samples B to F are improved to 2650 to 2840 MPa. The fracture stress value of the normally quenched product is 2770 MPa, which is equivalent to the fracture stress values of Samples B to F. Such improved crack resistance strength of Samples B to F is presumed to have a great effect by reducing the hydrogen content, along with the refinement of austenite crystal grains.
(5) According to the rolling contact fatigue test Table 1, usually sintered Irihin is reflecting that does not have a carbonitrided layer in the surface layer portion, the rolling fatigue life L 10 is the lowest. Compared to this, the rolling fatigue life of the conventional carbonitrided product is 3.1 times. The rolling fatigue life of Samples B to D is significantly improved as compared with the conventional carbonitrided product. Samples E and F were almost equivalent to conventional carbonitrided products.
[0034]
In summary, in Samples B to F of the present invention example, the amount of hydrogen in the steel is lowered, and the fracture stress value and Charpy impact value are improved. However, what can be improved including the rolling fatigue life is the samples B to D in which the austenite crystal grain size is further refined to about 11 or more in the grain size number. Therefore, samples B to F correspond to the examples of the present invention, but a more desirable range of the present invention is sample B in which the secondary quenching temperature is made lower than the carbonitriding temperature to further refine the crystal grains. It is the range of -D.
[0035]
(Example 2)
Next, Example 2 will be described.
[0036]
A series of tests were performed on the following A material, B material, and C material. JIS standard SUJ2 material (1.0% by weight C-0.25% by weight Si-0.4% by weight Mn-1.5% by weight Cr) is used for the heat treatment material, which is common to A material to C material. did. The manufacturing histories of the A material to the C material are as follows.
(A material: Comparative example): Only normal quenching was performed (without carbonitriding).
(B material: comparative example): It hardened as it was after carbonitriding (conventional carbonitriding quenching). The temperature of carbonitriding was 845 ° C., and the holding time was 150 minutes. The atmosphere of carbonitriding was RX gas + ammonia gas.
(C material: Example of the present invention): The heat treatment pattern of FIG. 2 was applied to the bearing steel. The carbonitriding temperature was 845 ° C., the holding time was 150 minutes, and the atmosphere was RX gas + ammonia gas. The final quenching temperature was 800 ° C.
[0037]
(1) Rolling fatigue life The above-described apparatus shown in FIG. 7 was used as a rolling fatigue life test apparatus, and the test conditions were as shown in Table 2. The rolling fatigue life test results are shown in Table 3.
[0038]
[Table 2]
Figure 0003990213
[0039]
[Table 3]
Figure 0003990213
[0040]
According to Table 3, L 10 life of B material subjected to carbonitriding treatment (comparative example), normally hardened only alms was A material (Comparative Example) of L 10 life (the test piece 10 in one damaged Life) is 3.1 times longer, and the effect of extending the life by carbonitriding is recognized. On the other hand, the C material of the present invention example has a long life of 1.74 times that of the B material and 5.4 times that of the A material. The main reason for this improvement is thought to be the refinement of the microstructure.
[0041]
(2) Charpy impact test The Charpy impact test was performed by the method according to the above-mentioned JIS Z 2242 using a U-notch test piece. The test results are shown in Table 4.
[0042]
[Table 4]
Figure 0003990213
[0043]
In the C material of the present invention example, a Charpy impact value equivalent to the A material (comparative example) subjected only to normal quenching and higher than that of the B material (comparative example) subjected to carbonitriding was obtained.
[0044]
(3) Test of static fracture toughness value The test piece shown in FIG. 8 was used as a test piece for static fracture toughness test. After introducing a crack of about 1 mm in advance, a static load P by three-point bending was applied, The breaking load was determined. The following equation was used to calculate the fracture toughness value (K IC value). The test results are shown in Table 5.
[0045]
K IC = (PL√a / BW 2 ) {5.8−9.2 (a / W) +43.6 (a / W) 2 −75.3 (a / W) 3 +77.5 (a / W 4 }
[0046]
[Table 5]
Figure 0003990213
[0047]
Since the depth of the crack introduced in advance is larger than the depth of the carbonitriding layer, there is no difference between the A material and the B material of the comparative example. However, in the C material of the present invention, a fracture toughness value (K IC value) about 1.2 times that of the A material and B material of the comparative example could be obtained.
[0048]
(4) Static crush strength test (measurement of fracture stress value)
As described above, the static crushing strength test piece having the shape shown in FIG. 6 was used. In the figure, a load was applied in the P direction, and a static crushing strength test was performed in the same manner as described above. The test results are shown in Table 6.
[0049]
[Table 6]
Figure 0003990213
[0050]
The static crushing strength of the B material (comparative example) subjected to the carbonitriding treatment is slightly lower than the static crushing strength of the A material (comparative example) subjected only to normal quenching. However, the static crushing strength of the C material of the present invention example is higher than the static crushing strength of the B material, and is slightly higher than the static crushing strength of the A material.
[0051]
(5) Aged dimensional change rate Aged dimensional change rate was measured at a temperature of 130 ° C. for 500 hours. The measurement results are shown in Table 7 together with the surface hardness and the amount of retained austenite (at a depth of 0.1 mm from the surface).
[0052]
[Table 7]
Figure 0003990213
[0053]
It can be seen that the dimensional change rate of the C material of the present invention example is kept low compared to the dimensional change rate of the B material having a large amount of retained austenite.
[0054]
(6) Life test under lubrication mixed with foreign matter Using a ball bearing 6206, a rolling fatigue life under lubrication mixed with a predetermined amount of standard foreign matter was evaluated. The test conditions are shown in Table 8, and the test results are shown in Table 9.
[0055]
[Table 8]
Figure 0003990213
[0056]
[Table 9]
Figure 0003990213
[0057]
Compared to the A material, a long life was obtained about 2.5 times longer in the B material (comparative example) subjected to carbonitriding, and about 2.3 times longer in the C material of the present invention example. In the C material of the present invention, although the retained austenite is less than that in the B material of the comparative example, a substantially equivalent long life is obtained due to the intrusion of nitrogen and the influence of the refined microstructure.
[0058]
From the above results, the material C of the example of the present invention, that is, the bearing part produced by the heat treatment method of the present invention, has a long rolling fatigue life, which is difficult with the conventional carbonitriding process, and an improved crack strength. It was found that the three items of reduction of the aging dimensional change rate can be satisfied simultaneously.
[0059]
It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0060]
【The invention's effect】
By using the bearing component and the rolling bearing of the present invention, it is possible to obtain an unprecedented excellent fracture stress value after forming a carbonitriding layer, and therefore, it is possible to obtain excellent cracking resistance and the like. .
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a rolling bearing in an embodiment of the present invention.
FIG. 2 is a diagram illustrating a heat treatment method according to an embodiment of the present invention.
FIG. 3 is a diagram for explaining a modification of the heat treatment method in the embodiment of the present invention.
FIG. 4 is a diagram showing the microstructure of bearing parts, particularly austenite grains. (a) is a bearing part of the example of the present invention, and (b) is a conventional bearing part.
5A shows an austenite grain boundary illustrated in FIG. 4A, and FIG. 5B shows an austenite grain boundary illustrated in FIG. 4B.
FIG. 6 is a view showing a test piece of a static crushing strength test (measurement of a breaking stress value).
FIG. 7 is a schematic view of a rolling fatigue life tester. (a) is a front view, (b) is a side view.
FIG. 8 is a view showing a test piece of a static fracture toughness test.
[Explanation of symbols]
1 outer ring, 2 inner ring, 3 rolling element, 10 rolling bearing, 11 drive roll, 12 guide roll, 13 (3/4) "ball, 21 rolling fatigue life test piece, T 1 carbonitriding temperature, T 2 quenching heating temperature.

Claims (2)

内輪、外輪および複数の転動体を有する転がり軸受において、
前記内輪、外輪および転動体のうち少なくともいずれか一つの部材が浸炭窒化層を有
前記部材の破壊応力値が2650MPa以上であり、
前記部材のオーステナイト結晶粒の粒度番号が10番を超える範囲にあり、
前記部材はJIS規格SUJ2からなっている、転がり軸受。
In a rolling bearing having an inner ring, an outer ring and a plurality of rolling elements,
The inner ring, at least one of the members have a carbonitrided layer in the outer ring and rolling elements,
Fracture stress of the member Ri der least 2650 MPa,
The particle number number of the austenite crystal grains of the member is in the range exceeding 10
The member that consisted of JIS standard SUJ2, the rolling bearing.
転がり軸受に組み込まれる軸受部品であって、
浸炭窒化層を有
破壊応力値が2650MPa以上であり、
オーステナイト結晶粒の粒度番号が10番を超える範囲にあり、
JIS規格SUJ2からなっている、軸受部品。
A bearing component incorporated in a rolling bearing,
The carbonitrided layer possess,
Fracture stress value of Ri der more than 2650MPa,
The austenite grain size number is in the range exceeding 10;
That consisted of JIS standard SUJ2, bearing components.
JP2002194921A 2001-11-29 2002-07-03 Bearing parts and rolling bearings Expired - Lifetime JP3990213B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002194921A JP3990213B2 (en) 2001-11-29 2002-07-03 Bearing parts and rolling bearings
US10/300,590 US7438477B2 (en) 2001-11-29 2002-11-21 Bearing part, heat treatment method thereof, and rolling bearing
DE10254635A DE10254635B4 (en) 2001-11-29 2002-11-22 Bearing part, heat treatment method and rolling bearings
KR1020020073071A KR100951216B1 (en) 2001-11-29 2002-11-22 Bearing Part, Heat Treatment Method Thereof, and Rolling Bearing
CNB021543194A CN1304625C (en) 2001-11-29 2002-11-29 Bearing parts, heat treatment method of bearing parts and rolling bearing
FR0306034A FR2841907B1 (en) 2002-07-03 2003-05-20 BEARING PIECE, METHOD FOR THERMALLY PROCESSING SUCH A BEARING PIECE
US11/118,385 US8425690B2 (en) 2001-11-29 2005-05-02 Bearing part, heat treatment method thereof, and rolling bearing
US13/291,839 US20120051682A1 (en) 2001-11-29 2011-11-08 Bearing part, heat treatment method thereof, and rolling bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-364516 2001-11-29
JP2001364516 2001-11-29
JP2002194921A JP3990213B2 (en) 2001-11-29 2002-07-03 Bearing parts and rolling bearings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007014152A Division JP4459240B2 (en) 2001-11-29 2007-01-24 Bearing parts and rolling bearings

Publications (2)

Publication Number Publication Date
JP2003227518A JP2003227518A (en) 2003-08-15
JP3990213B2 true JP3990213B2 (en) 2007-10-10

Family

ID=27759467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194921A Expired - Lifetime JP3990213B2 (en) 2001-11-29 2002-07-03 Bearing parts and rolling bearings

Country Status (1)

Country Link
JP (1) JP3990213B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257556A (en) * 2003-02-06 2004-09-16 Ntn Corp Wheel axle bearing device and its manufacturing method
JP4718781B2 (en) * 2003-02-28 2011-07-06 Ntn株式会社 Transmission components and tapered roller bearings
JP4573535B2 (en) * 2003-02-28 2010-11-04 Ntn株式会社 Differential support structure and differential components
JP4362394B2 (en) * 2003-03-28 2009-11-11 Ntn株式会社 Compressor bearing
DE112004001919T5 (en) 2003-10-10 2006-10-19 Ntn Corp. roller bearing
JP2005114144A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
JP2005114148A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
JP2005114147A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
JP2005195148A (en) * 2004-01-09 2005-07-21 Ntn Corp Thrust needle roller bearing
JP4800599B2 (en) * 2004-07-05 2011-10-26 Ntn株式会社 Tapered roller bearing

Also Published As

Publication number Publication date
JP2003227518A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP3905430B2 (en) Bearing parts and rolling bearings
KR100951216B1 (en) Bearing Part, Heat Treatment Method Thereof, and Rolling Bearing
JP4718781B2 (en) Transmission components and tapered roller bearings
JP4319001B2 (en) Rolling bearing
US20070151633A1 (en) Rolling bearing
JP3990213B2 (en) Bearing parts and rolling bearings
JP2004301321A (en) Bearing for alternator and bearing for pulley
JP4573535B2 (en) Differential support structure and differential components
JP2005114144A (en) Rolling bearing
JP3990212B2 (en) Bearing parts and rolling bearings
JP5318528B2 (en) Manufacturing method of cam follower with roller of engine
JP2005114148A (en) Rolling bearing
JP2005113257A (en) Rolling bearing
JP4459240B2 (en) Bearing parts and rolling bearings
JP4362394B2 (en) Compressor bearing
JP4000105B2 (en) Rolling bearing
JP3961460B2 (en) Bearing parts and rolling bearings
JP4382769B2 (en) Heat treatment method for bearing parts, bearing parts and rolling bearing
JP4440692B2 (en) Motor bearing, method of manufacturing the same, and motor
JP2004278789A (en) Component of planetary gear mechanism, and bearing member of planetary gear mechanism
JP2004278528A (en) Cam follower with roller and steel member of engine
JP2007040503A (en) Collared roller bearing
JP2005133922A (en) Steel machine part and rolling bearing
JP2005114145A (en) Rolling bearing
JP2006145012A (en) Component part of planetary gear mechanism and rollingly supporting mechanism of planetary gear mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3990213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term