JP3988981B2 - Method for producing linear expansion control composite material - Google Patents

Method for producing linear expansion control composite material Download PDF

Info

Publication number
JP3988981B2
JP3988981B2 JP2001320659A JP2001320659A JP3988981B2 JP 3988981 B2 JP3988981 B2 JP 3988981B2 JP 2001320659 A JP2001320659 A JP 2001320659A JP 2001320659 A JP2001320659 A JP 2001320659A JP 3988981 B2 JP3988981 B2 JP 3988981B2
Authority
JP
Japan
Prior art keywords
sintering
oxide
sintered body
thermal expansion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001320659A
Other languages
Japanese (ja)
Other versions
JP2003129149A (en
Inventor
悦二 柿本
清孝 道家
慶三 小林
章宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Asahi Kasei Chemicals Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Asahi Kasei Chemicals Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001320659A priority Critical patent/JP3988981B2/en
Publication of JP2003129149A publication Critical patent/JP2003129149A/en
Application granted granted Critical
Publication of JP3988981B2 publication Critical patent/JP3988981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱膨張制御材料を製造する方法に関する。
【0002】
【従来の技術】
負の熱膨張係数を有し、化学式(A1-ZZ)(W1-XX)28(AはZr又はHf又はそれらの混合物、DはZrO2又はHfO2に固溶し得る元素から選ばれた元素、Zは各元素で限定される最大固溶原子割合以下の値、RはWO3に固溶し得る元素から選ばれた元素、Xは各元素で限定される最大固溶原子割合以下の値)で表される酸化物は、1105〜1257℃において安定な物質であり、777℃の非平衡分解温度以下の温度域において等方的に負の熱膨張を示すことが知られている。この酸化物は、他の物質と組み合わせて組成物の焼結体とすることにより、この組成物の焼結体の熱膨張係数を制御することが可能である。
【0003】
前記酸化物を含む組成物の焼結体を製造する方法として、Scripta Materialia誌第36巻第9号第1075〜1080ページに、この酸化物の一種であるZrW28(以下タングステン酸ジルコニウムという)と純銅とを混合し、熱間静水圧プレス(以下HIPという)によって焼結して複合材料とする方法が提案されている。また、J.Mater.Res.誌第14巻第3号第780〜789ページには、タングステン酸ジルコニウムと純銅とを混合し、ホットプレスにて固化する方法、タングステン酸ジルコニウムと純銅とをメカニカルアロイング法にて結合させホットプレスにて固化する方法、及びタングステン酸ジルコニウムの表面に純銅を鍍金しHIPにより固化する方法が提案されている。
【0004】
しかしながら、タングステン酸ジルコニウムと銅粉とを混合してHIPにより固化する方法においては、600℃で103MPaの加圧下で3時間保持する必要があり、このような高温下に長時間保持すると、タングステン酸ジルコニウム中の酸素原子と銅原子の相互拡散により銅の酸化物が生成し、タングステン酸ジルコニウムが分解してしまい、所望の熱膨張係数を有する複合材料を得ることができないという問題があった。
【0005】
また、タングステン酸ジルコニウムと純銅とを混合してホットプレスにて固化する方法及びタングステン酸ジルコニウムと純銅とをメカニカルアロイング法によって結合させてホットプレスにて固化する方法は、250℃で1.4GPaの加圧下で13時間保持することにより前記分解が生じないため、高密度な固化体を得ることができるが、保持だけで13時間の時間を費やすため、生産性が低いという問題があり、かつ、前記メカニカルアロイング法にて結合させた材料は、所望の熱膨張係数を示さないという問題があった。
【0006】
また、タングステン酸ジルコニウムの表面に純銅を鍍金してHIPにより固化する方法においては、前記HIP法の問題点は解消されているが、所望の熱膨張係数を有するタングステン酸ジルコニウムと銅との複合材料を得るには、表面コーティングの制御が必要であるが、この制御が困難である。また、この方法は工程的にも必ずしも効率的であるとはいえなかった。
【0007】
【発明が解決しようとする課題】
本発明は、前記の化学式(A1-ZZ)(W1-XX)28で表される酸化物を成分として含む所望の熱膨張係数を有する組成物焼結体を、効率良く容易に製造することを可能にする製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、前記課題を解決するため、前記酸化物を含む組成物の焼結体を製造する方法について検討した結果、(1)焼結時の昇温速度と(2)焼結時の圧力の条件を適当な値に設定することにより前記目的が達成されることを見出して本発明をなすに至った。
すなわち、本発明の態様は以下の通りである。
【0009】
(1)負の熱膨張係数を有し、化学式(A1-ZZ)(W1-XX)28(AはZr又はHf又はそれらの混合物、DはZrO2又はHfO2に固溶し得る元素から選ばれた少なくとも一つの元素、Zは各元素で限定される最大固溶原子割合以下の値(0を含む)、RはWO3に固溶し得る元素から選ばれた少なくとも一つの元素、Xは各元素で限定される最大固溶原子割合以下の値(0を含む))で表される酸化物とAl、Cu又はAl−Cu合金との組成物の焼結体を製造する方法において、前記酸化物とAl、Cu又はAl−Cu合金との組成物に通電し発熱させ、焼結時の昇温速度を20〜1000℃/分、焼結温度を777℃以下で焼結することを特徴とする焼結体の製造方法。
【0010】
(2)焼結時の圧力を0.1〜1000MPaとすることを特徴とする上記(1)に記載の焼結体の製造方法。
【0011】
(3)焼結後100〜777℃の温度で、200MPa以下の圧力で1分間以上の熱処理をすることを特徴とする上記(1)又は(2)に記載の焼結体の製造方法。
【0012】
以下、本発明の態様について更に詳細に説明する。
本発明の負の熱膨張係数を有する酸化物(A1-ZZ)(W1-XX)28AはZr又はHf又はそれらの混合物、DはZrO2又はHfO2に固溶し得る元素から選ばれた少なくとも一つの元素、Zは各元素で限定される最大固溶原子割合以下の値(0を含む)、RはWO3に固溶し得る元素から選ばれた少なくとも一つの元素、Xは各元素で限定される最大固溶原子割合以下の値(0を含む))に関して、ZrO2又はHfO2に固溶し得る元素とは、Ca等のアルカリ土類金属、Y等の希土類金属等の元素である。
【0013】
Zの値は、具体的には0.2以下であり、典型的には0〜0.1である。又、WO3に固溶し得る元素とは、IIIA族又はVA族又はVIA族等の元素である。Xの値は、具体的には0.25以下であり、より具体的には0〜0.2である。Zが0.2より大きく、又は、Xが0.25より大きいと、負の熱膨張特性が顕著でなくなることがあるため好ましくない。Z=0かつX=0である場合には、顕著な負の熱膨張特性を有することが知られている。
【0014】
本発明の製造方法の一つの態様として、焼結時の昇温速度を20〜1000℃/分とし、焼結温度を777℃以下として焼結を行う。(前記(1)の態様)
前記酸化物とAl、Cu又はAl−Cu合金とを含む組成物を焼結時の昇温速度を20〜1000℃/分、焼結温度を777℃の非平衡分解温度以下として焼結すると、前記酸化物と他の構成元素との化学反応を抑止することができる。焼結温度を777℃以下に制御するために、前記昇温速度は20〜500℃/分が好ましく、30〜300℃/分がより好ましく、50〜200℃/分が更に好ましい。
【0015】
前記酸化物とAl、Cu又はAl−Cu合金とを含む組成物を777℃以下の温度で焼結すると、前記酸化物の非平衡分解を抑制することができる。
【0016】
また、本発明の製造方法の態様として、焼結時の圧力を0.1〜1000MPaとして焼結を行う。(前記(2)の態様)
前記酸化物とAl、Cu又はAl−Cu合金とを含む組成物を加圧下で焼結すると、焼結に必要な時間を短縮することができ、前記酸化物と他の構成元素との化学反応を抑止することができる。しかしながら、より大きな加圧力を負荷するためには大型プレスが必要となり、かつ、同じ能力のプレスであれば、本発明の熱膨張制御材料の寸法が制限される。このため前記加圧力は、30〜800MPaが好ましく、50〜500MPaがより好ましく、100〜400MPaが更に好ましい。
【0017】
また、本発明の製造方法の態様として、上記製造条件を満足させるために、組成物中に通電することにより発熱させ、温度上昇させることによって焼結を行う。(前記(1)の態様)
前記酸化物を含む組成物に通電することにより発熱させる焼結方法としては、たとえば,特許第2762225号公報に示される放電プラズマ方法などが挙げられる。電気炉などの一般的な加熱方法と比べて、組成物中に通電し発熱させた場合、昇温速度を大きくすることができ、また、前記酸化物を含む組成物が、アルミニウムのような表面に酸化物層を有する材料でも、通電時に放電が起き、酸化物層を破壊することにより緻密な焼結体を作製することができる。
【0018】
また、本発明の製造方法の更に他の態様として、焼結後100〜777℃の温度で、200MPa以下の圧力で、1分間以上の熱処理を行う。(前記(3)の態様)
前記酸化物の代表的な組成であるタングステン酸ジルコニウムは、温度及び圧力付加により、3つの相が存在することが知られている。一般的には、常温常圧でα相が安定であるが、200MPa以上の加圧によりγ相が誘起することが知られており、155℃以上の温度ではβ相に変化する。この3つの相は結晶構造及び格子間隔が異なるため、その熱膨張係数に違いがある。
【0019】
α相は立方晶であり、−273〜127℃の温度範囲で等方的に−8.8×10-6/℃の熱膨張係数を有する。β相も立方晶であり、−157〜677℃の温度範囲で−4.9×10-6/℃の熱膨張係数を有する。γ相は斜方晶であり、20℃で−0.68〜−1.88×10-6/℃の熱膨張係数を示す。
【0020】
本発明の製造方法の焼結の条件では、上記γ相が誘起することがあり得る。γ相は、α相又はβ相に変化させることが望ましい。このため、焼結後、100〜777℃、好ましくは120〜777℃、さらに好ましくは150℃〜777℃の温度で熱処理を行う。また、その際、200MPa以下の圧力で1分間以上の熱処理を行う。この圧力は100MPa以下が好ましく、50MPa以下が更に好ましい。
【0021】
また、熱処理は、焼結後の冷却時に、上記温度範囲で上記圧力範囲に焼結体を保持することにより実施することも可能である。すなわち、前記通電焼結後、電流を減少させることによって加熱を中止すると、焼結治具を通じて熱拡散により冷却される。焼結体が適度の温度に冷却された際に、焼結体への加圧を前記圧力範囲に置くことで、負の熱膨張係数を持つ酸化物が相変化を起こし、所望の相を得ることができる。
【0022】
また、本発明の製造方法の態様として、組成物に金属を含ませる。(前記(1)の態様)
金属は、酸化物、窒化物などの材料と比較して、一般的に軟化点が低く、且つ展延性が良い。このため、金属は前記酸化物を含む組成物の焼結助剤として有効である。ここでいう金属としては、Cu、Al及びそれらの合金が適宜選択できる。
【0023】
【発明の実施の形態】
以下、本発明を実施例により説明するが、本件発明はこれらの具体例によって何ら技術的範囲が限定されるものではない。
【0024】
【実施例1】
前記酸化物として、タングステン酸ジルコニウム粉末(平均粒径2μm)と、市販の純アルミニウム粉末(株式会社高純度化学研究所製:純度99.9%、平均粒径10μm)とを、タングステン酸ジルコニウムの体積比率で50%となるようにして乳鉢にて混合し、超硬合金製焼結治具(内径10mmφ)に充填し、パルス通電焼結装置(住友石炭鉱業株式会社製 SPS−1050L)を用い、真空雰囲気でパルス通電焼結を行い、タングステン酸ジルコニウムとアルミニウムとの焼結体を製造した。パルス通電焼結の条件は、昇温速度100℃/分、付加圧力300MPa、焼結温度400℃、保持時間3分間とした。
【0025】
得られた焼結体について、アルキメデス法による密度測定を実施した結果、アルミニウム及びタングステン酸ジルコニウムの理論密度及び組成比から計算で求めた密度の97%以上であり、良好な焼結状態であった。
次に、X線回折(XRD)による構成相および反応物の同定を実施した結果、タングステン酸ジルコニウムのα相とγ相及びアルミニウムのピークが観察され、分解生成物及び反応物のピークは認められなかった。
また、光学顕微鏡及び走査型電子顕微鏡(SEM)による組織の観察結果より、タングステン酸ジルコニウムとアルミニウムの接合界面にはボイドおよび反応層は観察されず、良好な焼結状態であった。
【0026】
【実施例2】
実施例1と同様に、前記酸化物として、タングステン酸ジルコニウム粉末と、純アルミニウム粉末とを、タングステン酸ジルコニウムの体積比率で25%、50%、75%となるようにして 乳鉢にて混合し、実施例1と同じ焼結条件で焼結体を製造した。
【0027】
得られた焼結体について、アルキメデス法による密度測定を実施した結果、全ての焼結体において、アルミニウム及びタングステン酸ジルコニウムの理論密度及び組成比から計算で求めた密度の97%以上であり、良好な焼結状態であった。
次に、上記焼結体に300℃、0.1MPa、大気中で1時間の熱処理を行った。
その後、X線回折(XRD)による構成相および反応物の同定を実施した結果、全ての焼結体において、タングステン酸ジルコニウムのα相及びアルミニウムのピークが観察され、分解生成物及び反応物のピークは認められなかった。
次に、各複合材料を3×3×6mm3の寸法に加工し、TMAにて熱膨張量の測定を行った。測定結果を図1に示す。前記酸化物とアルミニウムの混合比率により所望の熱膨張係数が得られた。
【0028】
【実施例3】
前記酸化物として、タングステン酸ジルコニウム粉末(平均粒径2μm)と、市販の純銅粉末(福田金属箔粉株式会社製:純度99.9%,平均粒径5μm)とを、タングステン酸ジルコニウムの体積比率で10%、25%、50%、75%、90%となるようにして乳鉢にて混合し、実施例1と同様に、タングステン酸ジルコニウムと銅との焼結体を製造した。パルス通電焼結の条件は、昇温速度80℃/分、付加圧力350MPa、焼結温度500℃、保持時間3分間とした。
【0029】
得られた焼結体について、アルキメデス法による密度測定を実施した結果、純銅及びタングステン酸ジルコニウムの理論密度及び組成比から計算で求めた密度の97%以上であり、良好な焼結状態であった。
その後、X線回折(XRD)による構成相および反応物の同定を実施した結果、全ての焼結体においてタングステン酸ジルコニウムのα相及び純銅のピークが観察され、分解生成物及び反応物のピークは認められなかった。
【0030】
次に、各複合材料について、実施例2と同様に、TMAにて熱膨張量の測定を行った結果、実施例2と同様な結果が得られた。前記酸化物と純銅成分の混合比率により、所望の熱膨張係数が得られた。
【0031】
【発明の効果】
この発明により、負の熱膨張係数を有する酸化物とその他の材料との複合により、所望の熱膨張係数を有する材料を、効率良く容易に製造することが可能になった。
【図面の簡単な説明】
【図1】 各混合比率における、タングステン酸ジルコニウムとアルミニウムの複合焼結体の熱膨張特性を示した図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thermal expansion control material.
[0002]
[Prior art]
It has a negative thermal expansion coefficient and has the chemical formula (A 1 -Z D Z ) (W 1 -X R X ) 2 O 8 (A is Zr or Hf or a mixture thereof, D is a solid solution in ZrO 2 or HfO 2 Elements selected from possible elements, Z is a value equal to or less than the maximum solid solution atomic ratio limited by each element, R is an element selected from elements that can be dissolved in WO 3 , and X is limited by each element The oxide represented by the value below the maximum solid solution atomic ratio is a stable substance at 1105 to 1257 ° C., and exhibits isotropic negative thermal expansion in a temperature range below the nonequilibrium decomposition temperature of 777 ° C. It is known. The oxide can be combined with other substances to form a sintered body of the composition, whereby the thermal expansion coefficient of the sintered body of the composition can be controlled.
[0003]
As a method for producing a sintered body of the composition containing the oxide, ZrW 2 O 8 (hereinafter referred to as zirconium tungstate), which is a kind of this oxide, is described in Scripta Materialia Vol. 36, No. 9, No. 1075-1080. ) And pure copper are mixed and sintered by hot isostatic pressing (hereinafter referred to as HIP) to form a composite material. In addition, J.H. Mater. Res. Magazine Vol. 14, No. 3, pages 780-789 include a method in which zirconium tungstate and pure copper are mixed and solidified by hot pressing, and zirconium tungstate and pure copper are bonded by mechanical alloying. There are proposed a method of solidifying by sol-gel and a method of plating pure copper on the surface of zirconium tungstate and solidifying by HIP.
[0004]
However, in the method in which zirconium tungstate and copper powder are mixed and solidified by HIP, it is necessary to hold at 600 ° C. under a pressure of 103 MPa for 3 hours. There was a problem that a copper oxide was generated by mutual diffusion of oxygen atoms and copper atoms in zirconium, and zirconium tungstate was decomposed, so that a composite material having a desired thermal expansion coefficient could not be obtained.
[0005]
Further, a method of mixing zirconium tungstate and pure copper and solidifying by hot pressing, and a method of bonding zirconium tungstate and pure copper by mechanical alloying and solidifying by hot pressing are 1.4 GPa at 250 ° C. Since the decomposition does not occur by holding for 13 hours under the pressure of, a high-density solidified body can be obtained. However, since the time of 13 hours is spent only for holding, there is a problem that productivity is low, and The material bonded by the mechanical alloying method has a problem that it does not exhibit a desired thermal expansion coefficient.
[0006]
Further, in the method of plating pure copper on the surface of zirconium tungstate and solidifying by HIP, the problem of the HIP method is solved, but the composite material of zirconium tungstate and copper having a desired thermal expansion coefficient It is necessary to control the surface coating to obtain this, but this control is difficult. In addition, this method is not always efficient in terms of process.
[0007]
[Problems to be solved by the invention]
The present invention provides a composition sintered body having a desired thermal expansion coefficient containing an oxide represented by the chemical formula (A 1-Z D Z ) (W 1-X R X ) 2 O 8 as a component, It is an object of the present invention to provide a production method that enables efficient and easy production.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied a method for producing a sintered body of the composition containing the oxide, and as a result, (1) the heating rate during sintering and (2) during sintering. The inventors have found that the above-mentioned object can be achieved by setting the pressure conditions to an appropriate value, and have made the present invention.
That is, the aspects of the present invention are as follows.
[0009]
(1) has a negative thermal expansion coefficient, chemical formula (A 1-Z D Z) (W 1-X R X) 2 O 8 (A is Zr or Hf or mixtures thereof, D is ZrO 2 or HfO 2 At least one element selected from elements that can be dissolved in Z, Z is a value that is less than or equal to the maximum solid solution atomic ratio limited by each element (including 0), and R is selected from elements that can be dissolved in WO 3 Sintering of a composition of an oxide and an Al, Cu, or Al—Cu alloy represented by at least one element, X being a value less than the maximum solid solution atomic ratio (including 0) limited by each element In the method for producing a body, the composition of the oxide and Al, Cu or Al—Cu alloy is heated to generate heat, the temperature increase rate during sintering is 20 to 1000 ° C./min, and the sintering temperature is 777 ° C. The manufacturing method of the sintered compact characterized by sintering below.
[0010]
(2) The method for producing a sintered body according to (1) above, wherein the pressure during sintering is 0.1 to 1000 MPa.
[0011]
(3) The method for producing a sintered body according to (1) or (2) above, wherein heat treatment is performed at a temperature of 100 to 777 ° C. after sintering at a pressure of 200 MPa or less for 1 minute or more.
[0012]
Hereinafter, embodiments of the present invention will be described in more detail.
Oxide (A 1-Z D Z) (W 1-X R X) 2 O 8 A is Zr or Hf or mixtures thereof having a negative thermal expansion coefficient of the present invention, D is solid in ZrO 2 or HfO 2 At least one element selected from elements that can be dissolved, Z is a value that is less than or equal to the maximum solid solution atomic ratio limited by each element (including 0), and R is at least selected from elements that can be dissolved in WO 3 With respect to one element, X is a value less than the maximum solid solution atomic ratio (including 0) limited by each element, an element that can be dissolved in ZrO 2 or HfO 2 is an alkaline earth metal such as Ca, Elements such as rare earth metals such as Y.
[0013]
The value of Z is specifically 0.2 or less, and typically 0 to 0.1. Moreover, the element which can be dissolved in WO 3 is an element such as IIIA group, VA group or VIA group. The value of X is specifically 0.25 or less, and more specifically 0 to 0.2. If Z is larger than 0.2 or X is larger than 0.25, the negative thermal expansion characteristics may not be remarkable, which is not preferable. It is known that when Z = 0 and X = 0, it has a remarkable negative thermal expansion characteristic.
[0014]
As one aspect of the production method of the present invention, the sintering is performed at a heating rate of 20 to 1000 ° C./min during sintering and a sintering temperature of 777 ° C. or less. (Aspect (1))
Sintering the composition containing the oxide and Al, Cu or Al-Cu alloy at a heating rate of 20 to 1000 ° C./min during sintering and a sintering temperature of 777 ° C. or less, A chemical reaction between the oxide and other constituent elements can be suppressed. In order to control the sintering temperature to 777 ° C. or lower, the temperature rising rate is preferably 20 to 500 ° C./min, more preferably 30 to 300 ° C./min, and further preferably 50 to 200 ° C./min.
[0015]
When a composition containing the oxide and Al, Cu, or an Al—Cu alloy is sintered at a temperature of 777 ° C. or lower, non-equilibrium decomposition of the oxide can be suppressed.
[0016]
Moreover, as an aspect of the production method of the present invention, sintering is performed at a pressure during sintering of 0.1 to 1000 MPa. (Aspect (2))
When a composition containing the oxide and Al, Cu, or an Al—Cu alloy is sintered under pressure, the time required for the sintering can be shortened, and the chemical reaction between the oxide and other constituent elements. Can be suppressed. However, a large press is required to apply a larger pressing force, and the size of the thermal expansion control material of the present invention is limited if the press has the same capacity. For this reason, the applied pressure is preferably 30 to 800 MPa, more preferably 50 to 500 MPa, and still more preferably 100 to 400 MPa.
[0017]
In addition, as an aspect of the production method of the present invention, in order to satisfy the production conditions described above, sintering is performed by generating heat by energizing the composition and raising the temperature. (Aspect (1))
Examples of the sintering method for generating heat by energizing the composition containing the oxide include a discharge plasma method disclosed in Japanese Patent No. 2762225. Compared to a general heating method such as an electric furnace, when the composition is energized to generate heat, the rate of temperature rise can be increased, and the composition containing the oxide is a surface like aluminum. Even with a material having an oxide layer, a dense sintered body can be produced by causing a discharge when energized and destroying the oxide layer.
[0018]
As still another aspect of the production method of the present invention, heat treatment is performed at a temperature of 100 to 777 ° C. after sintering at a pressure of 200 MPa or less for 1 minute or more. (Aspect (3))
Zirconium tungstate, which is a typical composition of the oxide, is known to have three phases by applying temperature and pressure. In general, the α phase is stable at normal temperature and pressure, but it is known that the γ phase is induced by pressurization of 200 MPa or more, and changes to the β phase at a temperature of 155 ° C. or more. Since these three phases have different crystal structures and lattice spacings, their thermal expansion coefficients are different.
[0019]
The α phase is cubic and has a coefficient of thermal expansion of −8.8 × 10 −6 / ° C. isotropically in a temperature range of −273 to 127 ° C. The β phase is also cubic and has a thermal expansion coefficient of −4.9 × 10 −6 / ° C. in the temperature range of −157 to 677 ° C. The γ phase is orthorhombic and exhibits a thermal expansion coefficient of −0.68 to −1.88 × 10 −6 / ° C. at 20 ° C.
[0020]
The γ phase may be induced under the sintering conditions of the production method of the present invention. The γ phase is preferably changed to an α phase or a β phase. For this reason, after sintering, heat treatment is performed at a temperature of 100 to 777 ° C., preferably 120 to 777 ° C., more preferably 150 ° C. to 777 ° C. At that time, heat treatment is performed for 1 minute or more at a pressure of 200 MPa or less. This pressure is preferably 100 MPa or less, and more preferably 50 MPa or less.
[0021]
The heat treatment can also be carried out by holding the sintered body in the above pressure range within the above temperature range during cooling after sintering. That is, after the current sintering, when heating is stopped by reducing the current, the current is cooled by thermal diffusion through the sintering jig. When the sintered body is cooled to an appropriate temperature, by placing the pressure on the sintered body in the pressure range, an oxide having a negative thermal expansion coefficient undergoes a phase change to obtain a desired phase. be able to.
[0022]
Moreover, a metal is included in a composition as an aspect of the manufacturing method of this invention. (Aspect (1))
Metals generally have a lower softening point and better spreadability than materials such as oxides and nitrides. For this reason, the metal is effective as a sintering aid for the composition containing the oxide. As the metal here, Cu, Al, and alloys thereof can be appropriately selected.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention does not limit a technical scope at all by these specific examples.
[0024]
[Example 1]
As the oxide, zirconium tungstate powder (average particle size 2 μm) and commercially available pure aluminum powder (manufactured by Kojundo Chemical Laboratory Co., Ltd .: purity 99.9%, average particle size 10 μm) are used. Mix in a mortar so that the volume ratio is 50%, fill in a cemented carbide sintering jig (inner diameter 10 mmφ), and use a pulse current sintering apparatus (SPS-1050L manufactured by Sumitomo Coal Mining Co., Ltd.). Then, pulse electric current sintering was performed in a vacuum atmosphere to produce a sintered body of zirconium tungstate and aluminum. The conditions for pulsed current sintering were a heating rate of 100 ° C./min, an applied pressure of 300 MPa, a sintering temperature of 400 ° C., and a holding time of 3 minutes.
[0025]
The obtained sintered body was subjected to density measurement by Archimedes method, and as a result, it was 97% or more of the density calculated from the theoretical density and composition ratio of aluminum and zirconium tungstate, and was in a good sintered state. .
Next, as a result of identifying the constituent phases and reactants by X-ray diffraction (XRD), the peaks of α-phase, γ-phase and aluminum of zirconium tungstate were observed, and peaks of decomposition products and reactants were observed. There wasn't.
Moreover, from the observation result of the structure | tissue by an optical microscope and a scanning electron microscope (SEM), a void and a reaction layer were not observed in the joining interface of zirconium tungstate and aluminum, and it was a favorable sintered state.
[0026]
[Example 2]
As in Example 1, as the oxide, zirconium tungstate powder and pure aluminum powder were mixed in a mortar so that the volume ratio of zirconium tungstate was 25%, 50%, and 75%. A sintered body was produced under the same sintering conditions as in Example 1.
[0027]
As a result of carrying out density measurement by the Archimedes method for the obtained sintered body, it was 97% or more of the density obtained by calculation from the theoretical density and composition ratio of aluminum and zirconium tungstate in all the sintered bodies, and good Sintered state.
Next, the sintered body was heat-treated at 300 ° C. and 0.1 MPa in the air for 1 hour.
Then, as a result of identifying the constituent phases and reactants by X-ray diffraction (XRD), the α phase of zirconium tungstate and the aluminum peak were observed in all sintered bodies, and the peaks of decomposition products and reactants were observed. Was not recognized.
Next, each composite material was processed into dimensions of 3 × 3 × 6 mm 3 , and the amount of thermal expansion was measured with TMA. The measurement results are shown in FIG. A desired thermal expansion coefficient was obtained by the mixing ratio of the oxide and aluminum.
[0028]
[Example 3]
As the oxide, zirconium tungstate powder (average particle size 2 μm) and commercially available pure copper powder (Fukuda Metal Foil Powder Co., Ltd .: purity 99.9%, average particle size 5 μm) were used. Were mixed in a mortar so as to be 10%, 25%, 50%, 75% and 90%, and a sintered body of zirconium tungstate and copper was produced in the same manner as in Example 1. The conditions for pulsed electric current sintering were a heating rate of 80 ° C./min, an applied pressure of 350 MPa, a sintering temperature of 500 ° C., and a holding time of 3 minutes.
[0029]
As a result of carrying out density measurement by the Archimedes method for the obtained sintered body, it was 97% or more of the density calculated from the theoretical density and composition ratio of pure copper and zirconium tungstate, and was in a good sintered state. .
Then, as a result of identifying the constituent phases and reactants by X-ray diffraction (XRD), the α phase of zirconium tungstate and the peak of pure copper were observed in all the sintered bodies, and the peaks of decomposition products and reactants were I was not able to admit.
[0030]
Next, for each composite material, the thermal expansion amount was measured by TMA in the same manner as in Example 2. As a result, the same result as in Example 2 was obtained. A desired thermal expansion coefficient was obtained by the mixing ratio of the oxide and the pure copper component.
[0031]
【The invention's effect】
According to the present invention, it has become possible to efficiently and easily produce a material having a desired thermal expansion coefficient by combining an oxide having a negative thermal expansion coefficient with another material.
[Brief description of the drawings]
FIG. 1 is a graph showing thermal expansion characteristics of a composite sintered body of zirconium tungstate and aluminum at each mixing ratio.

Claims (3)

負の熱膨張係数を有し、化学式(A1-ZZ)(W1-XX)28(AはZr又はHf又はそれらの混合物、DはZrO2又はHfO2に固溶し得る元素から選ばれた少なくとも一つの元素、Zは各元素で限定される最大固溶原子割合以下の値(0を含む)、RはWO3に固溶し得る元素から選ばれた少なくとも一つの元素、Xは各元素で限定される最大固溶原子割合以下の値(0を含む))で表される酸化物とAl、Cu又はAl−Cu合金との組成物の焼結体を製造する方法において、前記酸化物とAl、Cu又はAl−Cu合金との組成物に通電し発熱させ、焼結時の昇温速度を20〜1000℃/分、焼結温度を777℃以下で焼結することを特徴とする焼結体の製造方法。It has a negative thermal expansion coefficient and has the chemical formula (A 1 -Z D Z ) (W 1 -X R X ) 2 O 8 (A is Zr or Hf or a mixture thereof, D is a solid solution in ZrO 2 or HfO 2 At least one element selected from possible elements, Z is a value equal to or less than the maximum solid solution atomic ratio limited by each element (including 0), and R is at least one selected from elements that can be dissolved in WO 3 Manufactures a sintered body of a composition of an oxide and an Al, Cu or Al-Cu alloy represented by two elements, X being a value less than the maximum solid solution atomic ratio limited by each element (including 0) In this method, the composition of the oxide and Al, Cu or Al—Cu alloy is energized to generate heat, and the temperature rise rate during sintering is 20 to 1000 ° C./min, and the sintering temperature is 777 ° C. or less. A method for producing a sintered body, characterized by comprising: 焼結時の圧力を0.1〜1000MPaとすることを特徴とする請求項1記載の焼結体の製造方法。  The method for producing a sintered body according to claim 1, wherein the pressure during sintering is 0.1 to 1000 MPa. 焼結後100〜777℃の温度で、200MPa以下の圧力で1分間以上の熱処理を行うことを特徴とする請求項1又は2に記載の焼結体の製造方法。  The method for producing a sintered body according to claim 1 or 2, wherein a heat treatment is performed at a temperature of 100 to 777 ° C after sintering at a pressure of 200 MPa or less for 1 minute or more.
JP2001320659A 2001-10-18 2001-10-18 Method for producing linear expansion control composite material Expired - Lifetime JP3988981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320659A JP3988981B2 (en) 2001-10-18 2001-10-18 Method for producing linear expansion control composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320659A JP3988981B2 (en) 2001-10-18 2001-10-18 Method for producing linear expansion control composite material

Publications (2)

Publication Number Publication Date
JP2003129149A JP2003129149A (en) 2003-05-08
JP3988981B2 true JP3988981B2 (en) 2007-10-10

Family

ID=19138011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320659A Expired - Lifetime JP3988981B2 (en) 2001-10-18 2001-10-18 Method for producing linear expansion control composite material

Country Status (1)

Country Link
JP (1) JP3988981B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017008337A (en) * 2015-06-16 2017-01-12 Jx金属株式会社 Composite material of copper or copper alloy and negative thermal expansion material and electronic apparatus provided with the composite material
CN115338414B (en) * 2022-08-22 2023-12-19 西安交通大学 Light Al-ZrW with adjustable thermal expansion coefficient 2 O 8 Method for producing materials

Also Published As

Publication number Publication date
JP2003129149A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
Nygren et al. On the preparation of bio-, nano-and structural ceramics and composites by spark plasma sintering
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
JP6918697B2 (en) Cermet material and its manufacturing method
Shaw Processing nanostructured materials: an overview
US7022262B2 (en) Yttrium aluminum garnet powders and processing
JPH06508339A (en) High toughness - high strength sintered silicon nitride
JP3412381B2 (en) Ceramic composite materials
US20090298683A1 (en) Production of a material comprising a mixture of noble metal nanoparticles and rare-earth oxide nanoparticles
JP3988981B2 (en) Method for producing linear expansion control composite material
JP5542672B2 (en) Nanosize structure comprising valve metal, valve metal suboxide, and manufacturing method thereof
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
Chaim et al. Densification of nanocrystalline TiC ceramics by spark plasma sintering
JP2006009088A (en) Method for producing composite material with low thermal expansion, tabular composite, and parts for electronic equipment
JP2934859B1 (en) Method for producing yttrium / aluminum composite oxide
JP2003201502A (en) Method of producing linear expansion-controlled material
Kumagai et al. Phase Transformation and Densification of an Attrition‐Milled Amorphous Yttria‐Partially‐Stabilized Zirconia–20 mol% Alumina Powder
JP2005330570A (en) Alloy with whistler structure and manufacturing method therefor
JP2007113032A (en) TARGET MATERIAL FOR Ru SPUTTERING
Deqing et al. Reactive synthesis of in-situ ZrAl 3-Al 2 O 3-Al composites
JP4566296B2 (en) Method for producing titanium nitride sintered body
JP5916009B2 (en) Whisker crystal of iron-based superconductor and manufacturing method thereof
CN114853015B (en) M-bit binary MAX phase material, preparation method and application thereof
WO2022210430A1 (en) Gold alloy and method for producing gold alloy
Knaislová et al. Influence of Sintering Conditions on Compacted Rapidly Solidified AlFeCrSiTi Alloys
JP2006176802A (en) Method for manufacturing high-strength magnesium alloy using solid-state reaction by hydrogenation and dehydrogenation

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350