JP3988316B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP3988316B2
JP3988316B2 JP14683999A JP14683999A JP3988316B2 JP 3988316 B2 JP3988316 B2 JP 3988316B2 JP 14683999 A JP14683999 A JP 14683999A JP 14683999 A JP14683999 A JP 14683999A JP 3988316 B2 JP3988316 B2 JP 3988316B2
Authority
JP
Japan
Prior art keywords
elements
magnetic field
substrate
current
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14683999A
Other languages
Japanese (ja)
Other versions
JP2000337921A (en
Inventor
一朗 伊澤
博文 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP14683999A priority Critical patent/JP3988316B2/en
Publication of JP2000337921A publication Critical patent/JP2000337921A/en
Application granted granted Critical
Publication of JP3988316B2 publication Critical patent/JP3988316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は半導体磁気センサ、特に、磁気抵抗素子を用いた磁気センサに係り、詳しくは、センサ出力のオフセットを調整する技術に関するものである。
【0002】
【従来の技術】
従来、磁気抵抗素子を利用したギヤ近接方式の回転センサが知られている(特開平3−195970号公報等)。このセンサは、図10に示すように、基板50に磁気抵抗素子51,52が蒸着され、この基板50がバイアス磁石53の着磁面53aに垂直に取り付けられている。この基板50が磁性体よりなるギヤ54に対向配置され、バイアス磁石53からギヤ54に向けてバイアス磁界を発生させる。そして、ギヤ54の回転に伴いバイアス磁界の変化(磁気ベクトルBの向きの変化)を抵抗変化として検出する。つまり、ギヤ54における1つの歯55が基板50の前方を通過する度に磁気ベクトルBの向きが変化し、それを電気信号として取り出す。
【0003】
ところが、本来、ギヤ54の歯55(山/谷)の通過により磁気ベクトルBの向きが変化することにより素子51,52の中点αでの電圧が変化し、比較器56にて基準電圧Vref との比較にて2値化信号を得るものであるが、素子51,52とバイアス磁石53との相対的位置関係に誤差が生じたり(基板50やバイアス磁石53に組付けズレがあったり)、バイアス磁石53に着磁バラツキがあると、中点αでの電位にオフセットが発生し、本来、図11の信号波形SG1を得るべきところが図11の信号波形SG2となり、2値化ができないことが生じる。
【0004】
このために、磁石組付けズレや磁石着磁バラツキ等により発生する磁気抵抗素子出力のオフセット対策として、CMOSを用いた自動中点補正回路、およびピーク・ボトムホールド回路等、複雑な回路方式を用いてオフセットを許容していた。
【0005】
しかしながら、この方式ではバイポーラチップの他に、処理回路用CMOSチップが必要であり、小型化が困難であるという問題が生じる。
【0006】
【発明が解決しようとする課題】
そこで、この発明の目的は、新規な構成にて、組付けズレ等によるセンサ出力のオフセットを調整することができる磁気センサを提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、基板の上に電流導通部を延設し、この電流導通部に電流を流し、これにより発生する磁界にて磁気抵抗素子に対するバイアス磁界の向きを補正するようにしたことを特徴としている。
【0008】
この構成によれば、電流導通部に電流が流され、これにより発生する磁界によって、理想的な磁気ベクトルが磁気抵抗素子に印加するように調整される。
このように、電流導通部に電流を流し、これにより磁気抵抗素子に対するバイアス磁界の向きを補正することにより、素子とバイアス磁石との相対的位置関係に誤差が生じたり(基板やバイアス磁石に組付けズレがあったり)、バイアス磁石に着磁バラツキがある等によって生じるセンサ出力のオフセットを調整することができる。
【0009】
ここで、請求項2に記載のように、前記基板上で、層間絶縁膜を挟んで磁気抵抗素子と電流導通部を配置したり、請求項3に記載のように、前記磁気抵抗素子が2つ直列接続され、当該直列回路に所定電圧を印加したときの両素子間の中点電圧をモニター信号として用いると、実用上好ましいものとなる。
【0010】
【発明の実施の形態】
以下、この発明を具体化した実施の形態を図面に従って説明する。
本磁気センサは車載用回転センサとして用いられるものであって、具体的には、カム角センサ、クランク角センサ、車速センサ、自動変速機に組み込まれる回転センサ、車輪速センサ等に使用されるものである。
【0011】
図1には、本実施形態における磁気回転センサの平面図を示す。
センサハウジング1の内部には基板2が配置されている。この基板2の上には、磁気抵抗素子(以下、MR素子という)3,4が配置されている。MR素子3,4の材料としてはNi−Co系やNi−Fe系を挙げることができ、蒸着法にて基板2上に堆積しパターニングしたものである。MR素子3,4は帯状をなしている。MR素子3の一端が接地されるとともに、他端がMR素子4の一端と接続され、MR素子4の他端が電源16と接続されている。
【0012】
このようにして、MR素子3,4は電源16とグランド(GND)間に直列にブリッジ接続されており、2つのMR素子3,4による直列回路に所定電圧Vrを印加したときの両素子間の中点αでの電圧がセンシング信号として取り出される。
【0013】
一方、基板2の後方において、基板2から離間してバイアス磁石5が配置されている。バイアス磁石5はN極に着磁されたN極面6とS極に着磁されたS極面7を有し、N極面6が基板2側を向いている。そして、このバイアス磁石5のN極面6にてMR素子3,4に向く磁界(磁気ベクトルBbias)が形成されている。このバイアス磁石5によるバイアス磁界内にMR素子3,4が位置している。
【0014】
このセンサハウジング1が、図3に示すように、磁性体よりなるギヤ8に対向して設けられている。詳しくは、MR素子3,4がギヤ8の外周の歯9と所定の間隔をおいて配設されている。このギヤ8は回転軸(エンジンのクランクシャフト等)に固定され、エンジンの駆動に伴うクランクシャフト等の回転に同期して回転する。
【0015】
そして、被検出対象であるギヤ8の回転に伴う歯9(山と谷)の通過によってバイアス磁界(磁気ベクトル)Bbiasの向きが変化する。このバイアス磁界Bbiasの向きが変化すると、MR素子3,4の抵抗値も変化する。その結果、中点αの電圧も変化する。
【0016】
図3において、中点αの電圧がオペアンプ10にて増幅され、比較器11にて基準電圧Vref と比較され、その大小関係にて比較器11から2値化された信号が送出される。この2値化信号の周期がギヤ8の回転速度に対応する。よって、この2値化信号の周期からギヤ8の回転速度が求められる。具体的には、2値化信号(パルス信号)の周期の測定、あるいは、所定時間当たりのパルス数の計数にてギヤ8の回転速度が求められる。このように、被検出対象の運動に伴うバイアス磁界の向きの変化をMR素子3,4にて検出することができる。
【0017】
ここで、本来、ギヤ8の歯9(山と谷)の通過により磁気ベクトルBbiasの向きが変化することにより中点αの電圧が変化し回転速度を検出することができるわけであるが、バイアス磁石5の組付けズレが生じていたりバイアス磁石5の着磁バラツキが生じていると、中点αの電圧が電源電圧Vrの1/2にならずに、Vr/2からズレてしまう。このように、中点αの電圧が所定の値Vr/2に対しオフセットがあると、後段の比較器11において2値化ができないおそれがある。
【0018】
そこで、本実施形態においては、図1に示すように、基板2の上に電流導通部20,21が延設され、この電流導通部20,21を用いてMR素子3,4に対するバイアス磁界の向きを補正するようにしている。詳しくは、図2(図1のA−A線での縦断面)に示すように、基板2の上面には電流導通部20,21が配置され、電流導通部20,21を含めた基板2の上には層間絶縁膜22が形成され、その上にMR素子3,4が配置されている。電流導通部20,21はアルミよりなる。また、電流導通部20,21は、図1に示すように長方形をなし、バイアス磁界Bbiasの向きに沿って延設されている。そして、長方形をなす電流導通部20,21の長手方向に電流を流すことができるようになっている。この電流導通部20,21に電流を流し、その回りに形成される磁界(図2参照)にてMR素子3,4に対するバイアス磁界の向きを補正することができる。
【0019】
詳しくは、MR素子3,4に印加される磁気ベクトルBbiasがバイアス磁石5の組付けズレ等によってズレていた場合、電流導通部20,21に定電流を流し、この電流量を調整することによって電流導通部20,21の回りに生じる磁界Badj を調整し、本来欲しい理想的な磁気ベクトルBobj をMR素子3,4に印加し、オフセットを調整する。つまり、バイアス磁石5による磁気ベクトルBbiasに対し電流により発生する磁気ベクトルBadj を合成したものがMR素子3,4に印加されるベクトルBobj になるので、電流導通部20,21に流す電流の調整にてMR素子3,4に印加されるベクトルBobj を最適化する。
【0020】
なお、図2において、MR素子3,4は、その上の表面保護膜23にて覆われている。
次に、オフセットの調整原理および調整手順について説明する。
【0021】
MR素子3,4の基本特性として、図4に示すように、MR素子3,4に流れる電流の方向と磁界方向のなす角度θに対するMR素子3,4の抵抗値Rは、

Figure 0003988316
と表される。
【0022】
ここで、図5のように、バイアス磁石5による磁気ベクトルBbiasに対し45°だけ傾いてMR素子3,4が延設されていると、図4においてポイントP1,P2に示すように両素子3,4の抵抗値が等しい。その結果、中点電圧は、直列接続されたMR素子3,4の印加電圧Vrの1/2となる。
【0023】
しかしながら、バイアス磁石5の組付け後においてバイアス磁石5の組付けズレにより、例えば、図6に示すように、MR素子4に印加される磁界は45°よりも大きく、又、MR素子3に印加される磁界も135°よりも大きくなっていると、図4においてポイントP1’,P2’に示すようにMR素子4の抵抗値がMR素子3の抵抗値よりも小さくなる。その結果、中点電圧が、Vr/2より大きくなる。
【0024】
そこで、中点電圧(正確には、図3のオペアンプ10の出力)をオフセット調整の際のモニター信号として用い、中点電圧のVr/2からのズレ(差)を算出し、これが図7のズレ量θx に相当する値となり、θx 値に対応する調整電流量を決定する。
【0025】
詳しくは、図7のバイアス磁石5による磁気ベクトルBbiasとMR素子3,4の延設方向とでなす角度θ1が45°よりも大きな値であった場合には、所望の磁気ベクルBadj を作ることにより、補正後のMR素子3,4の延設方向に対する角度θ2=45°のベクトルBobj を得るようにする。この際、中点電圧がVr/2に対して電位差Xだけズレている場合には、角度θx °だけズレていることを定量化しておき、電流導通部20,21に流す電流値を決定し、見かけ上の印加磁気ベクトルをBobj に補正する。
【0026】
このように調整用電流値は、磁石組付け後の中点電圧をモニターすることにより決定するが、具体的には、図8のセンサにおいて、露出する部位に、図9のように、トリミング可能な外部トリム端子41,42を設けておく。そして、MR素子3,4を製作し、バイアス磁石5を組付けた後において、中点電圧を測定(ズレ量を把握)して調整電流を決定(外部端子のトリム位置を決定)し、その後、図9に示すように、外部トリム端子41,42のカットラインLcut での切断により、切断した箇所に対応する量の電流を電流導通部20,21に流す。図9の場合、端子41のカットラインLcut での切断により電流値がaミリアンペアとなり、端子42のカットラインLcut での切断により電流値がbミリアンペアとなり、両方の端子41,42のカットラインLcut での切断により電流値が(a+b)ミリアンペアとなる。また、図8の反対側の部位(調整端子)X’は中点電圧がVr/2より小さくなる時に同様な考え方で使用する。つまり、電流導通部20,21に流す電流の向きを逆にし、且つその電流値を調整する。
【0027】
なお、図8において符号40にて中点モニター端子、即ち、図3のオペアンプ10の出力端子につながる端子を示す。
また、図2において、MR素子3,4と電流導通部20,21の間隔rに関して、導線に電流を流してその回りに生じる磁界の強さHは
H=I/2πr
ただし、Iは電流の大きさ
で表されるので、r値を考慮しつつI値を調整してMR素子3,4に、45°の磁気ベクトルを印加する。具体的には、バイアス磁石5の組付けズレが大きくなりやすい場合には、MR素子3,4と電流導通部20,21の間隔rを狭くして大きな磁界の強さHを得るようにする。
【0028】
このように、本実施の形態は下記の特徴を有する。
(イ)図1に示すように、基板2の上に電流導通部20,21を延設し、この電流導通部20,21に電流を流し、これにより発生する磁界にてMR素子3,4に対するバイアス磁界の向きを補正するようにした。つまり、基板2の上のMR素子3,4に対し、電流導通部20,21に電流を流すことにより発生する磁界によって、理想的な磁気ベクトルBobj をMR素子3,4に印加するよう調整する。
【0029】
このように、MR素子3,4に対して電流導通部20,21に電流を流し、これによりMR素子3,4に対するバイアス磁界の向きを補正することにより、素子3,4とバイアス磁石5との相対的位置関係に誤差が生じたり(基板2やバイアス磁石5に組付けズレがあったり)、バイアス磁石5に着磁バラツキがある等によって生じるセンサ出力のオフセットを調整することができる。
(ロ)図2に示すように、基板2上で、層間絶縁膜22を挟んでMR素子3,4と電流導通部20,21を配置したので、実用上好ましいものとなっている。
(ハ)図3に示すように、MR素子3,4が2つ直列接続され、この直列回路に所定電圧を印加したときの両素子3,4間の中点電圧(詳しくは、オペアンプ10の出力)を、オフセット調整の際のモニター信号として用いているので、実用上好ましいものとなっている。
【図面の簡単な説明】
【図1】 実施形態における磁気回転センサの平面図。
【図2】 図1のA−A断面図。
【図3】 センサの電気的構成を示す図。
【図4】 電流方向と磁界方向のなす角度θに対する抵抗値Rの関係を示す図。
【図5】 各種ベクトルを説明するための図。
【図6】 各種ベクトルを説明するための図。
【図7】 各種ベクトルを説明するための図。
【図8】 センサの平面図。
【図9】 図8のX部の拡大図。
【図10】 従来技術を説明するための磁気回転センサを示す図。
【図11】 センサ信号波形を示す図。
【符号の説明】
2…基板、3…MR素子、4…MR素子、5…バイアス磁石、20,21…電流導通部、22…層間絶縁膜。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor magnetic sensor, particularly to a magnetic sensor using a magnetoresistive element, and more particularly to a technique for adjusting an offset of a sensor output.
[0002]
[Prior art]
Conventionally, a gear proximity type rotation sensor using a magnetoresistive element is known (Japanese Patent Laid-Open No. 3-195970). In this sensor, as shown in FIG. 10, magnetoresistive elements 51 and 52 are vapor-deposited on a substrate 50, and the substrate 50 is attached perpendicularly to a magnetized surface 53 a of a bias magnet 53. The substrate 50 is disposed opposite to the gear 54 made of a magnetic material, and generates a bias magnetic field from the bias magnet 53 toward the gear 54. Then, a change in the bias magnetic field (change in the direction of the magnetic vector B) accompanying the rotation of the gear 54 is detected as a resistance change. That is, every time one tooth 55 in the gear 54 passes in front of the substrate 50, the direction of the magnetic vector B changes and is taken out as an electric signal.
[0003]
However, the voltage at the midpoint α of the elements 51 and 52 changes due to the change in the direction of the magnetic vector B due to the passage of the teeth 55 (mountain / valley) of the gear 54, and the reference voltage Vref is changed by the comparator 56. The binarized signal is obtained by comparison with the above, but there is an error in the relative positional relationship between the elements 51 and 52 and the bias magnet 53 (the substrate 50 and the bias magnet 53 are misaligned). If the bias magnet 53 has a variation in magnetization, an offset occurs in the potential at the middle point α, and the signal waveform SG1 of FIG. 11 should be originally obtained as the signal waveform SG2 of FIG. 11, and binarization cannot be performed. Occurs.
[0004]
For this purpose, a complicated circuit system such as an automatic midpoint correction circuit using CMOS and a peak / bottom hold circuit is used as a countermeasure against offset of the magnetoresistive element output generated due to magnet assembly misalignment or magnet magnetization variation. The offset was allowed.
[0005]
However, this method requires a CMOS chip for a processing circuit in addition to the bipolar chip, which causes a problem that it is difficult to reduce the size.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic sensor capable of adjusting the offset of the sensor output due to assembly displacement or the like with a new configuration.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, a current conducting portion is extended on the substrate, a current is passed through the current conducting portion, and the direction of the bias magnetic field with respect to the magnetoresistive element is corrected by the magnetic field generated thereby. It is characterized by that.
[0008]
According to this configuration, a current is passed through the current conducting portion, and the magnetic field generated thereby adjusts the ideal magnetic vector to be applied to the magnetoresistive element.
In this way, by passing a current through the current conducting portion and thereby correcting the direction of the bias magnetic field with respect to the magnetoresistive element, an error may occur in the relative positional relationship between the element and the bias magnet (set on the substrate or the bias magnet). The offset of the sensor output caused by the bias magnet) and the bias magnets can be adjusted.
[0009]
Here, as described in claim 2, a magnetoresistive element and a current conducting portion are arranged on the substrate with an interlayer insulating film interposed therebetween, or, as described in claim 3, the magnetoresistive element is 2 It is practically preferable to use the midpoint voltage between the two elements connected in series as a monitor signal when a predetermined voltage is applied to the series circuit.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
This magnetic sensor is used as a vehicle-mounted rotation sensor, specifically, a cam angle sensor, a crank angle sensor, a vehicle speed sensor, a rotation sensor incorporated in an automatic transmission, a wheel speed sensor, etc. It is.
[0011]
FIG. 1 shows a plan view of a magnetic rotation sensor in the present embodiment.
A substrate 2 is disposed inside the sensor housing 1. On the substrate 2, magnetoresistive elements (hereinafter referred to as MR elements) 3 and 4 are arranged. Examples of the material of the MR elements 3 and 4 include Ni—Co and Ni—Fe, which are deposited on the substrate 2 by an evaporation method and patterned. The MR elements 3 and 4 have a strip shape. One end of the MR element 3 is grounded, the other end is connected to one end of the MR element 4, and the other end of the MR element 4 is connected to the power source 16.
[0012]
In this way, the MR elements 3 and 4 are bridge-connected in series between the power supply 16 and the ground (GND), and when the predetermined voltage Vr is applied to the series circuit composed of the two MR elements 3 and 4, the two elements are connected. Is taken out as a sensing signal.
[0013]
On the other hand, a bias magnet 5 is disposed behind the substrate 2 and separated from the substrate 2. The bias magnet 5 has an N pole face 6 magnetized to the N pole and an S pole face 7 magnetized to the S pole, and the N pole face 6 faces the substrate 2 side. A magnetic field (magnetic vector Bbias) directed to the MR elements 3 and 4 is formed on the N pole surface 6 of the bias magnet 5. MR elements 3 and 4 are located in a bias magnetic field generated by the bias magnet 5.
[0014]
As shown in FIG. 3, the sensor housing 1 is provided to face a gear 8 made of a magnetic material. Specifically, the MR elements 3 and 4 are arranged at a predetermined distance from the outer peripheral teeth 9 of the gear 8. The gear 8 is fixed to a rotating shaft (an engine crankshaft or the like) and rotates in synchronization with the rotation of the crankshaft or the like accompanying the driving of the engine.
[0015]
Then, the direction of the bias magnetic field (magnetic vector) Bbias is changed by the passage of the teeth 9 (peaks and valleys) accompanying the rotation of the gear 8 to be detected. When the direction of the bias magnetic field Bbias changes, the resistance values of the MR elements 3 and 4 also change. As a result, the voltage at the midpoint α also changes.
[0016]
In FIG. 3, the voltage at the midpoint α is amplified by the operational amplifier 10, compared with the reference voltage Vref by the comparator 11, and a binarized signal is sent from the comparator 11 according to the magnitude relationship. The period of this binarized signal corresponds to the rotational speed of the gear 8. Therefore, the rotational speed of the gear 8 is obtained from the period of the binarized signal. Specifically, the rotational speed of the gear 8 is obtained by measuring the cycle of the binarized signal (pulse signal) or counting the number of pulses per predetermined time. Thus, the change in the direction of the bias magnetic field accompanying the motion of the detection target can be detected by the MR elements 3 and 4.
[0017]
Here, the voltage at the midpoint α changes due to the change in the direction of the magnetic vector Bbias due to the passage of the teeth 9 (mountains and valleys) of the gear 8, and the rotational speed can be detected. If the magnet 5 is misaligned or the bias magnet 5 is magnetized, the voltage at the midpoint α will not be ½ of the power supply voltage Vr, but will deviate from Vr / 2. Thus, if the voltage at the midpoint α is offset from the predetermined value Vr / 2, there is a possibility that binarization cannot be performed in the comparator 11 at the subsequent stage.
[0018]
Therefore, in the present embodiment, as shown in FIG. 1, current conducting portions 20 and 21 are extended on the substrate 2, and a bias magnetic field applied to the MR elements 3 and 4 using the current conducting portions 20 and 21. The direction is corrected. Specifically, as shown in FIG. 2 (longitudinal section taken along line AA in FIG. 1), current conducting portions 20 and 21 are arranged on the upper surface of the substrate 2, and the substrate 2 including the current conducting portions 20 and 21. An interlayer insulating film 22 is formed thereon, and MR elements 3 and 4 are disposed thereon. The current conducting portions 20 and 21 are made of aluminum. Further, the current conducting portions 20 and 21 are rectangular as shown in FIG. 1 and extend along the direction of the bias magnetic field Bbias. A current can flow in the longitudinal direction of the current conducting portions 20 and 21 having a rectangular shape. The direction of the bias magnetic field with respect to the MR elements 3 and 4 can be corrected by applying a current to the current conducting portions 20 and 21 and a magnetic field formed around the current conducting portions 20 and 21 (see FIG. 2).
[0019]
More specifically, when the magnetic vector Bbias applied to the MR elements 3 and 4 is shifted due to an assembly shift of the bias magnet 5 or the like, a constant current is supplied to the current conducting portions 20 and 21 and the current amount is adjusted. The magnetic field Badj generated around the current conducting portions 20 and 21 is adjusted, the ideal magnetic vector Bobj originally desired is applied to the MR elements 3 and 4, and the offset is adjusted. That is, since the vector Bobj applied to the MR elements 3 and 4 is a combination of the magnetic vector Bbias generated by the current with the magnetic vector Bbias by the bias magnet 5, the current flowing through the current conducting portions 20 and 21 is adjusted. The vector Bobj applied to the MR elements 3 and 4 is optimized.
[0020]
In FIG. 2, the MR elements 3 and 4 are covered with a surface protective film 23 thereon.
Next, the offset adjustment principle and adjustment procedure will be described.
[0021]
As a basic characteristic of the MR elements 3 and 4, as shown in FIG. 4, the resistance value R of the MR elements 3 and 4 with respect to an angle θ between the direction of the current flowing in the MR elements 3 and 4 and the magnetic field direction is
Figure 0003988316
It is expressed.
[0022]
Here, as shown in FIG. 5, when the MR elements 3 and 4 are extended by 45.degree. With respect to the magnetic vector Bbias by the bias magnet 5, both elements 3 are shown as indicated by points P1 and P2 in FIG. , 4 are equal in resistance value. As a result, the midpoint voltage is ½ of the applied voltage Vr of the MR elements 3 and 4 connected in series.
[0023]
However, the magnetic field applied to the MR element 4 is larger than 45 °, for example, as shown in FIG. When the applied magnetic field is also larger than 135 °, the resistance value of the MR element 4 becomes smaller than the resistance value of the MR element 3 as indicated by points P1 ′ and P2 ′ in FIG. As a result, the midpoint voltage becomes larger than Vr / 2.
[0024]
Therefore, the midpoint voltage (exactly, the output of the operational amplifier 10 in FIG. 3) is used as a monitor signal for offset adjustment, and the deviation (difference) of the midpoint voltage from Vr / 2 is calculated, which is shown in FIG. It becomes a value corresponding to the deviation amount θx, and an adjustment current amount corresponding to the θx value is determined.
[0025]
Specifically, when the angle θ1 formed by the magnetic vector Bbias by the bias magnet 5 in FIG. 7 and the extending direction of the MR elements 3 and 4 is larger than 45 °, a desired magnetic vector Badj is produced. Thus, a vector Bobj having an angle θ2 = 45 ° with respect to the extending direction of the MR elements 3 and 4 after correction is obtained. At this time, if the midpoint voltage is shifted by Vp / 2 by the potential difference X, the shift by the angle θx ° is quantified, and the current value to be passed through the current conducting portions 20 and 21 is determined. The apparently applied magnetic vector is corrected to Bobj.
[0026]
In this way, the adjustment current value is determined by monitoring the midpoint voltage after the magnet is assembled. Specifically, in the sensor of FIG. 8, the exposed portion can be trimmed as shown in FIG. External trim terminals 41 and 42 are provided. Then, after the MR elements 3 and 4 are manufactured and the bias magnet 5 is assembled, the midpoint voltage is measured (the amount of deviation is determined), the adjustment current is determined (the trim position of the external terminal is determined), and then As shown in FIG. 9, by cutting the external trim terminals 41 and 42 along the cut line Lcut, an amount of current corresponding to the cut portions is caused to flow through the current conducting portions 20 and 21. In the case of FIG. 9, the current value becomes a milliampere by cutting at the cut line Lcut of the terminal 41, and the current value becomes b milliampere by cutting at the cut line Lcut of the terminal 42, and at the cut line Lcut of both terminals 41 and 42. The current value becomes (a + b) milliamperes by cutting. Further, the portion (adjustment terminal) X ′ on the opposite side of FIG. 8 is used in the same way when the midpoint voltage becomes smaller than Vr / 2. That is, the direction of the current flowing through the current conducting portions 20 and 21 is reversed and the current value is adjusted.
[0027]
In FIG. 8, reference numeral 40 denotes a midpoint monitor terminal, that is, a terminal connected to the output terminal of the operational amplifier 10 in FIG.
In FIG. 2, regarding the distance r between the MR elements 3 and 4 and the current conducting portions 20 and 21, the magnetic field strength H generated around the current flowing through the conducting wire is H = I / 2πr.
However, since I is represented by the magnitude of the current, the I value is adjusted in consideration of the r value, and a 45 ° magnetic vector is applied to the MR elements 3 and 4. Specifically, when the assembly deviation of the bias magnet 5 tends to increase, the gap r between the MR elements 3 and 4 and the current conducting portions 20 and 21 is narrowed to obtain a large magnetic field strength H. .
[0028]
Thus, the present embodiment has the following features.
(A) As shown in FIG. 1, current conducting portions 20 and 21 are extended on the substrate 2, current is passed through the current conducting portions 20 and 21, and MR elements 3 and 4 are generated by a magnetic field generated thereby. The direction of the bias magnetic field was corrected. That is, the MR elements 3 and 4 on the substrate 2 are adjusted so that an ideal magnetic vector Bobj is applied to the MR elements 3 and 4 by a magnetic field generated by passing a current through the current conducting portions 20 and 21. .
[0029]
In this way, by passing a current through the current conducting portions 20 and 21 with respect to the MR elements 3 and 4, thereby correcting the direction of the bias magnetic field with respect to the MR elements 3 and 4, the elements 3 and 4 and the bias magnet 5 It is possible to adjust the offset of the sensor output that occurs due to an error in the relative positional relationship (there is an assembly deviation in the substrate 2 or the bias magnet 5), or the magnetization variation in the bias magnet 5.
(B) As shown in FIG. 2, the MR elements 3 and 4 and the current conducting portions 20 and 21 are disposed on the substrate 2 with the interlayer insulating film 22 interposed therebetween, which is practically preferable.
(C) As shown in FIG. 3, two MR elements 3 and 4 are connected in series, and a midpoint voltage between the elements 3 and 4 when a predetermined voltage is applied to this series circuit (in detail, the operational amplifier 10 Output) is used as a monitor signal at the time of offset adjustment, which is practically preferable.
[Brief description of the drawings]
FIG. 1 is a plan view of a magnetic rotation sensor according to an embodiment.
FIG. 2 is a cross-sectional view taken along the line AA in FIG.
FIG. 3 is a diagram showing an electrical configuration of a sensor.
FIG. 4 is a diagram showing a relationship of a resistance value R with respect to an angle θ formed by a current direction and a magnetic field direction.
FIG. 5 is a diagram for explaining various vectors.
FIG. 6 is a diagram for explaining various vectors.
FIG. 7 is a diagram for explaining various vectors.
FIG. 8 is a plan view of the sensor.
FIG. 9 is an enlarged view of a portion X in FIG.
FIG. 10 is a view showing a magnetic rotation sensor for explaining a conventional technique.
FIG. 11 is a diagram showing a sensor signal waveform.
[Explanation of symbols]
2 ... Substrate, 3 ... MR element, 4 ... MR element, 5 ... Bias magnet, 20, 21 ... Current conducting part, 22 ... Interlayer insulating film.

Claims (3)

基板の上に磁気抵抗素子を配置するとともに当該基板の後方にバイアス磁石を配置し、バイアス磁石によるバイアス磁界内に磁気抵抗素子を位置させ、被検出対象の運動に伴うバイアス磁界の向きの変化を磁気抵抗素子にて検出するようにした磁気センサにおいて、
前記基板の上に電流導通部を延設し、この電流導通部に電流を流し、これにより発生する磁界にて磁気抵抗素子に対するバイアス磁界の向きを補正するようにしたことを特徴とする磁気センサ。
A magnetoresistive element is disposed on the substrate, a bias magnet is disposed behind the substrate, the magnetoresistive element is positioned in the bias magnetic field by the bias magnet, and a change in the direction of the bias magnetic field accompanying the motion of the detection target is detected. In a magnetic sensor that detects with a magnetoresistive element,
A magnetic sensor characterized in that a current conducting portion is extended on the substrate, a current is passed through the current conducting portion, and the direction of the bias magnetic field with respect to the magnetoresistive element is corrected by the magnetic field generated thereby. .
前記基板上で、層間絶縁膜を挟んで磁気抵抗素子と電流導通部を配置したことを特徴とする請求項1に記載の磁気センサ。2. The magnetic sensor according to claim 1, wherein a magnetoresistive element and a current conducting portion are arranged on the substrate with an interlayer insulating film interposed therebetween. 前記磁気抵抗素子が2つ直列接続され、当該直列回路に所定電圧を印加したときの両素子間の中点電圧をモニター信号として用いたことを特徴とする請求項1に記載の磁気センサ。2. The magnetic sensor according to claim 1, wherein two magnetoresistive elements are connected in series, and a midpoint voltage between both elements when a predetermined voltage is applied to the series circuit is used as a monitor signal.
JP14683999A 1999-05-26 1999-05-26 Magnetic sensor Expired - Fee Related JP3988316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14683999A JP3988316B2 (en) 1999-05-26 1999-05-26 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14683999A JP3988316B2 (en) 1999-05-26 1999-05-26 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2000337921A JP2000337921A (en) 2000-12-08
JP3988316B2 true JP3988316B2 (en) 2007-10-10

Family

ID=15416706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14683999A Expired - Fee Related JP3988316B2 (en) 1999-05-26 1999-05-26 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP3988316B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301741A (en) * 2003-03-31 2004-10-28 Denso Corp Magnetic sensor
JP4577396B2 (en) 2008-04-03 2010-11-10 株式会社デンソー Rotation detector

Also Published As

Publication number Publication date
JP2000337921A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
JP4055609B2 (en) Magnetic sensor manufacturing method
US6937010B1 (en) Magnetic detector
JP3830319B2 (en) Method for adjusting temperature characteristics of rotation angle detection sensor
JP4190780B2 (en) Rotation detector
US7078892B2 (en) Rotation detecting device
US20030137381A1 (en) Revolution detecting device
JPH09159684A (en) Magnetic rotary detection device
CN110678714B (en) Magnetic sensor
EP3982089B1 (en) Magnetic sensor system for motor control
WO1998046968A1 (en) Magnetic encoder
WO1992021003A1 (en) Magnetoresistance type revolution detector
JP3988316B2 (en) Magnetic sensor
JP2741388B2 (en) Relative displacement detector
JP3988315B2 (en) Magnetic sensor
US6822441B1 (en) Half turn vehicle sensor having segmented magnet
JP2008506122A (en) Integrated magnetoresistive speed and direction sensor
KR101024759B1 (en) Rotation sensor device
EP1106973A1 (en) Angle detecting method
US7221148B2 (en) Wheel speed sensor assembly
JPH11153451A (en) Magnetic encoder
JP2004069655A (en) Adjustment method for offset of magnetic sensor
JP3367094B2 (en) Rotation detection device
JP3019022B2 (en) Magnetic rotation speed sensor
JP3023324B2 (en) Magnetic encoder
JP4154524B2 (en) Rotary magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees